8/11-74

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

E1 - 7669

1421/2-74 B.A.Shahbazian, A.A.Timonina, N.A.Kalinina

11 11 11

.........

5-53

......

ON THE LOW ENERGY Λ_p scattering

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

E1 - 7669

B.A.Shahbazian, A.A.Timonina, N.A.Kalinina

ON THE LOW ENERGY Λ_p scattering

Submitted to the V International Conference on High Energy Physics and Nuclear Structure, Uppsala, June, 1973

> объединовањи институт влерных песледований БИБЛИЮТЕКА

Шахбазян Б.А., Тимонина А.А., Калинина Н.А. Е1 - 7669

К вопросу о Ар -рассеянии при низких энергиях

Показано, что особенности, наблюдавшиеся в спектрах эффективных масс Ар, могут быть обусловлены особенностями в сечениях упругого рассеяния Ар при низких энергиях.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Shahbazian B.A., Timonina A.A., Kalinina N.A.

On the Low Energy Ap Scattering

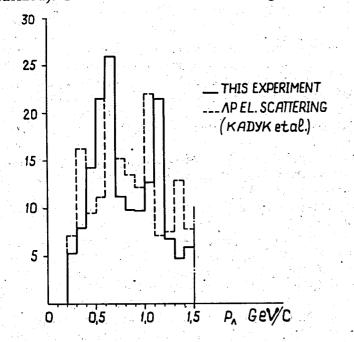
It is shown that the enhancements observed in the Λ_P effective mass spectra $^{/1/}$ may be due to those in Λ_P elastic scattering cross sections.

Preprint. Joint Institute for Nuclear Research. Dubna, 1974

О1974 Объединенный институт ядерных исследований Дубна

uni.

4)) **m** In recent experiments it was shown $^{/1/}$ that the Λ_p effective mass spectra obtained in neutron- 12 C and $\pi^ ^{-12}$ C collisions at 7.0 GeV/c and 4.0 GeV/c moments, respectively, revealed narrow peaks at 2058 MeV/c², 2127 MeV/c² and 2251 MeV/c².


The first peak is due to negative Λ_P scattering length.

The second one was ascribed either to Λ_p resonance or to a negative scattering length of Σ_p with subsequent conversion $\Sigma N \rightarrow \Lambda_p$.

The third peak was treated as a Λ_P resonance at 2251 MeV/c^2.

The fact of observing the Λ_P effective mass spectra of similar forms with peaks of the same masses irrespective of the nature and energy of incident particles bombarding the carbon nucleus, suggests a mechanism of their formation which is due to the immediate Λ_P interaction. Namely, due to a high density of the nuclear matter a Λ -hyperon created in a nucleus can interact with a bound proton of the same nucleus, and both particles can leave it without subsequent collisions.

As far as our experiments cover the low mass part of the total Λp effective mass spectrum, it means that according to the adopted mechanism the experiments select the low energy Λp interaction which is predominantly Λp - elastic scattering. Then the observed enhancements should reveal themselves in the Λp elastic scattering cross section. In order to compare our results with the existing low energy Λ_p elastic scattering data, i) we have subtracted the estimated background /1 / from the experimental Λ_p effective mass spectrum (the n¹²C experiment, $P_n = 7.0$ GeV/c); ii) the residual Λ_p effective mass-spectrum-was transformed into the incident momentum distribution in the rest system of the target proton; iii) the resulting histogram was then compared to the histogram of incident Λ -hyperons undergone elastic scattering on protons /2/ (the area under histogram was normalized). The result is shown in the figure.

The solid line presents our result, the dashed-line histogram corresponds to the Λp elastic scattering.

Although the statistics in the Λp elastic scattering experiment /2/ is insufficient (175 events) and the lower bound on Λ -momentum is rather high (200 MeV/c), which forced us to omit the corresponding part of our Λp effective mass spectrum, the second and third enhancements on both histograms are clearly seen at nearly the same corresponding momenta.

We have drawn the following conclusions.

1. These preliminary results show that the enhancements in the Λ_p effective mass spectra at 2127 MeV/c 2 and 2251 MeV/c 2 may be formed in the Λ_p elastic scattering channel, i.e., the cross section of the Λ_p elastic scattering at $P_{\Lambda}\approx 650$ MeV/c and $P_{\Lambda}\approx (1000 \div \pm 1200)$ MeV/c reveals resonances.

2. Besides, our results indicate that in some cases the nucleus can be used as an effective high density proton target in difficult experiments on low energy unstable particle scattering on protons.

References

1. B.A.Shahbazian, A.A.Timonina, N.A.Kalinina. Lett. Nuovo Cim., 2, 63 (1973).

2. J.A.Kadyk et al. Nucl. Phys., B27, 13 (1971).

Received by Publishing Department on January 14, 1974.