

сообщвиия обиединенного ииститута ядерных исслвдования
 дубна

$1218 / 2-81$
E1-80-809
M.Kowalski, J.Bartke

PROBABILITY DISTRIBUTION

OF THE NUMBER
OF INTERACTING NUCLEONS
OF THE INCIDENT NUCLEUS
IN COLLISIONS OF RELATIVISTIC NUCLEI

Colliaions of light relativistic nuclei with tantalum target have been gtudied in the Dubna 2 m propane bubble chamber. The results on multiplicity of negative pions produced in these reactions have been published in aeveral papers/1-4/. Here we attempt to determine the probability distribution, P_{ν}, of the number of interacting nucleons of the incident nucleus in $d+T a,{ }^{4} \mathrm{He}+\mathrm{Ta}$ and ${ }^{12} \mathrm{C}+\mathrm{Ta}$ collisions at $4.2 \mathrm{GeV} / \mathrm{c}$ per nucleon. In papers $/ 3,4 /$ some information on this distribution has been already obtained based on the average value, $\left\langle\nu_{i}\right\rangle$, and dispersion, D_{ν}, of the P_{ν} distribution, which could be obtained from projectile fragmentation data in the model-independent way $/ 4,5 /$. These quantitiea are given in Table 1 together with the total numbers, N, of interactions uaed in the analyais. We note that for He and C projectiles colliding with $T a$ the experimental valuea of the dispersion D_{ν} are aignificantly greater then it would have been expected for the flat P_{ν} distribution $\left(P_{\nu}=\right.$ const) which, together with almost the same average value, $\left\langle\nu_{i}\right\rangle$, suggeats that amall and large values of ν_{i} would be enhanced.

Table 1

Total numbers of interactions of relativistic nuclei used In the analysis and average values and diepersions of the number of interacting nucleons of the incident nucleus

Heaction	N	$\left\langle\nu_{i}\right\rangle$	D_{ν}^{2}
$\mathrm{~d}+\mathrm{Ta}$	316	$1.60 \pm .04$	$0.24 \pm .02$
$\mathrm{He}+\mathrm{Ta}$	140 B	$2.86 \pm .10$	$1.64 \pm .09$
$\mathrm{C}+\mathrm{Ta}$	1103	$6.60 \pm .30$	16.8 ± 1.0

It can be shown that higher moments of the P_{ν} diatribution could also be obtained from the projectile fregmentation data in the model-independent way $/ 5 /$. In the case of an incident nucleus with charge Z, the moments of the P_{ν} diatribution up to the $2-t h$
order can be calculated. This would give more detailed information on the shape of the P_{ν} distribution, but, providing only 2 constraints, does not Ellow one to obtain P_{ν} for $\nu=1,2, \ldots$.

The P_{ν} distribution $(\nu=1,2, \ldots A)$ can be obtained if the projectile fragmentation data are supplemented with data on pion multiplicities in groups of evente with a given number of interacting protons. The relations between unknown probabilities $P_{\nu}(\nu=$ = 1, 2,... A) and meaaured probabilities of the interaction of various numbers of protons of the projectile nucleus, $W_{n}(n=0,1, \ldots 2)$, provide us with $2+1$ linear equations :

$$
W_{0}=\sum_{\nu=1}^{N} P_{\nu} c_{N}^{\nu} / C_{A}^{\nu} \quad \text { and } \quad W_{n}=\sum_{\nu=n}^{N+n} P_{\nu} c_{Z}^{n} c_{N}^{\nu-n} / C_{A}^{\nu}
$$

where C are the binomial coefficients $/ 4,5 /$. Further $z+1$ equations of eimilar atructure can be obtained using the experimental values of average pion multiplicities in aubsamples of events with various numbers of interacting protona and assuming that pion production occurs in independent interactione of the nucleons of the projectile nucleue (evidence for auch a mechaniam follows from our previous observations $/ 3,4 /$). Thus we have altogether $2(z+1)$ equations with A unknowns, which constitute an overdetermined system for light projectile nuclei with $A=22$.

In the case of the deuteron incident upon tantalum, one ootains $P_{1}=0.44, P_{2}=0.56$. In the case of the ${ }^{4} \mathrm{He}$ nucleus incident upon tantalum, the syatem of $2(2+1)=6$ equations can be solved using standard minimization procedure. One obtaing: $P_{1}=0.21$, $P_{2}=0.20, P_{3}=0.13, P_{4}=0.41$. However, the quality of the fit is poor, and a better solution ia obtained dropping one of the alx equationa, namely that for average multiplicity in the case of two interacting protons of the ${ }^{4} \mathrm{He}$ nucleus. Then we obtain: $P_{1}=0.19$, $P_{2}=0.17, P_{3}=0.14, P_{4}=0.49$ with $X^{2} /$ NDF $=0.79 / 1$. This distribution is shown in Fig. 1a.

In the case of incident carbon nuclei the standard method of solution fails, the solutions being highly unatable of ten yielding negative values of P_{ν}. Therefore we tried to obtain a physically sensible solution using the method of regularization deacribed in refs. $/ 6,7 /$. The basia of this method 18 the requirement of regularity of the P_{ν} distribution (minimizing the integral $\int(\mathrm{dz} / \mathrm{ds})^{2} \mathrm{de}$, where $z(s)$ is the unknown solution), which geems to be justified in our case. The method of regularization is applied to solve the Fredholm equation of the type

Fig. 1. Probability distributions of the number of nucleons of the projectile nucleus interacting with the target for a) $\mathrm{He}+\mathrm{Ta}$ and b) $\mathrm{C}+\mathrm{Ta}$ collisions at $\mathrm{p} / \mathrm{A}=4.2 \mathrm{GeV} / \mathrm{c}$. Reaults of the multiple scattering model calculation are denoted by small circies. A somewhat different version of thit figure, based on the preliminary analygis of the data, was given in refe. $18,9 /$.

$$
A\{u(x), z(s)\}=\int_{a}^{b} K(x, b) z(s) d s=u(x) \quad c \leqslant x \leqslant d,
$$

where $z(s)$ is unknown. If the solutions of the above equation are unstable it is the so-called incorrect inverse problem and in this case it is necessary to use some additional information about the solution - the regularity of $z(s)$.

The condition of regularity requires that

$$
\Omega[z(\theta)]=\int_{a}^{b}\left(d z j^{\prime} d \theta\right)^{2} d \theta \quad \text { should be minimum. }
$$

Then, uaing the Lagrange method for conditional extremum we obtain the function $u^{\alpha}[2, u]$ to minimize in the form

$$
M^{\alpha}[z, \bar{u}]=\int_{c}^{\alpha}\left\{\int_{a}^{b} K(x, s i z(\theta) d s-\bar{u}(x)\}^{2} d x+\alpha \Omega[z(\theta)], \quad \alpha>0,\right.
$$

where $\bar{u}(x)$ is known fror. experiment and α is a free parameter. In order to ohoose a rroper value of α one can use the condition

$$
\left|\int_{a}^{b} K(x, s) \bar{z}(a) d s-\bar{u}(x)\right| \leqslant \delta .
$$

where $\overline{\mathrm{z}}(\mathrm{a})$ is a reguiar solution, and δ characterizes the experimental errors of $u(x)$. In our cese, the algebraizatifn of integrals in the formula for M^{α} is atraightforward, ge $^{\prime} \bar{u}(x)$ is a diacrete sunction. With the value of $\alpha=0.7$ we obtain the diatribution ahom in fige_1b. The result ia not very senaitive to the chosen value of α between about 0.2 and 1.0 .

The obtained P_{ν} distribution reproduces well the input deta, which is ahown in Fige. 2 and 2. Probabilities of occurring events with various total charge of non-interacting fragmenta are displayed in Fige 2 and average multiplicities of negative pions in groups of events with given total charge of non-interacting fragments - in

Fige2. The total charge

Fig.2. Probabilities of occurring events with various total charge of non-interacting fragments in $\mathrm{C}+\mathrm{Ta}$ collisions at $\mathrm{p} / \mathrm{A}=4.2 \mathrm{GeV} / \mathrm{c}$. Values obtained from the P_{ν} distribution shown in Fig. 1 are denoted with horizontal dashed lines. of non-interacting fragments Q_{a} and the number of interacting protons n_{p} are connected by the relation $Q_{g}=2-n_{p}$ The valuea calculated from the obtained P_{ν} diatribution are ahown with short horizontal daahed lines in both figures. The agreement is satisfactory.

The obtained P_{ν} distributions are also in fair agreement with the results of theoretical calculation by Shabelaky and Cheplakov using the multiple scattering (Glauber-type) model.

Fig. 3. Average multiplicities of negative pions in groupe of evente with given total charge on non-interacting fragmente in $C+T a$ collisions at $\mathrm{p} / \mathrm{A}=4.2$ GeV/c. Values obtalned uaing the P_{ν} distribution shown in Fig. 1 are denoted with hurizontal dashed lines.

In this calculation the Gaussian density distribution was used for hellum and carbon nuclei, and the Saxon-Woods density distribution for the tantalum nucleus. Similar calculations for helium nuclei incident upon various targets have been described in ref. $/ 10 /$.

We would like to thank the 2 m propane bubble ohamber collaboration for the data and useful discussions, and Professor Yu.M.Shabelsky and Dr. A.P.Gheplakov for making available to us the resulte of their calculations.

References

1. Alma-Ata - Baku - Belgrade - Bucharest - Budapeat - Cracow --Dubna - Moscow - Prague - Sofia - Tashkent - Tbilisi - Ulan Bator - Varna - Warsaw - Yerevan Collaboration, Angelov N. et al. Yad. Fiz., 1979, 30, p. 1590.
2. Alma-Ata - Baku - Belgrade - Bucharest otc. Collaboration, Angelov N. et al. JINR Ei-12548, Dubna, 1979.
3. Bartke J. In: Proc. 8th Intern. Conf. on High Energy Phyaics and Nuclear Structure, Vancouver, 1979, p. 481; Nucl. Phyaics 1980, A335, p. 481.
4. Alma-Ata - Baku - Belgrade - Buchareat etc. Collaboration, Abdrakhmanov E.O. et 日l. Z.Physik 1980, C5, p. 1.
5. Haatar Ts. et al. JINR P1-80-209, Dubna, 1980.
6. Tikhonov A. N. Dokl. Akad. Nauk SSSR, 1963, 151, p. 501.
7. Tikhonov A.N. Dokl. Akad. Nauk SSSR, 1963, 153, p.49.
B. Bartke J. In: Proc. Intern, Conf', on Extreme States in Nuclear Syatema, Dreaden, 1980, Comment after M.I.Soloviev's talk.
8. Bartke J. In: Proc. Intern. Conf. on Nuclear Phyaice, Berkeley, 1980, p. 541;JINF E1-80-754, Dubna, 1980.
9. Khorozov S.A. JINR 2-40-142, Dubne, 1980.
