 объединвнный институт ядерных исследований

дубна

$$
3502 / 2-81
$$

A.Bujak, P.Devensky, E.Jenkins, A.Kuznetsov,
E.Malamud, ${ }^{2}$ M.Miyajima, ${ }^{2}$ B.Morozov,
V. Nikitin, P.Nomokonov, Y.Pilipenko,
A.Sandacz, V.Smirnov, R.Yamada ${ }^{2}$

COHERENT PROTON
DIFFRACTION DISSOCIATION
ON HELIUM FROM 46 TO 400 GEV

Submitted to "The Physical Review D"

1) University of Arizona, Tucson, Arizona 85721, U.S.A.
2) Fermi National Accelerator Laboratory, Batavia, Illinois 60510 U.S.A.

I. . INTRODUCTION

In an expeximent performed at the Fermi National Accelerator Laboratory we have measured the inclusive reaction

$$
\begin{equation*}
p^{4} H e \rightarrow x^{4} H e \tag{1}
\end{equation*}
$$

at incident proton momenta $46<p_{b e a m}<400 . \mathrm{GeV} / \mathrm{c}$, and at momentum transfers and missing masses covering the ranges $0.04<|t|<0.40\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$ and $\left(\mathrm{m}_{\mathrm{p}}+\mathrm{m}_{\pi}\right)^{2}<\mathrm{M}_{\mathrm{x}}^{2}<10 \mathrm{GeV}$.

Recently at the same energies and in a similar momentum transfer interval new precise data on elastic proton-helium scattering were published ${ }^{1}$. A comparison of both diffractive processes, especially in the t range, where multiple scattering effects are important, may illuminate the similarities and differences between both processes. The main features of elastic proton-helium scattering, i.e., a sharp decrease of the cross section at small|t|values, and the presence of a dip and secondary maximum, can be reproduced ${ }^{1}$ using Glauber analysis with a nucleon-nucleon elastic scattering amplitude that is predominantly imaginary, spinless and central (in impact parameter space).

As for coherent diffraction dissociation on nuclei, it was first observed for nucleon diffraction dissociation on deuterons at the $I S R^{2}$ that the data disagree with Glauber model predictions with central elementary nucleon diffraction dissociation but agreement can be obtained if peripheral (in impact parameter space) and spin dependent elementary diffraction dissociation amplitudes are used.

One of our objectives to study reaction (1) is to see if these conclusions hold for coherent diffraction dissociation on helium. Another interesting possibility which can be investigated with helium data is the propagation of diffractively produced states in nuclear matter and the related problem of the total cross section for diffractive states on nucleons. Due to the compactness of the helium nucleus and the large contribution of multiple scattering effects one can expect helium data to be sensitive to how the diffractively produced states interact before leaving the nucleus.

Earlier results on two similar reactions at Fermilab energies have been reported, namely inclusive proton dissociation on protons, ${ }^{3}$,

$$
\begin{equation*}
\mathrm{p} p \rightarrow \mathrm{x} p \tag{2}
\end{equation*}
$$

and on deuterons? ${ }^{8}$

$$
\begin{equation*}
p d \rightarrow x d \tag{3}
\end{equation*}
$$

Combined analysis of proton diffraction dissociation on different targets in reactions (1) - (3) may yield information on exchanges of different quantur numbers in proton excitation.

In Sec. II we describe the experiment and details of data analysis. In Section III we present our experimental results and discuss some results of phenomenological fits to the data. The Glauber analysis using both central and peripheral amplitudes of elementary diffraction dissociation is described in Section IV. In Section V we summarize our conclusions.

II EXPERIMENTAL RROCEDURE AND DETAILS OF DATA ANALYSIS

The data were taken in an experiment with the circulating internal proton beam intercepting a helium gas jet. Recoil
particles were detected by sets of sandwiches of silicon semiconductor detectors.

The experiment was primarily designed and performed to study p^{4} He elastic scattering but coherent diffraction dissociation of incident protons on helium was measured simultaneously. The detailed description of the experimental set-up and apparatus is published elsewhere ${ }^{1}$. In the present paper we discuss details relevant for inelastic data analysis.

The gas jet target was viewed at angles, $\omega, 0-120 \mathrm{mrad}$, from a direction perpendicular to the beam, by sets of totally depleted surface barrier silicon detectors. The front detectors ranged in thickness from $15 \mu \mathrm{~m}$ to $200 \mu \mathrm{~m}$ and the back detectors from $200 \mathrm{\mu m}$ to $2000 \mu \mathrm{~m}$. The detectors were placed on a movable carriage at a distance 7.2 m from the target yielding angular resoiution $\Delta \omega= \pm 0.7 \mathrm{mrad}$. The uncertainty in angle less than about $\pm 0.2 \mathrm{mrad}$. The detectors were calibrated with a ${ }_{90}{ }^{234} \mathrm{Th}$ alpha particle source and also by using elastic peaks and the geometry of the experiment. The uncertainty of energy calibration is less than $\pm 1.5 \%$. The detector energy resolution was $50-150 \mathrm{keV}$.

To identify recoil particles, for each detector sandwich we sorted recoils into plots of the front detector energy, T_{F} vs. back detector energy, T_{B}. Only recoils stopping in the rear detector were analysed. For each event we determined a recoil mass identification parameter, I,

$$
\begin{equation*}
I=T_{F} \cdot g\left(T_{B}\right)+h\left(T_{B}\right) \tag{4}
\end{equation*}
$$

where g and h are polynomial functions of T_{B} determined in such a way that for the centers of gravity of ${ }^{4}$ He band on the scatter plot $I=4$ and for ${ }^{3} \mathrm{He}-\mathrm{I}=3$. In Fig. 1 a typical I parameter plot on a logarithmic scale is shown for a detector sandwich. ${ }^{4}$ He recoils were defined by the cut $3.5<1<4.5$. The

separation between ${ }^{4}$ He and ${ }^{3}$ He recoils is excellent over all t intervals studied.. The contamination from ${ }^{3} \mathrm{He}$ is less than 18 for the thinnest sandwiches and is negligible (<0.58) for the thick ones.

Two permanently fixed stacks detecting elastic events were used to monitor the jet - beam interaction rate. The absolute normalization of differential cross sections for reaction (1) was found using simultaneously measured proton helium elastic events and published cross sections ${ }^{1}$. The normalization errors of our inelastic cross sections are ± 4 to 5% for each incident energy.

The main source of Dackground for reaction (1) is the elastic scattering from residual helium gas outside the target region. The residual gas density varies slowly with angle and
is typically less than 10% of the density in the gas jet. We eliminated this background by applying a momentum transfer and beam momentum dependent cut on missing mass $M_{x}^{2} M_{x}^{2}$ min' where

$$
\begin{equation*}
M_{x \min }^{2} \simeq m_{p}^{2}+2 p_{\text {beam }} \sqrt{|t|} \omega_{a} \tag{5}
\end{equation*}
$$

The parameter ω_{a} is the angular size of the downstream part of the aperture, i.e., from the jet target to the most downstream point in the accelerator main $x i n g$ as seen by the detector. It is equal to $1 i \mathrm{mrad}$ and it does not depend significantly on the detector and its angular position. The maximum missing mass we can measure is determined by the maximum accessible angle, w, and linearly increases with beam momentum. The mass ranges overlap for close beam momenta and move to higher masses as momentum increases. For example at $t=$ $-0.1(\mathrm{GeV} / \mathrm{C})^{2}$ and the lowest beam momentum, $46 \mathrm{GeV} / \mathrm{c}$, the missing mass range is $1.2<M_{x}^{2}<2.2 \mathrm{GeV}^{2}$ and for the highest momentum, $394 \mathrm{GeV} / \mathrm{C}$, it is $3.7<\mathrm{M}_{\mathrm{x}}^{2}<13.0 \mathrm{GeV}^{2}$.

Another important source of background is inelastic events from residual gas. To evaluate this background we folded the density of residual gas (determined from the data at $46 \mathrm{GeV} / \mathrm{c}$ where the separation between elastic and inelastic events is sufficiently good) with measured diffraction dissociation cross sections at different t, M_{x}^{2} and beam momentum values. It turned out that at small masses ($M_{x}^{2}<5 \mathrm{GeV}^{2}$) this background has complicated t, mass and momentum dependence and it oscillates around the average value 9% of the inelastic contribution from the target. For large masses the background is nearly constant and equal to about 9%. The data were corrected for this average inelastic. background. For large masses this correction practically removes the inelastic background; for small masses it substantially reduces its contribution to less than $\pm 6 \%$.

The experimental momentum transfer resolution is less than $\pm 0.001(\mathrm{GeV} / \mathrm{c})^{2}$. Due to errors in detector calibration the maximum systematic exror on t is $(\Delta t / t) \pm 1.5 \%$.

The missing mass resolution is mainly determined by the detector angular acceptance, $\Delta \omega=0.7 \mathrm{mrad}$. and the binning of incident momentum, $\Delta \mathrm{p} \leqslant 16 \mathrm{GeV} / \mathrm{c}$. In our acceptance region the missing mass resolution ΔM_{x}^{2} varies between ± 0.05 and $\pm 0.34 \mathrm{GeV}^{2}$ depending on M_{x}^{2}, t and $p_{b e a m}$ in general it increases with increasing t or M_{x}^{2}. Table I illustrates the missing mass resolution dependence on M_{x}^{2}, t and $p_{\text {beam }}$. The systematic errors on $\mathrm{M}_{\mathrm{x}}^{2}$ are due to systematic errors on angle and recoil energy. In our t range they increase from $\pm 0.005 \mathrm{GeV}^{2}$ to $\pm 0.07 \mathrm{GeV}^{2}$ for small missing masses and low incident momenta and from $\pm 0.015 \mathrm{GeV}^{2}$ to $\pm 0.2 \mathrm{GeV}^{2}$ for large masses and high momenta.
tABLE I. Missing Mass Resolution $\Delta\left(M_{x}^{2}\right)$, in $G e V^{2}$ as a function of $P_{\text {beam }}, M_{x}^{2}$ and t.

III. EXPERIMENTAL RESULTS
A. Missing mass distributions

We obtained differential cross sections for coherent proton diffraction dissociation on helium for the following incident momenta: $46,97,200,259,301,348,394 \mathrm{GeV} / \mathrm{c} .$,

The differential cross sections as a function of missing

Fig. 2: Differential cross sections as a function of M_{x}^{2} in different t intervals. Different symbols correspond to cross sections at four incident momenta: $\phi-46 \mathrm{GeV} / \mathrm{c}, \boldsymbol{\phi}-97 \mathrm{GeV} / \mathrm{c}$, $\boldsymbol{\phi}^{\boldsymbol{\phi}}-200 \mathrm{GeV} / \mathrm{c}$,人 - $394 \mathrm{GeV} / \mathrm{c}$.

As aiscussed in section $I I$, at different momenta our data cover different mass ranges, so to show the mass dependence in a wide interval we plotted together the cross sections for four averaged incident momenta: $46,97,200$ and $394 \mathrm{GeV} / \mathrm{c}$.

The pronouncea peak at $M_{x}^{2} \simeq 2 \mathrm{GeV}^{2}$ dominates cross sections at almost all t values. The bump at $2.8 \mathrm{GeV}^{2}$ can be seen at small momentum transfers and i ts relative contribution is the Iargest at $|t|=0.07-0.09(\mathrm{GeV} / \mathrm{c})^{2}$, where it becomes comparable to the peak at $2 \mathrm{GeV}^{2}$. At large masses ($\mathrm{M}_{\mathrm{X}}^{2} 4 \mathrm{GeV}^{2}$) the cross sections drop approximately as $1 / M_{x}^{2}$. A peculiar feature of the data is the behaviour of the ratio between cross sections for the peak at $2 \mathrm{Gev}^{2}$ and for the high mass tail. At small momentum transfers this ratio decreases with increasing $|t|$ for $|t|<0.14 \mathrm{GeV} / \mathrm{c}^{2}$ but at high momentum transfers it becomes even larger than for the smallest $|t|$ values.

For large masses the following formula was fitted to the cross sections

$$
\begin{equation*}
\left.\frac{d^{2} \sigma}{d \operatorname{tdM}_{x}^{2}}\right|_{t \text { fixed }}=\frac{A}{\left(M_{x}^{2}\right)^{\alpha}} \tag{6}
\end{equation*}
$$

where A and α are fitted parameters. The fitted values of α for different momenta and t values are plotted in Fig. 3. AII mass distributions were fitted in the same range, $\quad 5<M_{x}^{2}<\mathbf{7 . 5}$ Gev ${ }^{2}$, for all t intervals and momenta. Within errors the parameter α does not depend on energy and t. The mean value for all energies and t intervals is $\alpha_{\text {mean }}=1.18 \pm 0.03$. If we included (where it was possible) in our fits the data at the highest masses $\left(M_{x}^{2}>7.5 \mathrm{GeV}^{2}\right)$ the parameter became slightly lower. In the framework of the triple Regge model $1 / \mathrm{M}_{\mathrm{x}}^{2}$ behaviour of the cross section reflects the dominance of

Fig. 3: Fitted values of the parameter α as obtained from the fit $\frac{d^{2} g^{2}}{\left.d \operatorname{tdM}_{x}^{2}\right|_{t} \text { fixed }}=\frac{A}{\left(M_{x}^{2}\right)^{\alpha}}$ to the large mass data $5.0<M_{x}^{2} \leq 7.5 \mathrm{Gev}^{2}$. triple - pomeron coupling in process (1)a isnot equal to 1 as well as some energy dependence of the cross sections, suggest that non - triple - Pomeron couplings cannot be neglected.

B. Four momentum transfer distributions

The t distributions for different missing mass ranges are shown in Figs. $4 \mathrm{a}-4 \mathrm{~h}$. The cross sections drop 2-3 orders of magnitude in the measured t range with no clear evidence of a dip as seen in elastic scattering ${ }^{1}$. A kink appears at $|\mathrm{t}|=0.1-0.2(\mathrm{GeV} / \mathrm{c})^{2}$. The cross section can be described as a sum of two exponentials. At small t values it decreases with a slope parameter equal to $30-60(\mathrm{GeV} / \mathrm{c})^{-2}$ and at high momentum transfers with slope $5-10(\mathrm{GeV} / \mathrm{c})^{-2}$.

The details of this pattern show an interesting mass dependence. To study this dependence the data were fitted with the formula

$$
\begin{equation*}
\left.\frac{d^{2}}{d t M_{x}^{2}} \right\rvert\, M_{x \text { fixed }}^{2}=A_{1} \exp \left[B_{1}(t+0.1)\right]+A_{2} \exp \left[B_{2}(t+0.3)\right] \tag{7}
\end{equation*}
$$

Fig. 4: Differential cross sections as a function of t in different M_{x}^{2} intervals.

Fig. 5: Fitted values of the slope parameter. Black points obtained from the fit $\left.\frac{d^{2}{ }^{2}}{d t d M_{x}^{2}} \right\rvert\, M_{x}^{2}$ fixed $=A e^{b(t+0.065)}$ in the t range $0.04<|t| \leq$ $\leq 0.08(\mathrm{GeV} / \mathrm{c})^{2}$ for the reaction $p^{4} \mathrm{He} \rightarrow \mathrm{x}^{4} \mathrm{He}$. Open points are the slope parameter for the reaction $p p \rightarrow X p$ (ref.4).

The fittea B_{1} and B_{2} parameters do not depenct on energy within error limits. B_{1} decreases monotonically as the mass increases, from $60(\mathrm{GeV} / \mathrm{C})^{-2}$ at $\mathrm{M}_{\mathrm{x}}^{2} \simeq 1.5 \mathrm{GeV}^{2}$ to $33(\mathrm{GeV} / \mathrm{c})^{-2}$ at $M_{x}^{2} \approx 4 \mathrm{GeV}^{2}$ and stays constant for higher masses. The B_{2} parameter varies similarly. It decreases from $10(\mathrm{GeV} / \mathrm{c})^{-2}$ at $M_{x}^{2}=1.5 \mathrm{GeV}^{2}$ to $5(\mathrm{GeV} / \mathrm{C})^{-2}$ at $\mathrm{M}_{\mathrm{x}}^{2} \simeq 3 \mathrm{GeV}^{2}$ and becomes approximately constant at higher masses. The kink shifts from $|t|=0.1(\mathrm{GeV} / \mathrm{C})^{2}$ at the smallest masses to $|\mathrm{t}| \simeq 0.2(\mathrm{GeV} / \mathrm{C})^{2}$ at $M_{x}^{2} \geq 4 \mathrm{Gev}^{2}$.

To compare our results for the slope parameter with existing data on the $p p+x p^{4}$ and $p d \rightarrow X d^{8}$ reactions a one exponential fit was done for the low t cross sections

$$
\begin{equation*}
\left.\frac{d^{2} \sigma}{d t d M_{x}^{2}}\right|_{M_{\text {fixed }}^{2}}=A \exp [b(t+0.065)] \tag{8}
\end{equation*}
$$

$\mathrm{M}_{\mathrm{x}}^{2}\left[\mathrm{Gev}^{2}\right]$	$\mathrm{b}\left[(\mathrm{GeV} / \mathrm{c})^{-2}\right]$	$\mathrm{M}_{x}^{2}\left[\mathrm{Gev}^{2}\right]$	$b\left[(\mathrm{GeV} / \mathrm{c})^{-2}\right]$
1.3	53.2 ± 2.1	2.9	32.9 ± 0.7
1.4	52.5 ± 1.2	3.1	35.9 ± 1.2
1.5	49.4 ± 1.0	3.3	33.4 ± 0.9
1.6	$4.9 .0 \pm 1.0$	3.5	30.4 ± 0.9
1.7	48.9 ± 0.9	3.7	28.8 ± 1.2
1.8	48.2 ± 1.0	4.1	31.7 ± 0.6
1.9	48.6 ± 1.0	4.6	30.4 ± 0.6
2.0	46.7 ± 0.8	5.2	30.5 ± 0.5
2.1	42.4 ± 0.8	6.0	32.5 ± 0.5
2.2	40.5 ± 0.7	7.0	31.1 ± 0.6
2.3	40.3 ± 0.9	8.0	31.7 ± 1.0
2.5	37.5 ± 0.8	9.0	30.3 ± 1.3
$\frac{2.7}{(\mathrm{a})} \frac{7}{\sec }-\frac{1}{\mathrm{Eq}} .$	$31=\frac{1}{i n} \pm \frac{0}{\operatorname{tax}} \div \frac{8}{}$	10.0	31.5 ± 1 -

in the t range $0.04<\mid 4 \leq 0.08(\mathrm{GeV} / \mathrm{c})^{2}$. Within our total errors the b parameter does not depend on energy. In Fig. 5 and in Table $I I$ we present the $b\left(M_{x}^{2}\right)$ dependence with b parameters averaged over incident momenta. The exrors are statistical. The systematic errors on b at small masses are less than $\pm 1.5(\mathrm{GeV} / \mathrm{c})^{-2}$ and at large masses ($M_{x}^{3} 5 \mathrm{GeV}^{2}$) they are negligible. The slope parameter is equal to $\approx 50(\mathrm{GeV} / \mathrm{c})^{2}$ at the smallest masses, about $45(\mathrm{GeV} / \mathrm{C})^{-2}$ at $\mathrm{M}_{\mathrm{x}}^{2} 2 \mathrm{GeV}^{2}$, and then quickly drops as the mass increases and flattens out at $b \approx 31(\mathrm{GeV} / \mathrm{c})^{-2}$ for $\mathrm{M}_{\mathrm{x}}^{2}-4 \mathrm{GeV}^{2}$.

We compared the slope-mass correlation for our data to those of ref. 4 for reaction (2). Open points in Fig. 5 are slope parameters from proton target data. We observe a similar slope - mass correlation for proton and helium data.

C. Energy dependence

Due to the limited number of energies available for each missing mass and to systematic errors it was not feasible to determine precisely the energy dependence of the data for each t and M_{x}^{2} interval independently. But within the limits of errors one can conclude that the shapes of the t and mass distributions do not depend on energy, and the energy dependence of the cross sections is consistent with the formula

$$
\begin{equation*}
\frac{d^{2} \sigma}{d t d M_{x}^{2}}=\left(1+\frac{28 \pm 4}{P_{b e a m}^{8}}\right) f\left(t, M_{x}^{2}\right) \tag{9}
\end{equation*}
$$

The energy dependence is illustrated in Fig. 6. In Fig. 6a we have plotted $A=d^{2} \sigma /\left.d t M_{x}^{2}\right|_{t=-0.065 \quad(G e V / c)^{2}}$

Fig. 6: (a) $A=\left.\frac{d^{2}}{d t d M^{2}}\right|_{t=-0.065(G e V / c)^{2}}$ as a function of M_{x}^{2} and incident momentum. (b) The same as (a) except reduced to $300 \mathrm{GeV} / \mathrm{c}$ using $\mathrm{A}^{\prime}=\mathrm{A}\left(1+\frac{28}{300}\right) /\left(X+\frac{28}{\mathrm{P}_{\text {beam }}}-\right)$. All errors are statistical.
determined from the fit of formula（8），as a function of M_{x}^{2} and incident momentum．In Fig． 6 b are shown corresponding cross sections reduced to the momentum $300 \mathrm{GeV} / \mathrm{c}$ according to the formula

$$
\begin{equation*}
A^{\prime}=A\left(1+\frac{28}{300}\right) /\left(1+\frac{28}{p_{\text {beam }}}\right. \tag{10}
\end{equation*}
$$

D．Cross sections

In Table III we present the cross sections at four incident momenta： $46,97,230,347 \mathrm{GeV} / \mathrm{C}$ ．The data at 230 $\mathrm{GeV} / \mathrm{c}$ are averaged over 200 and $259 \mathrm{GeV} / \mathrm{C}$ and the data at 347 $\mathrm{GeV} / \mathrm{C}$ are averaged over 301,348 and $394 \mathrm{GeV} / \mathrm{c}$.

For each missing mass range and incident momentum we have listed the cross sections as a function of t ．The listed

TABLE III．Differential cross sections $d^{2} \sigma / d t d M_{x}^{2}$ for $p^{4} \mathrm{He}+x^{4} \mathrm{He}$ ，

	$\mathrm{P}_{\text {beamm }} 46 \mathrm{GeV} / \mathrm{c}$					
$\left[\begin{array}{c} \mathrm{M}^{2} \mathrm{x}_{2} \\ \mathrm{Gev}^{2} \end{array}\right]$	$1.2<M^{2}<$	$1.4<\mathrm{M}^{2}<1$	$1.6<\mathrm{M}^{2}<1$	$1.8<\mathrm{M}^{2}<2.0$	$2.0<\mathrm{M}^{2}<$	$2.2<\mathrm{m}^{2}$
$\left[(\mathrm{GeV} / \mathrm{c})^{2}\right]$	$\mathrm{d}^{2} \sigma / \mathrm{dtdM}{ }^{2} \quad\left[\mu \mathrm{~b} \times(\mathrm{GeV} / \mathrm{c})^{-2} \times \mathrm{GeV}^{-2}\right]$					
． 04	2663 ± 362	5790 ± 314	6972 ± 424	10683 ± 704		
． 05	2170 ± 103	3734 ± 99	4833 ± 141	r 6643 ± 236		
． 06	1066土 68	2009 ± 74	3116 ± 111	6643 ± 236 4342 ± 197	8707 ± 780 4091 ± 337	
． 07	730 ± 49	1346＊ 50	1705 ± 65	2456 ± 120	4091 ± 337 3202 ± 160	
． 08	505＊ 31	915 ± 33	1120 ± 45	1552土 80	3202 ± 160 2101 ± 103	
.09 .10	337 ± 24	707 ± 31	737 ± 36	r22土 56	2101 ± 103 1278 ± 78	
． 10	278士 20	500 ± 26	612 ± 35	631 ± 51	1060 ± 70	
． 11	243土 19	292土 22	455土 32		$1060 \pm$ 610 ± 58	
.12 .13	184 ± 18	301 ± 22	370 ± 31	509 ± 48 316 ± 42	610 ± 58 519 ± 55	
． 13	157士 17	320 ± 24	332 ± 27	316 ± 42 345 ± 42	519 ± 55	
． 14	176 ± 17	209 ± 14	308 ± 19	345 ± 42 299 ± 23	380 ± 42	434土 94
． 15	162士 14	187 ± 11	250 ± 16		301 ± 25	416士 40
． 17	166土 9	184＊ 6	236 ± 9	272 ± 21	278 ± 22	242 ± 28
． 20	129士 9	148 ± 7	180 ± 9	264 ± 11	241 ± 12	225土 1
． 23	83 ± 16	101 ± 7	136 ± 8	$232 \pm$ 190 ± 11	246 ± 15	151才 2
． 26		73 ± 6	92 ± 7	190 ± 11	212 ± 18	
． 29		46 ± 6	58 ± 8	129 ± 12	144士 28	
． 32		32 ± 6	44 ± 11	85 ± 16		
． 35		30 ± 15				

TABLE III．（cont＇d）Differential cross sections $d^{2} \sigma / d^{\prime} M^{2}$ for $p^{4} H e \rightarrow x^{4} H e$

－${ }^{\text {beam }} 97 \mathrm{GeV} / \mathrm{c}$						
$\left[\begin{array}{c} \mathrm{N}^{2} \\ \mathrm{Cev}^{2} \\ \mathrm{Gev}^{2} \end{array}\right]$	$1.4 \mathrm{~km}^{2}<1.6$	$1.6<M^{2}<1$	$1.8<M^{2}<2$	$2.0<\mathrm{m}^{2}<2$	$2.2<\mathrm{m}^{2}<2$	$2.4<M^{2}<2.6$
$\left[(\mathrm{GeV} / \mathrm{c})^{2}\right]$	$d^{2} \sigma / d t d M^{2} \times\left[\mu \mathrm{x} \times(\mathrm{GeV} / \mathrm{c})^{-2} \times 0 \mathrm{~V}^{-2}\right]$					
． 04	4448 ± 418	6120 ± 321	9037士 393	9978 ± 294	8115 ± 360	6940 ± 354
． 05	2980さ157	3972 ± 206	6182 ± 210	7226＊157	6654 ± 213	5197 ± 184
． 06	1873 ± 157	2683 ± 130	3883 ± 201	4708 ± 130	4547 ± 175	3286 ± 145
． 07	1002 ± 80	1355 ${ }^{\text {c }} 83$	2013 ± 90	2934士 88	2819 ± 87	2243 ± 85
． 08	715 ± 76	803 ± 57	1254士 61	1846士 70	1759 ± 64	1744土 77
． 09	516 ± 73	570 ± 46	757 ± 52	1129 ± 46	1358 ± 63	1339 ± 62
． 10	310 ± 70	349 ± 34	492＊ 33	805 ± 40	969 ± 43	825士 58
． 11		250士 31	373 ± 28	364 ± 30	621 ± 44	565 ± 56
． 12		267 ± 27	292 ± 25	364 ± 27	452 ± 36	384 ± 57
． 13		194土 29	292土 29	302土 34	390 ± 51	401 ± 57
.14		209士 48	239 ± 26	272 ± 33	305 ± 44	236 ± 38
． 15		267士 34	262 ± 23	180 ± 21	262 ± 27	175 ± 22
． 17		248士 30	240 ± 12	211 11	163 ± 12	140 ± 13
． 20			204土 14	179さ 14	150 ± 15	121 ± 13
． 23			157 ± 24	115士 11	125 ± 16	
． 26			151士 34	86 ± 26		

Pbeam $230 \mathrm{GeV} / \mathrm{c}$						
$\left[\begin{array}{c} \mathrm{N}_{2}^{2} \\ \mathrm{Gev}^{2} \end{array}\right]$	2．2＜y ${ }^{2}<2.4$	$2.4<\mathrm{m}^{2}<2.6$	$2.6<\mathrm{M}^{2}<2.8$	$2.8<\mathrm{m}^{2}<3.2$	$3.2<\mathrm{M}^{2}<3.6$	$3.6<\mathrm{M}^{2}<4.0$
$\left[(\mathrm{GeV} / \mathrm{c})^{2}\right]$	$\mathrm{d}^{2} \sigma / \mathrm{dtdM}{ }^{2} \quad\left[\mu \mathrm{x} \times(\mathrm{GeV} / \mathrm{c})^{-2} \times \mathrm{GeV}^{-2}\right]$					
． 04	7156 ± 294	5402 ± 251	6276 ± 328	5555士269	3513土 97	2660 ± 97
． 05	3978さ182	4524土 92	4657 ± 138	4222土105	2467 ± 46	2016 ± 46
． 06	3494 ± 142	3093土 84	3546 ± 153	3001 ± 80	1887＊ 43	1460士 38
． 07	1781 ± 147	1946土 55	2313 ± 86	1911＊ 53	1442 ± 32	1083： 23
． 08	1441土 70	1475 ± 73	1684士 59	1390 ± 32	1013士 27	854 ± 19
． 09	1054土 75	1027士 60	1206 ± 48	1059士 29	721 18	629 ± 17
． 10	807 ± 62	698 ± 60	890 ± 46	750 ± 20	S31： 15	457 ± 13
.11	384 ± 116	493土 41	622 ± 40	534 ± 17	410 ± 13	341 ± 13
． 12	368 ± 73	429 ± 58	483 ± 43	380 ± 17	274 ± 12	258： 20

errors are statistical. The normalization errors are about equal to $\pm 5 \%$. Small mass data $\left(M_{x}^{2}<5 \mathrm{GeV}^{2}\right)$ have additional systematic errors of less than ± 6, which are due to inelastic background from the residual gas.

The quoted errors refer to the relative normalization of inelastic cross sections. To account for the absolute normalization one has to include also systematic normalization errors of elastic proton helium scattering ${ }^{1}$ which are $\pm 4.8 \%$.
IV. GLAUBER ANALYSIS OF THE DIFFERENTIAL CROSS SECTIONS

A. Basic formulae

For coherent production $p^{4} H e \rightarrow X^{4} H e$, where X is a state with specified missing mass, we used the following Glauber formula ${ }^{9-11}$ for the mplitude:
$F(\vec{q})=\frac{i p}{2 \pi} e^{\frac{R^{2} q^{2}}{16}} \int d^{2} b e^{\left\langle\vec{q} \cdot \vec{D}_{V}\right.}\left|\psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}\right)\right|_{i=1}^{2} \underset{=1}{4} d^{3} r_{i}\{$
 $\left.-\left(\Gamma_{1}{ }^{e} \Gamma_{2}{ }_{2} \Gamma_{3}{ }^{e} \Gamma_{4}{ }^{d}+\Gamma_{1}{ }^{e} \Gamma_{2}{ }^{e} \Gamma_{3}{ }^{d} \Gamma_{4}{ }^{e^{*}}+\Gamma_{1}{ }^{e} \Gamma_{2}{ }^{d} \Gamma_{3}{ }^{e \star} \Gamma_{4} e^{e^{*}}+\Gamma_{1} d_{\Gamma_{2}}{ }^{e *} \Gamma_{3}{ }^{e^{*}} \Gamma_{4}{ }^{e^{*}}\right)\right\}$
where \vec{q} is the momentum transfer vector, p is the laboratory momentum of the projectile, \vec{b} is the impact parameter vector, $|\psi|^{2}$ is the helium density distribution, and \vec{r}_{ℓ} is the distance of $\ell-t h$ nucleon from the nucleus mass center. Γ_{ℓ} is the profile function for the process $\alpha N \rightarrow \beta N$ on the ℓ-th target nucleon and the argument of Γ_{ℓ} is $\left(\vec{b}-\vec{s}_{\ell}\right)$, where \vec{s}_{ℓ} is the transverse component of \vec{r}_{ℓ}, The indices e, e*, d correspond to processes

	$\mathrm{PN} \rightarrow \mathrm{PN}$,
$\mathrm{XN} \rightarrow \mathrm{XN}$,	(12)
and	$\mathrm{pN} \rightarrow \mathrm{XN}$	•

As intermediate states we have included in formula (11) only p and x^{12}. We neglected longitudinal momentum transfer which is very small at our energies and missing mass range:

$$
\begin{equation*}
q_{\ell} \simeq\left(M_{x}^{2}-m_{p}^{2}\right) / 2 p_{\text {beam }} \leq 0.02(\mathrm{GeV} / \mathrm{c}) . \tag{13}
\end{equation*}
$$

For the helium density we have used the uncorrelated wave function with the Gaussian one particle distribution

$$
\begin{equation*}
\left|\dot{\psi}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}\right)\right|^{2}={ }_{i=1}^{4}\left(\frac{1}{\sqrt{\pi} R}\right)^{3} e^{-\pi} i^{2} / R^{2} \tag{14}
\end{equation*}
$$

where $R=2.36 \mathrm{fm}$.

The proton-nucleon elastic amplitude was parametrized as follows

$$
\begin{equation*}
f^{e}(\vec{q})=\frac{i p \sigma}{4 \pi}(2-i p) \exp \left(-\frac{B}{2} q^{2}\right) \tag{15}
\end{equation*}
$$

where σ is the proton-nucleon total cross section, ρ is the ratio of the real to imaginary part, and B is the slope of the differential cross section.

In a similar way we parametrized the amplitude for $X-N$ elastic scattering

$$
\begin{equation*}
f^{e^{*}}(\vec{q})=\frac{i p \sigma^{*}}{4 \pi}\left(1-i \rho^{*}\right) \exp \left(-\frac{B^{*}}{2} q^{2}\right) \tag{15a}
\end{equation*}
$$

For elementary diffraction dissociation we have considexed two cases: central and peripheral diffraction dissociation amplitudes 2, 13, 14.

For the central case we used a spinless, purely imaginary amplitude with slopes determined from the fits to the cross sections for nucleon diffraction dissociation on protons

$$
f^{d}(\vec{q})=\frac{i p g}{4 \pi}\left\{c \exp \left(-\frac{a_{1}}{2} q^{2}\right)+(1-c) \exp \left(-\frac{a_{2}}{2} q^{2}\right)\right\},(16)
$$

where g, C, a_{1} and a_{2} are fitted parameters. The amplitude $f^{\text {d }}$ is normalized in such a way that

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \operatorname{tam}_{x p p}^{2}}=\frac{x_{p}}{p^{2}}\left|f^{d(q)}\right|^{2} . \tag{17}
\end{equation*}
$$

The profile function corresponding to amplitude (16) has a maximum at impact parameter $b=0$ similarly to elastic scattering. With formulae (11), (14) - (16) we obtained

$$
\begin{equation*}
\frac{a^{2} \sigma}{\operatorname{dtdM}_{x p^{4}}{ }^{4} \mathrm{He} \rightarrow x^{4} \mathrm{He}}=\frac{\pi}{p^{2}}|\mathrm{~F}(\vec{q})|^{2}, \tag{18}
\end{equation*}
$$

where

$$
\begin{gather*}
F(\vec{q})=i p \exp \left(\frac{R^{2} q^{2}}{16}\right) \sum_{\ell=1}^{2} \sum_{n=1}^{4} \sum_{\sum_{1}^{n}\binom{4}{n}(-1)^{n-1} A_{\ell} c_{1}^{n-m} c_{2}^{m-1} \frac{B_{\ell, n, m}}{2}} \\
x \exp \left(-\frac{B_{\ell, n, m}}{4}\right) \tag{19}
\end{gather*}
$$

where $\quad A_{1}=\frac{g C}{2 \pi\left(R^{2}+2 a_{1}\right)}$
$A_{2}=\frac{g(1-C)}{2 \pi\left(R^{2}+2 a_{2}\right)}$
$c_{1}=\frac{\sigma(1-\rho)}{2 \pi\left(R^{2}+2 B\right)}$
$C_{2}=\frac{\sigma^{\star}\left(1-\rho^{\star}\right)}{2 \pi\left(\mathrm{R}^{2}+2 \mathrm{~B}^{\star}\right)}$

$$
\begin{equation*}
\frac{1}{B_{l, n, m}}=\frac{1}{R^{2}+2 a_{l}}+(n-m) \frac{1}{R^{2}+2 B}+(m-1) \frac{1}{R^{2}+2 B *} \tag{22}
\end{equation*}
$$

For the central case the coherent diffraction dissociation cross section shows similar behaviour to elastic proton-helium scattering, i.e., it has a dip as a result of destructive interference between terms corresponding to the single and multiple interactions.

For the peripheral case elementary diffraction dissociation is described by a set of several helicity flip amplitudes, each of them parametrized as follows: ${ }^{2}$

$$
f_{\Delta \lambda}^{\mathrm{d}}(\overrightarrow{\mathrm{q}})=\frac{i p}{4 \pi} g_{\Delta \lambda} \exp \left(-\frac{a}{2} q^{2}\right) J_{\Delta \lambda}\left(b_{0} q\right) \exp (i \Delta \lambda \phi),(23)
$$

where $\Delta \lambda$ is an amount of helicity flip in the production vertex, $J_{\Delta \lambda}$ is the Bessel function of order $\Delta \lambda$ and ϕ is the azimuthal angle of \vec{q}. It is assumed, as in ref. 13 that the spin state of the target nucleon is unchanged. The differential cross section for elementary diffraction dissociation is then

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \operatorname{tam}_{x}^{2} p p \rightarrow x p}=\left.\frac{\pi}{p^{2}} \sum_{\Delta \lambda=0}^{\Delta \lambda_{\text {max }}} \int_{\Delta \lambda}^{f^{2}}(\vec{q})\right|^{2} \tag{24}
\end{equation*}
$$

and usually ${ }^{2},{ }^{3} \quad \Delta \lambda_{\text {max }} \leq 4$. The profile functions corresponding to (23) are peaked at impact parameter $b \simeq b_{0}$ For the peripheral case we calculated each helicity flip amplitude for process (1) separately and using (11), (14), (15), (23) we got
$F_{\Delta \lambda}(\vec{q})=i p \exp \left(\frac{R^{2} \dot{q}^{2}}{16}\right) \quad \sum_{n=1}^{4} \sum_{m=1}^{n}\left(\begin{array}{l}4 \\ n\end{array}(-1)^{n-1} A_{\Delta \lambda} C_{1}^{n-m} C_{2}^{m-1} \frac{B_{n, m}}{2}\right.$

$$
\begin{equation*}
\times J_{\Delta \lambda}\left(b_{0} q \frac{B_{n, m}}{B_{1,1}}\right) \exp \left(-\frac{B_{n_{r, m}} q^{2}}{4}\right) \exp \left(-b_{0}^{2} \frac{B_{1,1}-B_{n, m}}{B_{1,1}^{2}}\right) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\Delta \lambda}=\frac{g_{\Delta \lambda}}{2 \pi\left(R^{2}+2 a\right)} \tag{26}
\end{equation*}
$$

C_{1} and C_{2} are defined by (2l) and $B_{n, m}$ by a formula analogous to (22) except now there is no index 2. The differential cross section for reaction (1) is

$$
\frac{d^{2} \sigma}{d t d M_{x}^{2}} \quad p^{4} H e+x^{4} H e \quad=\frac{\pi}{p^{2}} \begin{array}{cc|c|c}
\Delta \lambda & F & 2 & \tag{27}
\end{array}
$$

Helicity flip amplitudes given by (25) were obtained in the approximation of near forward production and elastic scattering. The approximation $u s$ well justified for this experiment.

It is worth stressing that as in the Humble model of peripneral diffraction dissociation ${ }^{13}$ the helicity flips take place only in the production vertex so within the framework of this model it is not expected there will be any suppression of the cross section for production on helium due to spin effects.

Peculiar features of coherent peripheral diffraction dissociation on nuclei, as discussed in detail in ref. 2 for the deuteron, include the existence of interference terms of both types, destructive and constructive, depending on t range and an appearance of diffractive minima and maxima at different t values for different helicity flip amplitudes.

B. Analysis of experimental data

We compared our experimental momentum transfer distributions with the predictions of Glauber formulae (18)-(22) and (25)-(27).

The proton-nucleon elastic amplitude was parametrized with (15) using the same values for σ, ρ, B as for protonproton elastic scattering ${ }^{1 s}$. For the elastic scattering of a diffractively produced state X on a nucleon we assumed $B *=B$, $\rho^{\star}=0$ and we considered two variants: one with $\sigma^{*}=20 \mathrm{mb}$ and 2,16,17
another with $\sigma^{*}=40 \mathrm{mb}$.
Existing high resolution data on the inclusive process $p \mathrm{p} \rightarrow \mathrm{X} \mathrm{p}$ unfortunately do not cover all the mass range of our experiment. At small masses, below and near the two pion production threshold, we have used Fermilab data ${ }^{18}$. on the exclusive reaction $n p \rightarrow\left(p \pi^{-}\right) p$ and for high masses, $M_{x}^{2} \geq 4 \mathrm{Gev}^{2}$, we have used data on the inclusive reaction (2) from the Single Arm Spectrometer group". Unfortunately we lack good input for our analysis for intermediate masses. Although there exist precise data on inclusive proton dissociation on protons ${ }^{4}$ in this mass range they are not particularly useful for our analysis because the t range they cover is too narrow.

The amplitudes of elementary proton diffraction dissociation which we used in the Glauber analysis were parametrized as (16), (17) for the central case and as (23), (24) for the peripheral case with the parameters found in the fits to the data of refs. 3 and 18. Before applying the small mass data on the exclusive reaction $n p \rightarrow p \pi^{-} p$ to our analysis we renormalized them by an isospin factor 3/2.

For the peripheral case we have used explicitly an assumption of the Humble model ${ }^{13}$, i.e., that parameters a and b_{o} of (23) are the same for all masses. We have included the minimum number of helicity flip amplitudes necessary to reproduce the data with good χ^{2}. For small masses it was sufficient to include $\Delta \lambda=0,1$ and for high masses $\Delta \lambda=0,1$, $2,3$.

The Glauber model predictions for central and peripheral amplitudes are compared with our data in Fig. 7. For central diffraction dissociation the model predicts the t dependence similar to that of elastic proton-helium scattering,i.e., the presence of a dip at $|t|=0.10-0.18(\mathrm{GeV} / \mathrm{c})^{2}$ arising from destructive interference between terms corresponding to single and multiple interactions. For peripheral diffraction dissociation there is no dip and cross sections are larger. This is mainly due to the incoherent contribution of terms (25) corresponding to different helicity flips, each having interference minima and maxima at different t values. Also to some extent the cross sections for t in the range $|t|>0.17$ $(\mathrm{GeV} / \mathrm{c})^{2}$ are enhanced due to constructive interference between single and double scattering termsfor the non helicity flip amplitude, $\Delta \lambda=0$.

The t dependence of the experimental data is substantially different from the model predictions for central diffraction dissociation. In the case of peripheral diffraction dissociation the shape of the predicted curves is in much better agreement with the data. As for absolute values of cross sections, for peripheral diffraction dissociation the predicted values are on an average about 30% lower than the experimental data for small masses and about 70% higher than the data for large masses. In view of systematic errors in the helium and proton data and approximations of the model the difference at small masses is not significant. However for large masses it cannot be explained completely by the same effects. A possible explanation of the difference at large masses may be a contribution of amplitudes with helicity fip of the target nucleon in reaction (2). For coherent

Fig. 7: Differential cross sections for $p^{4} H e \rightarrow x^{4} H e$ as a function of t. Solid lines represent the Glauber model predictions with peripheral elementary proton diffraction dissociation, dashed ones with central diffraction dissociation. (a) Mass range $1.2<M_{x}^{2}<1.6$ GeV^{2}, total cross section $\sigma *(\mathrm{XN})=40 \mathrm{mb}$. (b) Mass range $4<M_{x}^{2}<6 \mathrm{GeV}^{2}, \sigma^{*}(\mathrm{XN})=40 \mathrm{mb}$.
diffraction dissociation on helium such amplitudes would be suppressed.

To illustrate how diffraction dissociation on helium is sensitive to the absorption of the produced state in subsequent collisions we plot in Fig. 8 Glauber model predictions for the peripheral case with $\sigma *=20 \mathrm{mb}$ and $\sigma^{*}=40 \mathrm{mb}$ together with the experimental data. The theoretical curves are normalized to the data at small it| values $(|t| \leq 0.1$. ($\mathrm{GeV} / \mathrm{c})^{2}$). At small masses the agrement is much better for o* $=40 \mathrm{mb}$. The comparison is not so conclusive for large masses and probably a more refined model would be helpful to solve the ambiguity.

V. CONCLUSIONS

Inclusive coherent proton diffraction dissociation on helium has been measured using the circulating beam in the Fermilab accelerator intercepting a thin helium gas: . jet target. The recoil helium nuclei were detected with sandwiches of solid state detectors. The t, missing mass and momentum ranges were $0.04<|\mathrm{t}|<0.40(\mathrm{GeV} / \mathrm{c})^{2},\left(\mathrm{~m}_{\mathrm{p}}+\mathrm{m}_{\pi}\right)^{2}<\mathrm{M}_{\mathrm{x}}^{2}<10 \mathrm{GeV}^{2}$ and $46<\mathrm{P}_{\text {beam }}<400 \mathrm{GeV} / \mathrm{c}$.

The characteristic features of the mass distributions are a large enhancement at $M_{x}^{2} \simeq 2 \mathrm{Gev}^{2}$ and a high mass tail decreasing approximately as $1 / M_{x}^{2}$. At small $|t|$ values the relative contribution of the $2 \mathrm{GeV}^{2}$ enhancement decreases with increasing |t|but starting from $|\mathrm{t}|$ of about $0.14(\mathrm{GeV} / \mathrm{c})^{2}$ it becomes large again.

At small momentum transfers the differential cross sections are sharply decreasing functions of $|t|$ with the slope parameter values reflecting the helium form factor and

Fig. 8: Differential cross sections for $p^{4} H e \rightarrow x^{4} H e$. Curves are Glauber model predictions with peripheral elementary diffraction dissociation normalized to experimental data at small $|t|$ values $(|t| \leq$ $0.1(\mathrm{GeV} / \mathrm{c})^{2}$). The solid lines are obtained for total cross section $\sigma^{*}(X N)=40 \mathrm{mb}$ and the dashed ones with $\sigma^{*}(\mathrm{XN})=20 \mathrm{mb}$. (a) Mass range $1.2<\mathrm{M}_{\mathrm{X}}^{2}<1.6 \mathrm{Gev}^{2}$. Mass range $4<M_{x}^{2}<6 \mathrm{GeV}^{2}$.
the slope of elementary proton diffraction dissociation. The slope - mass correlation for small momentum transfer data for helium and proton targets are similar. At large momentum transfers the t dependence of helium differential cross sections is governed by multiple scattering processes yielding small values of slope.

Within the framework of a simplified Glauber model we find the cross section of the coherent diffraction dissociation on helium is very sensitive to the details of the amplitude of elementary proton diffraction dissociation and on the total cross sections of the diffractively produced states on nucleons, $\sigma^{*}(X N)$. We find that using central elementary diffraction dissociation one arrives at predictions which are substantially different from the data, whereas for peripheral diffraction dissociation it is possible to reproduce the shape . of the cross sections.

The disagreement in absolute values of cross sections between the high mass data and a simplified Glauber model may be only partly of an experimental origin. The possible explanations of it could be a contribution of amplitudes with spin flip of the target nucleon in reaction (2).

ACKNOWLEDG EMENTS

We acknowledge the strong support of the Fermilab Internal Target Group led by Dr. T. Nash and the Fermilab Accelerator Division led by Dr. Russ Huson. We are grateful to Professor Vladimir Kadyshevsky for his help. The Dubna members of the collaboration wish to acknowledge the hospitality of the Fermilab Directorate during their stay.

REFERENCES

l. A. Bujak et al., "Proton-helium elastic scattering from 45 to 400 GeV", preceding paper.
2. G. Goggi et al., Nuovo Cimento bett. 24, 381 (1979)
G. Goggi et al., Nucl. Phys. B161, 14 (1.979)
G. Alberi and G. Goggi, "New interference phenomena in coherent production and the geometry of diffractive amplitudes", preprint CERN~EP/79-62, suomitted to phys. Lett. B.
3. D.S. Ayres et al., phys. Rev. Lett. 37, 1724 (1976) R.L. Ancierson et al., Phys. Rev. Lett. 38, 880(1977).
4. A.A. Kuznetsov et al., "Proton-proton diffraction dissociation at very small t for $50-400$ Gev energies", Fermilab-PUB-79/56-Exp, Yad. Fiz. 30, 1018 (1979) [inRussian].
5. V. Bartenev et al., Phys. Lett. 51B, 299 (2974).
6. S. Childress et al., Phys. Lett. 65B, 177 (1976).
7. Y. Akimov et al., Phys. Rev. Lett. 39, 1432 (1977).
8. Y. Akimov et al., phys. Rev. Lett. 35, 763 (1975).
Y. Akimov et al., Phys. Rev. Lett. 35, 766 (1975).
9. R.J. Glauber, in Lectures in Theoretical physics (eds. W.E. Brittin and L.G. Dunham) (Interscience, NY, 1959), VOL.1, P. 315.
10. W. Czyz and L. Lésniak, Phys. Lett. 24B, 227 (1967).
11. Miyo Ikeda, Phys. Rev. C6, 1608 (1972).
12. K. Kölbig and B. Margolis, Nucl. Phys. B6, 85 (1968).
13. S. Humble, Nucl. Phys. B76, 137 (1974) and Nucl. Phys. B86, 285 (1975).
14. G. Faldt and P. Osland, Nucl. Phys. B126, 221 (1977).
15. D. Gross et al., Phys. Rev. Lett. 41, 217 (1978).
16. W. Mollet et ai., Phys. Rev. Lett. 39, 1646 (1977).
17. R.M. Edelstein et al., Phys. Rev. Lett. 38, 185 (1977).
18. J. Biel et al., Phys. Rev. D18, 3079 (1978).

