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1. INTRODUCTION 
In studies of interactions of high energy nuclei (see, 

e.g., reviews / 1 - 5 / and references therein) a problem arises 
to describe adequately moving relativistic composite systems. 
A direct way to solve this problem consists in solving the 
corresponding field theoretical equations (the Bethe-Salpeter 
equation, quasipotential equations / в - ъ / ) for two- and many-
body relativistic composite systems. Since such a program is 
unlikely to be solved at present, one can choose a heuristic 
way to find relativistic nuclear wave functions. In such an 
approach one has to try to guess such relativistic wave func
tions which reproduce rather well experimental regularities 
and possess the correct nonrelativistic limit, i.e., in the 
nonrelativistic limit they must turn into the well-known non
relativistic nuclear wave functions. 

For the deuteron such an attempt has been undertaken in 
Refs. / 9- 1 2 / . Experience, accumulated when developing many-bo
dy relativistic dynamics / 1 8" 1 Б / in terms of the "light front" 
variables / i 6 / , has been used. A relativistic analogue 

1'(x,pJ)-f(p]+m2)/x(l-x)-aR]-1[(p^+m«)/i(l-x)-/8R]-1 (1.1) 

of the Hiilthen wave function has been obtained. Note that re-
lativization of other, more refined, deuteron wave functions 
meets no principle difficulties. The wave function (1.1) is 
written in an arbitrary reference frame at any momentum of the 
deuteron as a whole and at any intrinsic momenta of its con
stituent nucleons. (Details of the corresponding definitions 
see in Refs. /8-H.15/ ). in the nucleus rest frame when the mo
menta p of its intrinsic motion obey the condition |p|/mN«l, 
the wave function (1.1) turns to the well-known nonrelativis
tic Hulthen wave function 

Ф^-^+а^ГиР+Р^Г1 (1.2) 

with the following relation between the parameters a R , /3R 

and « 8
N R, /i%R: 
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« R = (ma/mN)(2m£-aj-B); /B„- (m d/m N) (Ы%-р*к). (1.3) 

The numerical values of the parameters a R and /3„ which 
have been obtained by fitting the experimental data **г/ , sa
tisfy the conditions (1.3) with a good accuracy. 

Some other attempts of deuteron wave function relativizati-
on can be found in Refs. / 1 7 - S 0 / . 

An attempt to find relativistic analogues (in the spirit of 
Refs. /9-15'' ) of the wave functions of more complicated nuclei 
seems to be reasonable. Comparison of the corresponding re
sults with experimental data allows one to answer the question 
whether this scale-invariant relativization is universal for 
all light nuclei or not. In the present paper such an attempt 
is undertaken for He , He and H nuclei. 

Recall for completeness some moments of the description of 
relativistic composite systems in terms of "light front" vari
ables. The nucleus consisting of A particles with total four-
momentum Р д is described by means of the relativistic wave 
function Ф^([х ( А ) :i?i,j.])/81in which the "longitudinal mo
tion" of constituents is parametrized in terms of scale-inva
riant variables 

X (" >= ( P,0 +P 1.3> /( PA,0 + PA.3 )' <*-4> 

where P t ( f = 0,1,2,3, is the Lorentz index) and Рд» are 
the individual four-momentum of the i-th particle in the'com
posite system and the total four-momentum of the composite 
system as a whole, respectively. Here and later on the parame
ters (momenta, masses, etc.) of composite systems are denoted 
by capital letters, whereas the individual parameters of nuc-
leontj are denoted by small letters. The brackets in the argu
ment of the wave function Ф^*' denote a set of corresponding 
variables * j / P i i which obey the following conditions 

2 x ( A ) = l ; 0<x ( A )<l; X p, , = P. ,. (1.5) 
i=l i "•" i^Pl,!"* A, J. 

The superscription of variables x(A> means that this variable 
is defined in the system of particles the number of which is 
equal to this index. The transformation properties of these 
functions, when proceeding from an arbitrary reference frame 
to the reference frame where total transverse momentum Рдд of 
the composite system vanishes, and their normalization condi
tion are known / l i / . 
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In the next section we shall see Jiow one can get informati
on on the wave functions ^plUxj ,Pj i]) from experimental 
observations of the interaction of relativistic nuclei. 

2. STUDY OF SPECTATOR-FRAGMENT DISTRIBUTIONS AS A TOOL 
TO GET INFORMATION ON RELATIVISTIC WAVE FUNCTIONS 
Let us consider the process of knocking out one nucleon 

from the relativistic nucleus A on the hydrogen target. As
suming that the remaining ( (A- 1) nucleons do not interact 
with the target and still exist in the form of fragment-nucle
us, one can calculate the distribution of these fragments 
theoretically. In the laboratory frame (incoming nucleus moves 
along the z -axis, target proton is at rest) this distribution 
looks as follows 

p S P d a A * < S N N " " N ' m N > rf, Л , К Х 8 Р , Р 8 / ) ,B 
E ^ ' ^ M i . , ; , ""^'х-д» ' ' ( 2 Л ) 

' A ' N 

where 

Л(х, у, z) = (x - у - z) г -4yz 

« = l + r o N / ( E A + P A 3 ) ; X S P = ( E S P

+ P f ) / ( n . N + E A + P A 3 ) , 
(2.2) 

Energy-momentum conservation leads to the following relation 
between the Mandelstam variables 

s N rs(l-X S P) +M| p-(Pf + M s
2
p ) / X S P . (2.3) 

In formulas (2.1)-(2.2) P A 3 > E A and Pj P,E S Pare the z-compo
nents of the momenta and energies of the incident nucleus A 
and of the spectator-fragment ( A - 1) , respectively, 0мц(в««) 
is the total elastic cross section of the interaction of the 
active nucleon from nucleus A with target, M A is the mass of 
the incident nucleus, Msp is the mass of the spectator-frag
ment, m N is the nucleon mass, I(XSP,?^P) is the overlap in
tegral of the relativistic wave functions of the incident nuc
leus and of the fragment one: 

I(X S P,pf ) - / Vota^- 1' /x<f-l>') 8(1 - V x<A"» ') x 
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i = 1 •> -L * ' > 4. 

+(A-1) (A-l)'-, tb-V'£s*-,iA.iiL\l ( A ) "* 14 
x * , ([«J :Pi,j.~xi p-i 1 ) ф 1 ( t x i :Pi,4])-

(2.4) 

The overlap integral is a direct analogue of the corresponding 
notion which appears in the nonrelativistic theory of nuclear 
reactions (see, e.g., / e s / and references therein). 

The arguments of the wave function Ф^А) of the incident 
nucleus are related to^the integration variables and observab
le quantities X s p and P ? p in the following way: 

^ . Х » ж С ^ > ; p i a = p — I-1A...A-1. 
(2.5) 

ж^-1-л»: f^-f» SP 

Thus, observation of the spectator-fragment allows informa
tion on the character of the "longitudinal" and transversal 
motions of nucleons in the incident nucleus to be obtained. In 
the case A= 2 the overlap integral in formula (2.1) is re
placed by the deuteron relativistic wave function 

In formula (2.4) the wave functions Ф/ А ) and Ф^А-1> of the 
incoming and outgoing nuclei are defined in the reference 
frame where their total transverse momenta vanish. They are 
related to the wave functions with arbitrary total four-momen
tum P as follows: 

(2.6) Ф ( А )(Гх ( А )о 1)-Ф ( А ) Ux{h)-o - x < A ) P 1) 

SP 
Note that the X rvariable is defined in an arbitrary 

Lorentz frame, where nucleus A and proton collide along the 
z-axis as follows: 

X s p = ( E s p
 + pf)/[(E N + P N 3 ) + ( E A + P A t 3 ) ] . (2.7) 

Here P 3's and E's in (2.7) are the longitudinal momenta and 
the energies of corresponding particles. As is easily seen, 
X s p is a Lorentz-invariant and scale-invariant variable. In 
the proton rest frame it turns to the form given by Eq.(2.2). 

When comparing the theoretical results with the experimen
tal data, we use the following simplest parametrization for 
the wave function 
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Ф ( А )«« (, А ):Р1а ])=С Ае Хр1-аА2 1[(р 1^+ш^)/^ А )]! (2.8) 

and similarly for Ф . In formula (2.8) а д is an adjustab
le parameter, Сд is a normalization factor. This parametriza-
tion seems to be meaningful for light nuclei ( A <_ 4) . If the 
scale-invariant parametrization of "longitudinal motion" in 
the wave functions Ф ( A )([x ( A );p 1 ( 1 ]) is really valid, the pa
rameters a1* should be the same at various energies of incom
ing nuclei. 

Since we do not distinguish between protons and neutrons, 
the wave function Ф ( ^([x(A^;pj j.]) is a symmetric function of 
its arguments х^А',р. j_ . Solving the conditional extremum 
problem under the conditions (1.5), we obtain that the wave 
function (2.8) obeys a maximum at zero transverse momenta of 
constituent nucleons and at the parameters x W equal to 

Д 
х ( А )=т,/( 2 nij) =l/A. (2.9) 
Taking into account the relation of the variables x(A> to 

X s p(see formulas (2.5)), we obtain that in the X s p distribu
tions of the spectator fragments one should expect a maximum 
at 

X~sp=(A-l)/A[l + m N / ( E A + P A | 3 ) ] . (2.iO) 

In the case of the incoming 4He nuclei with P. = 8,56 GeV/c, 
which are the subject of our analysis in the next section: 

X S P-0.713. 
Note that such properties as scale invariance of wave functions 
and the maximum position in the X s p distribution do not depend 
on the concrete form of (2.8) of the wave functions Ф* л[iŷ jf. .]) 
and remain valid at their arbitrary parametrization. ' 

In order to normalize the relativistic wave functions cor
rectly, one has to known in general the form of all the inter
actions inside the relativistic system/14/'. Assuming, however, 
that the total quasi-potential does not depend on the total 
four-momentum of the composite system, one gets the following 
normalization condition: 

/ it (<fc<A>/x<A ))S(i- s x<A>>/ n tf , s ( 8 ) ( P A ,-i P j . )x 
0 1=1 * j i = l * 1 = 1 l a A t 4- i=l * + 

Х| Ф(А) ( [ Х(А). ? ])|« _i. (2.11) 
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Inserting the wave function Ф ( <[х j ;PIL 1) in the form of 
(2.8) into the normalization condition (2.11), we get the fol
lowing approximate expression for the normalization factor: 

С А=(га>) 3< А-П I m i/^»> +^*( П m i f 1 / 4expU B
A( X «,)«]. ( 2 . 1 2 ) 

A A i = l 1 i=l J Ai=l 1 

(Details of the calculation see in Appendix A). 
As was already mentioned in Introduction, one of the gui

ding points in the choice of relativistic wave functions is 
their correct nonrelativistic limit. The nonrelativistic wave 
function Фk/î f ?13) > the relativistic analogue of which is 
given by Eq.(2.8) is of the Gaussian form 

. ( A ) , r - > , v , . NR, >3(A-l)/4 r NR^ ->2T 
* N R U P i ] ) = ( 4 a A / f f ) esp[-a A S^Pjl (2.13) 

and i s normalized by the condition 

/П d p j S ^ C ^ p ^ ^ ^ a p , ) ) ! 2 ^ . (2.14) 

The condition of the correct nonreiativistic limit gives 
the following relation between the parameters of the relati
vistic and lionrelativistic wave functions 

a A = < 2 V M A > a A R - (2.15) 

(Details of the nonrelativistic limit see in Appendix B). 
Putting now the wave functions <pw and Ф (A-1) into the 

overlap integral (2.4) and integrating over transverse momenta 
(the calculation is similar to that of the normalization fac
tor and is given in Appendix A), one has 

I( X S P p f ) =C AC A. t [ W(al.t +a^/aX S P)] A" 8 x 

xexpt-a2m2/(i_ aX s p)]exp[-aRpSP/ aX s p(l-aX s p)]J(X s p) , (2.16) 

where 

J(X S P ) -- f fi dx^-^Cl - 2 x'f л> ) у. 
0 i = l » i=l i=l 

'SP4 V f m 8 / v (A-l) x e x P [ - 0 i J

A 1 + a « / a X s p ) v ( „ 8 , x (A-D } J , 
(2 .17 ) 
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Thus the P? p distribution is obtained in the analytic form. 
The integral J(X S P) is calculated approximately by means of 
the .,'ulti-dimensional saddle point method. Finally the overlap 
integral takes the form. 

r,„SP£SP. „_ „ , V m ч1/8, А^ -[ 3(A-8)+l]/2 I(X .Pj_ ) - С А С А 1 ( ^ 1 1 m.) ( ̂ ш р x 

x[ f f/( 3R_ l +aK/aX S P)] 3( A-« / 2 exp[- aRm^/(l-aX s p)] x 

A -1 (0 1 ft} 
x e x p t - t a ^ ^ + a A

l / a X s p ) ( S Ш;)2] х 
1=1 

x e 4>[-aRp a
s p 2/aX s p(l-aX s p)]. 

Formula (2.1) with the overlap integral in the form of (2.18) 
is ready now for comparison with experimental data. 

3. COMPARISON WITH EXPERIMENT 
The results obtained have been compared with experimental 

data on the spectator-fragment ( 3 H and 3He ) distributions in 
the reactions 

4He + p -» 3 H +p + p, (3.1a) 

4 S 
He + p -• He + p + n. (3.1b) 

Details of the experiment and the operational definition of 
spectators can be found in Ref. ° . 

The experimental data have obtained from an analysis of 
two- and three- prong events in Hep interactions at P 4 H e = 
= 8.56 GeV/c. The *He nuclei were accelerated at the Dubna 
synchrophasotron and then transported to the lOO-cm hydrogen 
bubble chamber. Details of the experiment can be found in 
Ref. / 2 3 /. 

After scanning, measurements of the selected events and 
their kinematic identification, the events corresponding to 
the reactions C-. la) and (3.1b) were separated. The spectator 
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nuclei H and лНе were defined as the lowest momentum pro
ducts of corresponding reactions in the rest frame of 4He • 
For comparison with the theoretical calculation 720 events of 
the reaction (3.1a) and 711 events of che reaction (3.1b) were 
used. 

The total elastic cross section oS*L in formula (2.1) is 
approximately constant and is equal to 24 mb in this energy 
range (see, e.g., ref. / S 4 / ) . 

The d<r/dX and da/dP j_ experimental distributions have 
been analysed in the proton rest frame. They are related to 
the invariant differential cross section (2.1) as follows: P? p 

< W d X S P = / s p
d J

s p dPf, (3.2a) 
0 dX dPj_ 

x s p 

„sp d X s p d P ° p 

A min 

d . /dx s p dpl p = 2 . (p f /x s p ) *" 
d ? S P / E s p (3.2c) 

SP SP The integration limits X m i n and X m a x aia taken from the 
corresponding X p distributions. Their numerical value-- are: 
X X =0.635; X s

m
p„= 0.-805. 

The upper limit P_f is a kinematical bound obtained 
from the positivity of' the \(s N N,m^m^) factor in fc rmulf (2.1) 

Table 

Reaction a^,(GeV/cF8 a*,(GeV/c)"8 
) C 2 ( d<7 ) 

Np dX S P 
•Xl-( % ) 
NF dPfp 

4»'<sp-.3Hpp 16-fixed 7,41540,253 29.47/18 27.52/22 

*Hep -> 3Hepn 16-fixed 5,89440,211 54.46/18 43.68/22 

It is of the form 
p 

B sp , „sp .. к . ,„ „ sp. A г„ sp _ _ 
P. =(sX -M s p)(l-X ) -4m,SX r . (3.3) 
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,SP py Results of a joint analysis of the X 'and Рд." distributions 
for the 3H spectator in the reaction (3.1a) and results of an 
analysis of the same distributions for the 3He spectator in 
the reaction (3.1b) are given in the table. When fitting the 
data, the parameters of the wave functions of 3 H and 8He nuc
lei are determined with large error bars. This is the reason 
why we have fitted the data at a fixed value of the parameter 
а в = 16 (GeV/c)-2 which corresponds to a^B*<24 (GeV/c) ~ s in 
the nonrelativistic parametrization. It should be noted that 
even the parameters of the nonrelativistic Gaussian wave func
tions of He , 3He and 8H nuclei are not determined well 
enough. In the current literature their values vary in rather 
wide range (see, e.g., ref. / s 5 / ). The largest number of data 
is available on the parameters of the 4He nucleus. However, 
numerical values of the parameter a^ B varies in a range of 
a^ R = 21-26 (GeV/c)~ . As is seen from the table, the value 
of the parameter a B , obtained in the fitting procedure,_is 
somewhat smaller than the values of a 
dieted by (2.15). 

R -2 10-13 (GeV/c)-* pre-

The experimental and theoretical Pjf** and X B r distributi-«,.«.* ««* « « « « « « „ . i»' p — * * s p 

ons of the 3H spectator in the reaction (3.1a) are given in 
Figs.la and П>. Figures 2a and 2b give the same distributions 

в*" OtV/t 

F i g . 1 . a) P? d i s tr ibut ion of spectator-fragment Ti 
in the react ion 4Hep-» 8Hpp . b) X s p d i s t r ibut ion of 
spectator-fragment 8 H in the react ion *Hep-»3Hpp . 
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l£p G«V/e 

0.6 0.7 0.» 

Fig.2. a) Pi S P distribution of spectator-fragment 3He 
in the reaction 4Hep-»8Hepn . b) X s p distribution of 
spectator-fragment 3He in the reaction Hep-» Hepn . 

for the 3He spectator in the reaction (3.2b). The theoretical 
curves correspond to the values of the parameters a\j 
and aj presented in the Table. A small difference in the 
parameter a& in the two considered cases is probably due to 
a small admixture of the misidentified 4He from the elastic 
channel to the Зне sample. 

SP 
Note that the maximum position in the X distributions 

coincides with the predicted value (2.1) to a good precision. 

4. DISCUSSION 
The analysis has been made of the spectator fragments in 

the knockout reactions with beams of high energy nuclei. Con
sideration is based on many-body quasi-potential dynamics in 
terms of "light front" variables. It is evident that the simp
lest parametrization of the relativistic nuclear wave functi
ons which has been used in this paper gives a good qualitati
ve description of corresponding experimental data. This fact 
is reflected by the values of X 2/N p (N p is the number of the 
fitted experimental points) given in the Table. In order to 
achieve a better quantitative agreement with experiment, one 
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could consider more refined forms of the corresponding wave 
functions. However, some regularities (such as scale imparlan
ce with respect to the x^A)-variables) do not depend on the 
particular parametrization of the wave functions. The study 
of the spectator distributions in a wide range of energies of 
incident nuclei allows one to check the validity of the scale-
invariant parametrization of the "longitudinal motion" in mov
ing relativistic composite systems. 

The method developed here can also be used to study other 
processes involving relativistic nuclei. 

The authors express their deep gratitude to N.S.Amaglobely, 
A.M.Baldin, S.B.Geraaimov, T.I.Kopaleishvili, V.A.Matveev, 
R.M.Muradyan, Ya.A.Smorodinsky, A.N.Tavkhelidze for helpful 
discussion of the problems we have concerned hers. 

APPENDIX A 
Inserting the relativistic wave function (2.8) in the refe

rence frame with zero total transverse momentum (see transfor
mation property (2.6)) into the normalization condition (2.11), 
one gets 

!СА|2ехр(2а^РА
2,а)1х • I j. -1, (A.l) 

where 
1 Ж-/ П (ах^/ж^ВЦ-Ех^етрЕ-Ва? 2 (m2/x<A))], (A.2) 

0 i = l i=l i = l 

Ц =/.n idp i ) 1S W(P A a- i5; ip i a)exp[-2a^2 i(p i a/xV)]- (A.3) 

Consider first the integral l± . After putting the Fourier-
transformation of the S function into (A.3), Ij. takes the 
form of two-dimensional Gaussian integrals. Calculating them, 
one obtains 

A A A 
I.-U^/C П a. )[ 2 (1/а(Шехр(-Р.2./ 2 (1/a.)]. (A.4) J. i= 1 • i=l 1 А Д i=l 1 

Here the following notation is introduced: 
ai =2a«/x^> . (A.5) 
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Inserting (A.5) into (A.l) and taking into account the con
ditions (1.5), one obtains the normalization condition in the 
following form 

|CA|8U/8af) A- 4 J x=l, (A.6) 
where 

1 A A A 
J x = / П dx(iA)S(l- 2 х(А))еч>[-ЗаА2: (mf/x(A))]. (A.7) 

0 1=1 1 = 1 1=1 

The integral Jx cannot be calculated exactly in the analytic 
form. This is the reason why we calculate it approximately us
ing the multi-dimensional saddle point method (see, e.g., / 2 6 / 

and references therein). Performing all necessary calculations, 
one has 

J s=W2a«)( A^ / 2(n m,)1/2( i m J ^ ^ + ^ e x p t ^ a U Z m,)2]. 
1 = 1 (A.8) 

Putting (A.8) into (A.6), one obtains just the expression 
(2.12) for the normalization factor C A . 

The method of calculation of the overlap integral I(X , Px ) 
is completely similar to the calculation in the normalization 
procedure. Therefore we do not give here details of this cal
culation. 

APPENDIX В 
Let us expand the combination ( p 2 , + m 2 ) / x j ' in power s e 

r i e s i n t h e parameters p l f 3 / т ( , р ^ / п ч , РА,З/™А» ^ A . V Awhich 
a r e small i n the n o n r e l a t i v i s t i c l i m i t . R e s t r i c t i n g ourse lves 
t o the q u a d r a t i c terms and w r i t t i n g the r e s u l t in the nucleus 
r e s t frame Рд = 0 , we ge t 

{ P i t

e

a + m f ) / x , : A ^ ( m i - p i ( 3 ) M A + ( M A / 2 m . ) p f . (B.l) 

Then the wave function (2.8) takes the following form in 
the nonrelativistic limit (without taking into account the 
normalization factor) 

Ф ~expl-aA £ UP^j. +m,)/x ( J I -• 
(B.2) 

- expt-а^Мд 2 т,]ехр[-а^МА 1 (pf /2m,)] 
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From the condition that the limiting expression (B.2) should 
coincide with the nonrelativistic wave function (2.13), one 
gets the relation (2.15) between the parameters of the relati-
vistic and nonrelativistic wave functions. 

The normalized wave functions are relat< d to each other as 
follows 

< I , (R > ( l x <i A ):Pbx 1 )- m (N' 1 > / 8 A t 3 ( A' 1 > + l ] / 4 ( V M A ) 3 < A ' 1 ) A x 
(B.3) 

хехР|2т2а«кА[(тм/МА)А-1]1Ф^А,)([р1]). 

In (В.З) Ф^ i s the wave function (2.8) normalized by 
(2.11), Ф ( ^ is the wave function (2.13) normalized by (2.14). 
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