ОБbЕАИНЕННЫЙ ИНСТИТУт
 คАЕРНЫX
 ИССАЕАОВАНИЙ

S.I.Bilenkaya, S.M.Bilenky, Yu.M.Kazarinov,
L.I.Lapidus

ON STRUCTURE FUNCTIONS
OF THE DEEP INELASTIC e-p SCATTERING

E1•7275

S.I.Bìlenkaya, S.M.Bilenky, Yu.M.Kazarinov, L.I.Lapidus

DN STRUCTURE FUNCTIONS
OF THE DEEP INELASTIC e-p SCATTERING

I. Introduction.

Experiments on the deep inelastic acattering of high energy electrons on protons $/ 1,2 i$ have resulted in an essential progress in understanding the photon-hadron interactions. Scaling has been discovered, and it has been shown that in the deep inelastic region, the structure functions are of the order of unity. ${ }^{+}$)

The diacovery of acaling stimulated development of a number of new trends in theoretical investigations: the parton model /4/, automodel asymptotics in the local field theory $/ 5 /$, etc.

In this work ${ }^{++}$) we discuss the results of analysis of all experimental data on the deep inelastic $e-p$ scattering. $/ 1,2,6,7 /$ We have used the method of analysia applied earlier for analysing the data on elastic $e-p$ acattering $/ 8 /$ and elastic $e-\alpha$ scattering /9/. To determine the structure functions by this method

[^0]it is necesaary from the very beginning to parametrize them. The appropriate parameters are determined directly from the experimental data by minimizing the functional x^{2}. At the analysis of data of various groups we introduced as variable parameters the norms, which take into account possible errors in the cross-section normalizations. This method makes it posgible to use the whole set of experimental data for determining the structure functions.

The analjsis has revealed that $\quad \nu W_{2}$ scales for $W \geqslant 2.3 \mathrm{GeV}$ (W is the mass of finite hadrons).

Various parametrizations of the ratioR were considered.The results of analysis indicate that the available experiaental data do not allow one to drop out those expressions for R which mean the violation of scaling of the function $2 M \mathrm{~W}_{1}$ in the range of variables where the function νW_{q} scales. If we assume that \mathcal{V}_{2} depends on the variable ω^{\prime} proposed in paper $/ 10 /$, the experimental data can be described for $W \geqslant 1.8 \mathrm{GeV}$.
II. Cross section of the process.

The method of data analysis.

It is well known that the cross section of the process

$$
\begin{equation*}
e+p \rightarrow e+\cdots \tag{1}
\end{equation*}
$$

for unpolarized initial particles in the one-photon approximatimon has the following general form (in lab, system):
where

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\left(\frac{d \sigma}{d \Omega}\right)_{M}\left[W_{2}+2 \operatorname{tg}^{2} \frac{\theta}{2} W_{1}\right] \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{d \sigma}{d \alpha}\right)_{M}=\frac{x^{2} \cos ^{2} \frac{\theta}{2}}{4 E^{2} \sin ^{2} \frac{\theta}{2}} . \tag{3}
\end{equation*}
$$

Here E and E^{\prime} are the electron initial and final energies, correspondingly; θ - the scattering angle, and W_{1} and W_{2} are functions of the scalars:

$$
\begin{equation*}
\nu=-\frac{1}{M} p q=E-E^{\prime}, \quad q^{2} \tag{4}
\end{equation*}
$$

where q and p are four-momenta of photon and proton, correspondingly; M - the proton mass. The functions W_{\perp} and W are determined by the hadron part of matrix element. Next, 2
we have the following relation:

$$
\begin{aligned}
& \sum \int\left\langle\rho^{\prime}\right| J_{\mu}|\rho\rangle\langle\rho| J_{\nu}\left|p^{\prime}\right\rangle \delta\left(\rho^{\prime}-\rho-q\right) d r= \\
& =\frac{e^{2}}{(2 \pi)^{6}} \frac{M}{p_{0}}\left[W_{1}\left(\delta_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right)+\frac{1}{M^{2}} W_{2}\left(\rho_{\mu}-\frac{p^{q} q^{2} q_{\mu}}{q^{2}}\left(p_{\nu}-\frac{p q^{2}}{q^{2}}\right)\right]\right.
\end{aligned}
$$

where J_{μ} is the operator of hadron electromagnetic current;
p^{\prime} - the total four-momentum of final hadrons.
The total cross sections for absorption or virtual photons
with transverse and longitudinal polarizations σ_{T} and σ_{5}^{-}
are related to W_{1} and W_{2} as follows /11/:

Here

$$
\begin{align*}
& \sigma_{T}=(2 \pi)^{2} \propto \frac{1}{k} w_{1} \tag{6}\\
& \sigma_{S}=(2 \pi)^{2} \propto \frac{1}{k}\left(-w_{1}+\frac{q^{2}+w^{2}}{q^{2}} h_{2}^{\prime}\right)
\end{align*}
$$

$$
\begin{equation*}
K=\nu-\frac{9^{2}}{2 M}, \quad \alpha=\frac{e^{2}}{4 \pi} \tag{7}
\end{equation*}
$$

at $\quad 9^{2} \rightarrow 0$

$$
\begin{align*}
& \sigma_{T} \rightarrow \sigma_{\gamma}, \tag{8}\\
& \sigma_{s} \rightarrow o,
\end{align*}
$$

where σ_{γ} is the total cross section of absorption of real photons with an energy \downarrow by protons.

It follows from (6) that

$$
\begin{equation*}
\sum M W_{1}=\omega \nu W_{2} \frac{1+\frac{q^{2}}{\nu^{2}}}{1+R}, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\frac{\sigma_{s}}{\sigma_{\tau}} \tag{10}
\end{equation*}
$$

and the variable ω is defined in the following way:

$$
\begin{equation*}
\omega=\frac{2 M \nu}{q^{2}} . \tag{11}
\end{equation*}
$$

As $\quad R \geqslant 0$, then from (9) we find that

$$
\begin{equation*}
\left(1+9 / \nu^{2}\right) \operatorname{cov} W_{2} \geqslant 2 N W_{1} \tag{12}
\end{equation*}
$$

To determine νW_{2} and R (or νW_{2} and $2 M W_{1}$) by the method which we use, it is necessary to parametrize these functions. The correaponding parameters are then determined from all available data through minimizing the functional :

$$
\begin{equation*}
x^{2}=\sum_{k} \sum_{i} \frac{1}{\Delta_{i, k}^{2}}\left(\sigma_{i, k}^{\exp }-N_{k} \sigma_{i}^{t h e o r}\right)^{2} \tag{13}
\end{equation*}
$$

Here $v^{\text {exp }}$ is the differential cross section of the process l, ん
at i-th point measurea in k th experiment, $\Delta_{c, \kappa}$ is an error of $\sigma_{i, \kappa}^{\exp }, \quad \sigma_{i}^{\text {theor. }}$ is the cross section at i th point calculated by the formula (2) and N_{K} are the normalizing factors. Minimization of \mathcal{X}^{2} 1s achteved through the litnearization method $/ 12 /$ application of which is described in paper $/ 13$ 。

On the bosis of current algebre B,iorken has shown $/ 14$ / that at $\varphi^{2} \rightarrow \infty, \nu^{2} \rightarrow \infty$ and $\omega=\frac{2 M: y^{2}}{q^{2}}$ fixed the dimensionlese functions 1. W_{2} and $2 M W_{1}$ depend on the variable ω only(scaling). Frow experiments on deep inelastic $e-\rho$ scattering it followe that scaling is in an agreement with the experimental data at $\sqrt{9^{2}}$ and ν of the order of 1 GeV already. We assume, first, scaling to be valid for νW_{2}. When parametrizing this function we will take into account the threshold relation
found in works $/ 15,10 /$ which connects a behaviour of yW_{g} at $\omega \rightarrow 1$ with that of the magnetic form factor of proton $G_{H}\left(q^{2}\right)$ at $q^{2} \rightarrow \infty$. If we write down:

$$
\begin{equation*}
\nu W_{2 \rightarrow 1} \sim\left(1-\frac{1}{\omega}\right)^{p}, \quad G_{M}\left(q^{2}\right) \sim \frac{1}{q^{2} \rightarrow \infty}\left(q^{2}\right)^{n} \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
\rho=n+1 \tag{15}
\end{equation*}
$$

follows as it is shown in $10,15 /$.
The analysis of elastic $e-\rho$ data gives $\Omega=2$. Thus, from (15) it follows:

$$
\begin{equation*}
\rho=3 \tag{16}
\end{equation*}
$$

Further, from the Regge theory it follows that ${ }^{/ 16 /}$

$$
\begin{equation*}
\nu W_{2 \rightarrow c \infty} \rightarrow \text { const }, \frac{2 M W_{1}}{\omega} \rightarrow \operatorname{const} . \tag{17}
\end{equation*}
$$

Now let us consider firstly the following expression
for νW_{2}

$$
\begin{equation*}
\nu W_{z}=\sum_{i} a_{i}\left(1-\frac{1}{\omega}\right)^{i+3} \tag{18}
\end{equation*}
$$

which satisfies eqs. (14), (16) and (17).
The function $2 A W_{1}$ is connected with νW_{2} and R through the relation (9). We will consider various expreasions for the ratio R.

1. Let ue suppose that

$$
\begin{equation*}
R=\frac{q^{2}}{2} \tag{19}
\end{equation*}
$$

Then as it is seen from (9) the functions $2.7 \mathrm{~W}_{1}$ and $\nu \mathrm{W}_{2}$ are related as follows:

$$
\begin{equation*}
2 M w_{1}=\omega \nu v_{2} \tag{20}
\end{equation*}
$$

As it is known this relation emerges in the parton model for the case when the partion spin is equal to 1/2/17/. The same relation holds if the squared absolute values of matrix elementa of photon absorption with transverse and longitudinal polarizations, sumed over final states, are equal.

The results of analysis of SLAC-MIT deta /12/ indicate that for the case (19) a astisfactory description of experimental data is achieved when the mass of final hadrons $W \geqslant 2.5 \mathrm{GeV}$. Note, that the variable W^{2} relates to g^{2} and ν in the following way:

$$
\begin{equation*}
W^{2}=2 M \nu+M^{2}-q^{2} \tag{21}
\end{equation*}
$$

And only the following three parameters in (18)

$$
\begin{align*}
& a_{0}=1,12 \pm 0,07 \tag{22}\\
& a_{1}=1,00 \pm 0,20 \\
& a_{2}=-1,98 \pm 0,14
\end{align*}
$$

differ from zero. $\left(\frac{x-2}{x^{2}}=\frac{162}{135}, \quad\right.$ C. $\left.5.5,5 \%\right)$.
2. It ia possible to obtain such a relation between $2 \mathrm{MW}_{1}$ and νW_{2} which agrees with experiment in larger range of the variable ω. We suppose that scaling holds both for $y W_{2}$ and $2 M W_{1}$. This assumption means that the ratio $\frac{1+R}{1+\frac{q^{2}}{2}}$ depends on ω only. We expand this ratio into a series in $\frac{1}{\omega}$ and we obtain:

$$
\begin{equation*}
\frac{\omega \nu w_{2}}{2 M W_{1}}=1+\frac{d}{\omega}+\frac{d}{\omega^{2}}+\cdots \cdot \tag{23}
\end{equation*}
$$

The analyois of experimental data has shown that it is sufficient to consider the term $\frac{d}{\omega}$ in this expansion.So, we have that:

$$
\begin{equation*}
2 M W_{1}=\omega \nu W_{2}\left(1+\frac{d}{\omega}\right)^{-1} \tag{24}
\end{equation*}
$$

By using (24) it is possible to fit the experimental data $/ 1,2 /$ at $W \geqslant 2.3 \mathrm{GeV}$. In the expansion (18) it is sufficient that only a_{0} and a_{2} are nonzero. We obtain the following values for parameters:

$$
\begin{aligned}
& a_{o}=1.64 \pm 0.02 \\
& a_{d}=-1.50 \pm 0.02 \\
& d=1.63 \pm 0.09
\end{aligned}
$$

(The ratio
 C.L. $=23.9 \%$.
3. As we see the experimental data $/ 1,2 /$ in the region $W \geqslant 2.3 \mathrm{GeV}$ are well described by means of the three parameters if scaling is ssaumed to hold both for νW_{2} and $2 \mathrm{HW}_{\perp}$. However, it is possible to obtain good fit of experimental data with such parametrigations of R which mean the violation of scaling for $2 M W_{1}$.

Let us consider the following expressions for \mathcal{R} :

$$
\begin{align*}
& R=c_{1} \frac{q^{2}}{4^{2}} \tag{26.1}\\
& R=c_{2} \frac{q^{2}}{w^{2}} \tag{26.2}\\
& R=c_{3} \frac{1}{\omega} \tag{26.3}\\
& R=\cos \tag{26.4}
\end{align*}
$$

The first three expressions astisfy the condition $\mathcal{R}=0$ at $\dot{y}^{2}=0$. Here we note that in the Bjorken limit $\left(q^{2} \rightarrow \infty, \nu \rightarrow \infty \quad \omega \quad\right.$ - fixed $) R=c \frac{q^{2}}{H^{2} \rightarrow \infty}, p=c_{2} \frac{q^{2}}{w^{2}}+c_{2}(u-1)$. The expressions (26.1) and (26.4) were considered in the work ${ }^{/ 2 /}$. The results of analysia of experimental data $/ 1,2 /$ in the region $W \geqslant 2.3 \mathrm{GeV}$ are listed in Table I . Fror Table I one can see that for atiafactory fit of the experimental data it is sufficient to consider only coefficients a_{0} and a_{2} to be
nonzero in the expansion (18). Their values xor different parametrizations of R coincide within errors. Note, that the absolute values of a_{0} and a_{2} are close to each other and signs are opposite. The value for C_{i}, which we have found, coincides with that obtained in the work $/ 2 /$ by another method.

At $\quad R=$ const. the description of experimental data improves essentially if one considers not only a_{0} and a_{2} but also a_{l} to be nonzero.
4. We have also analysed the experimental data /l,2/ parametrizing the functions νW_{2} and $2 M W_{1}$. For νW_{2} we took the expression (18). For $2 M W_{l}$ the following expression

$$
\begin{equation*}
2 M W_{1}=\omega \sum_{i} B_{i}\left(1-\frac{1}{\omega}\right)^{i+3} \tag{27}
\end{equation*}
$$

was taken. It is obvious that (27) satisfies (17).
The experimental data can be fitted by means of (18) and (27). It is sufficient to consider two terms in (18) and three terms in (27). As a result of analysing the experimental data in the region $W \geqslant 2.3 \mathrm{GeV}$ we find:

$$
\begin{array}{ll}
a_{0}=1.68 \pm 0.02 & b_{0}=0.72 \pm 0.14 \\
a_{2}=-1.57 \pm 0.04 & b_{1}=1.35 \pm 0.42 \\
& b_{2}=-1.84 \pm 0.31 \tag{28}
\end{array}
$$

$\left(x^{2} / \frac{1}{x^{2}}=154 / 148\right.$, C.L. $\left.=35.68\right)$.
The functions νW_{2} and $2 M W_{1}$ have to obey the unequality (12) which is equivalent to the condition $\sigma_{s} \geqslant 0$. Here we should note that for the latter case this inequality is fulfilled at some points within two stander d deviations only.
5. Now let us discuss the results of analysis of all published experimental data on the deep inelastic $e-p$ scattering. The results are given in Table II ($W \geqslant 2.3 \mathrm{GeV}$). The three last columns list the obtained values of norms: N_{1} is the norm for the date of SLAC-MIT (153 points); N and N are those for the data of DESY, $1971 / 7 /(83$ points) and of DESK, $1969 / 6 /$ (31 points), correspondingly.

From the results presented in Table II one may draw the conclusion that only the introduction of norms allows one to describe all available data on the dep inelastic $e-\rho$ scattering. The values of norms at different parametrization of R coincide within errors. And description of all available experimental data requires a substantial renormalization of results of paper $/ 7 /$. A. comparison of the results given in Table I and Table II reveals that the values of parameters
found in analysing the deta of papers $/ 1,2 /$ and of all world data coincide within errors.
6. Up to now we considered the expression (18) for the function $V W_{d} \quad$. It is possible to fit the experimental data on deep inelastic e-p scattering with other paramerrizations of the otructure function νW_{2}, as well. Let us consider the expression

$$
\begin{equation*}
\nu W_{2}=\left(\frac{\omega^{2}-1}{\omega^{2}+\omega_{0}^{2}}\right)^{3}\left(\tau, z_{2} \frac{1}{\sqrt{\omega}}\right) \tag{29}
\end{equation*}
$$

where τ, τ_{2} and ω_{0}^{2} are variable parameters. This expression has been suggestad in the paper /18/ and is based on Regge theory. It is obvious that (29) astisfies both the threshold relation (14) and asymptotical condition (17). For R we have considered the same expressions as before. The results of analysia of data of the papers $/ 1,2 /$ are presented in Table III. ($W \geqslant$ e.3 (GeV). As one can see fron this Table, a rather good fit of the data is achieved for all the five parametrizations of \mathcal{Q}, which we heve considered, if the expression (29) is used for νW_{2}. A comparison of the reaults given in Tables I and III ahows that parameters of the expressions for R coincide within errors fur both parametrizations of $v W_{2}$. Table IV presents the values of νW_{2} calculeted by formulae
(18) (the second and third columns) and (29) (forth and fifth coluans). The second and forth colums give the values of tho at $R=c, \frac{q^{2}}{M^{2}}$, the third and pifth solumne give these et
$R=$ const. Figs. 1,2 show the dependence of νW_{2} given by the formulae (18) and (29; correapondingly, at various parametrizations of $R \quad$ in the range of ω from 1 to 100. Throughout there were used the values of parameters found in analyoing the experimental data of the papers $/ 1,2 /$. Anslysing the reaults of SLAC-MIT $/ 1,2 /$ we have seen that for $\quad W \geqslant 2.3 \mathrm{GeV}$ it is possible to describe all experimental date in the whole experimantally investigated region of $q^{2}\left(0.25 \leqslant q^{2} \leqslant 19.2(\mathrm{Ge} / \mathrm{c})^{2}\right)$ by using timee perameters. The variable $\nu \quad$ changea from 1.87 GeV to 16.28 GeV , and the variable ω changes from 1.25 to 37.8. The values or ω higher than 20 correspond to the values of $q^{2} \leqslant 1(G \mathrm{G} / \mathrm{c})$.The question on a behaviour of $2 W_{2}$ at large ω is of a considerable interest for the theory. We have carried out the separate analyois of the resulto of SLAC-MIT choosing the data with $q^{2} \geqslant 0.5\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2} \quad q^{2} \geqslant 1\left(\mathrm{GeV} / \mathrm{c}^{2}\right.$ and $q^{2} \geqslant 1.5\left(\mathrm{Gev} / \mathrm{c}^{2}\right.$. The values of parameters found in this analysis are given in Tables V and $V I$.
7. The determination of νW_{2} allows to calculate the integrals entering into the sum rules for this function. Let us consider firstly the Collan-Gross sum rule /19/

$$
\begin{equation*}
\int_{1}^{\infty} \nu w_{2} \frac{d \omega}{\omega^{2}}=\sum_{N} \sum_{i=1}^{N} Q_{i}^{2} \frac{1}{N} P_{N} \tag{30}
\end{equation*}
$$

Here Q_{i} is the charge of $\quad i$-th parton, P_{N}-the probability of finding N parton in a proton. Using the values of a_{0} and a_{2} given in Table I for $R=$ cons. we obtain:

$$
\begin{equation*}
\int_{1}^{\infty} \nu w_{2} \frac{d \omega}{w^{2}}=0.162 \pm 0.001 \tag{31}
\end{equation*}
$$

If the values of a_{0} and a_{2} found for $R=c, \frac{q^{2}}{4^{2}}$ are used, then

$$
\begin{equation*}
\int_{1}^{\infty} 2 \omega_{2} \frac{d \omega}{\omega^{2}}=0.158 \pm 0.001 \tag{32}
\end{equation*}
$$

Finally, from the analysis of the data of sLAC-MIT at $q^{2} \geqslant 1.5(G e V /)^{2}$ for $R=0.26 \pm 0.04$ we obtain:

$$
\begin{equation*}
\int_{1}^{\infty} \nu w_{2} \frac{d \omega}{\omega^{2}}=0.166 \pm 0.002 \tag{33}
\end{equation*}
$$

Note that within the usual quark model the right hand side of (30) equals $\quad 1 / 3$.

For the integral entering into the Gottfried sum rule $/ 20 /$ we have (for $R_{\text {so }}=$ cons. all q^{2}):

$$
\begin{equation*}
\int_{1} 2 w \frac{a \omega}{\omega}=0.97 \pm 0.01 \tag{34}
\end{equation*}
$$

8. Up to now we have supposed that νW_{2} depends on ω only. We have seen that under very different assumptions on R it is possible to describe the whole set of data on the deep inelastic $e-p$ scattering. In order to estimate to what extent acaling can be violated, we have snalysed the SLAC-MIT data assuming that $v W_{2}$ has the following form:

$$
\begin{equation*}
\nu w_{2}=\sum_{i}^{2} a_{i}\left(1-\frac{1}{w}\right)^{i+3}+\alpha \frac{H^{2}}{q^{2}} \tag{35}
\end{equation*}
$$

Obviously the second term of this expression vanishes in the Bjurken limit. We will suppose that the functicns $2 \mathrm{KW}_{\perp}$ and $v W_{2}$ are connected through the relation (24). As a result of analysing the data of SLAC-MIT 11,21 we find that with $\frac{x^{2}}{x^{2}}=\frac{150}{149}$

$$
\begin{array}{ll}
a_{0}=1.65 \pm 0.02 & d=0.61 \pm 0.08 \\
a_{2}=-1.47 \pm 0.02 & \alpha=-0.02 \pm 0.01 \tag{36}
\end{array}
$$

Comparing (36) with (25) we see that an addition of the term, which violates scaling, does not change the values of parameters a_{0}, a_{2} and d within errors. The parameter α characterizing the violation of acaling equals zero within two errors.
9. In the paper $/ 10 /$ there was proposed the acale variable

$$
\begin{equation*}
\omega^{\prime}=\frac{2 M_{\nu}+M^{2}}{9^{2}} \tag{37}
\end{equation*}
$$

which coincides with ω at $2 H \nu \geqslant M^{2}$. It has been shown that $\nu W_{\mathcal{L}}$ is function of ω^{\prime} in a larger region of the variable W.

We have analysed the data of the papers $/ 1,2 /$ paranetrizing ψh_{2}^{\prime} in the following way:

$$
\begin{equation*}
W_{2}=\sum_{i} A_{i}\left(1-\frac{1}{\omega}\right)^{i+3} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega^{\prime}=\frac{2 H \nu+\beta}{q^{2}} \tag{39}
\end{equation*}
$$

And here it turns out that immediately beyond the prominent resonance region ($W \geqslant 1.8 \mathrm{GeV}$) all the present data can be described (see Table VII). In the expansion (38) it is sufficient that only three parameters t_{0}, A_{1} and A_{2} are nonzero. If one assumes that $\quad R$ =cost. then for the parameters we obtain:

$$
\begin{array}{ll}
A_{0}=0.60 \pm 0.08 & \beta=0.91 \pm 0.07 \\
A_{1}=1.96 \pm 0.17 & R=0.20 \pm 0.02 \\
A_{2}=-2.37 \pm 0.10 & \tag{40}
\end{array}
$$

($\frac{x^{2}}{x^{2}}=169 / 187$).
In this analysis we have taken the data with If this limitation is not put, then at $\quad W \geqslant 1.8 \mathrm{GeV}$ by using (38) and (39) a astisfactory description of data is possible when one takes the expressions (26.2) and (26.3) for the ratio R, as it can be seen from the Table VII.

The values for A_{i} and β, which we have obtained, coincide within errors with those found in the paper /2/.

If one considers that $2 M W_{1}$ and νW_{2} are related as follows:

$$
\begin{equation*}
2 M W_{1}=\omega^{\prime} \nu W_{2}\left(1+\frac{2}{\omega^{\prime}}\right)^{-1} \tag{AI}
\end{equation*}
$$

and $\nu \boldsymbol{2}$ is given by (38), then for parameters we obtain the following values ($W \geqslant 1.8 \mathrm{GeV}$):

$$
\begin{array}{ll}
A_{0}=0.50 \pm 0.08 & \beta=1.03 \pm 0.09 \\
A_{1}=2.35 \pm 0.17 & \mathscr{O}=0.34 \pm 0.07 \\
A_{2}=-2.71 \pm 0.10 & \\
\left(\frac{x^{2}}{x^{2}}=251 / 191, \text { C.L. } 11.5 \%\right) . &
\end{array}
$$

To complete this section we would like to note that there are seven points in the papers $/ 1,2 /$ which provide large (larger than 9) contributions to x^{2} at all considered parametrizations. If these points are not included in the analysis of data, a description is improved essentirliy for all the cases.

IV. Conclusion.

We have analysed all available data on the deep inelastic ep scattering. The analysis has been carried out separately for the data of SLAC-MIT/1,2/ and for the world experimental data $/ 2,2,6,7 /$.

It has been shown that at $W \geqslant 2.3 \mathrm{GeV}$ the experimental data are fitted well under the assumption that the function νW_{2}. depents on the scale variable ω only. Verious parametrizations of this function have been considered. We have introduced a violation of scaling of νW_{2}. It has been ahown that the parameter characterizing the violation, differs from zero by two standard deviations only.

A number of expressions for the ratio R have been discussed. The data available allow no definite conclusions on R and on scaling of 2 MW . For an unambiguous determination of R one needs the data on cross sections of deep inelastic leptonproton scattering in the larger region of kinematical variables.

We have teated in detail the validity of the relation $2 \mathrm{HW}=\omega \nu W_{2}$ following from the parton model for the parton spin= $1 / 2$. If this relation is modified through inserting an additional term, the contribution of which vanishes at large ω asymptotically, then all the data can be fitted well, as the analysis of data reveals.

If νW_{2} is assumed to be a function of ω^{\prime}, then all the data can be described at $W \geqslant 1.8 \mathrm{GeV}$.

The authors are very pleased to thank A.A.Anselm, Z.Kunst and Ya. A.Smorodinsky for useful discussions of the problems considered here.

References

1. E.D.Bloom, D.H.Coward et al. Phys.Rey.Lett., 23,930,1969.
2. G.xiller, E.D.Bloom et al. Phys.Fev., D5, 528, 1972.
3. M.A.Markov. JINR D-1269, Dubne, 1963.
4. R.P.Feynman. Phys.Rev.Lett., 23, 1415, 1969.
5. N.N. Bogolubov, A.N.Tavkhelidze, V.S.Vladimirov. JINR E2-6490, Dubns, 1972.
6. W.A1brecht, F.W.Brasse et 81. DESY 69/7, 1969.
7. J.Moritz, K.H.Schmidt et al. DESY 71/61, 1971.
B. S.I.Bilenkaya, Yu.M.Kazerinov, L.I.Lapidus. JETP, 61,2225, 1971.
8. S.I.Bilenkaye, Yu. M.Kezarinév, L.I.Lapidus, El-6647, Dubna, 1972.
9. E.Bloom, F.Gilman. Phys.Rev.Lett., 25, 1140, 1970; Phys.Rev., D4, 2901, 1974.
10. L.N.Hand. Fhys.Rev., 129, 1834, 1963.
11. S.N.Sokolov, I.N.Silin. Preprint JINR, D-810, Dubna, 1961.
12. S.I.Bilenkaya, Yu.M.Kazerinov, L.I.Lapidus. JETP, 60,460, 1971.
13. J.D.Bjorken. Phys.Rev., 179, 1547, 1969.
14. S.Drell, T.M.Yan. Phys.Rev.Lett., 24, 181, 1970.
15. H.Abarbanel, M.L.Goldberger, S.B.Treiman. Phys.Rev.Lett., 22, 500, 1969.
16. C.G.Callan, D.J.Gross. Phys.Rev.Lett., 22, 156, 1969. 18. I.W.Moffat, V.G.Snell. Phys.Rev., D3, 2848, 1971. 19. C.G.Callan, D.I.Grose. Phys.Rev.Lett., 21, 311 (1968). 20. K.Gottfried. Phys.Rev.Lett., 18, 1174 (1967).
```
Received by Puhlishing Department
    on Tune 27, 1973.
```


TABLEI.

The results of analysis of SLAC-MIT data/1,2/(parametrization (18))

	${ }_{0}$	${ }_{1}$	${ }^{2}$		$x^{2 /} \bar{x}^{2}$
$R=c, \frac{y}{4}^{2}$	1,59 $\pm 0,02$	-	$-1,44 \pm 0,02$	$c_{1}=0,035 \pm 0,004$	124/150
$q=c_{2} \frac{q^{2}}{w^{2}}$	$1,61 \pm 0,02$	-	$-1,47 \pm 0,02$	$\mathrm{c}_{2}=0,41 \pm 0,05$	145/150
$R=c_{3} \frac{q^{2}}{2 H_{\nu}}$	1,83 $\pm 0,02$	-	$-1,48 \pm 0,02$	$c_{3}=0,82 \pm 0,09$	142/150
$R=$ const	1,57 $\pm 0,02$	-	$-1,38 \pm 0,02$	$R=0,27 \pm 0,03$	181/150
$R=\operatorname{cons} t$	1,29 $\pm 0,06$	$0,78 \pm 0,17$	$-1,90 \pm 0,12$	$R=0,23 \pm 0,03$	162/149

TABLE II.
The results of analysis of data $/ 1,2,6,7 /$ (parametrizatio n(18))

TABLE IV．

（ $)$	$R=0,035 \frac{\frac{7}{4}^{2}}{}$	$R=0,27$	$R=0,036 \frac{9}{M}$	$R=0,26$
1，334	0，022 $-0,0005$	0，024 ${ }^{+0,0004}$	0，024 $-0,0002$	0，023 $\pm 0,0002$
2，034	0，161 $\pm 0,002$	0，157 $\pm 0,002$	0，159＊＊0，001	0，1570，002
3，213	0，299 $\ddagger 0,002$	0，303＊0，003	0，297士0，002	0，298 $\pm 0,003$
4，462	0，336 $\pm 0,002$	0，345＊0，003	0，339士0，002	0，344 $\pm 0,003$
4，680	0，338 $\pm 0,002$	$0,348 \pm 0,003$	0，342 $\pm 0,002$	0，347 $\pm 0,003$
5，294	0，340 $\pm 0,002$	0，351 $\pm 0,003$	0，352さ0，003	0，344 $\pm 0,002$
6，637	0，335 $\pm 0,002$	0，347士0，003	0，350 $\pm 0,003$	0，340 ${ }^{+} 0,002$
7，805	$0,327 \pm 0,003$	$0,339 \pm 0,003$	0，343 $\pm 0,003$	0，330士0，003
20，101	0，309 $\pm 0,003$	$0,322 \pm 0,004$	0，327－0，004	$0,310 \pm 0,003$
21，206	0，255＊0，005	$0,267 \pm 0,006$	0，272士0，005	0，247士0，005
33，443	0，226 $\pm 0,006$	0，238 $\pm 0,007$	0，245 $-0,005$	$0,217 \pm 0,005$

TABLEEV.

The results of analysis of SLAC-MIT data $/ 1,2 /$ (parametrization(18), $W \geqslant 2.3 \mathrm{GeV}$)

$\begin{aligned} & \left(q^{2}\right)_{\min } \\ & (\mathrm{GeV} / \mathrm{c})^{2} \end{aligned}$	0,5	1	1,5
${ }^{\boldsymbol{a}} 0$	$1,54 \pm 0,02$	$1,54 \pm 0,02$	$1,53 \pm 0,002$
a_{2}	$-1,34 \pm 0,02$	$-1,32 \div 0,03$	$-1,30 \pm 0,03$
R	0,26 $\pm 0,03$	$0,26 \pm 0,03$	$0,26 \pm 0,04$
	145/148	128/141	110/132
0_{0}	$1,59 \pm 0,02$	$1,59 \pm 0,02$	$1,59 \pm 0,03$
a_{2}	$-1,42 \pm 0,03$	$-1,43 \pm 0,03$	$-1,44 \pm 0,04$
$\left(R=c_{2} q^{2}\right.$	$0,37 \pm 0,05$	0,38 $\pm 0,05$	$0,37 \pm 0,05$
	125/148	117/141	107/132

TABLEVI

The results of analysis of SLAC-MIT data $/ 1,2 /$ (paranetrization(29), $W \geqslant 2.3 \mathrm{GeV}$).

$\begin{aligned} & \left(9^{2}\right)_{\min } \\ & (\mathrm{GeV} / \mathrm{c})^{2} \end{aligned}$	0,5	1,0	1,5
τ,	$0,15 \pm 0,01$	$0,18 \pm 0,02$	$0,21 \pm 0,03$
z_{2}	$0,62 \pm 0,03$	$0,56 \pm 0,04$	$0,50 \pm 0,06$
ω_{0}^{2}	$0,72 \pm 0,03$	$0,67 \pm 0,04$	$0,64 \pm 0,04$
R	$0,25 \pm 0,03$	$0,26 \pm 0,03$	$0,26 \pm 0,04$
	130/147	116/140	107/131
τ	$0,15 \pm 0,01$	$0,18 \pm 0,02$	$0,20 \pm 0,02$
c_{2}	$0,58 \pm 0,03$	$0,52 \pm 0,04$	$0,46 \pm 0,05$
ω_{0}^{2}	$0,54 \pm 0,03$	$0,50 \pm 0,04$	$0,46 \pm 0,04$
$\left(R=c_{2} \frac{q^{2}}{w^{2}}\right)$	$0,55 \pm 0,06$	$0,54 \pm 0,06$	$0,50 \pm 0,06$
$x^{2} / \frac{x}{x^{2}}$	112/147	100/140	88/131

TABLE VII

The results of analysis of SLAC-MIT datis $/ 1,2 /$ (parametrization(38))

	A_{0}	A_{1}	A_{2}	${ }^{C_{1,2,3}}$	β	$x^{2} / \frac{x}{x^{2}}$	C.L.
$8=c \frac{q^{2}}{42}$	$0,93 \pm 0,11$	1,38 $\pm 0,23$	$-2,18 \pm 0,13$	0,028 ${ }^{+} 0,004$	$0,63 \pm 0,07$	$\frac{246}{191}$	0,4\%
$R=c_{2} \frac{q^{2}}{w^{2}}$	$0,98 \pm 0,11$	1,22 $\pm 0,23$	$-2,06 \pm 0,13$	0,37 $\pm 0,04$	0,76さ0,07	$\frac{230}{191}$	2,68\%
$R=c_{3} \frac{q^{2}}{2 M \nu}$	$0,70 \pm 0,09$	1,91 $\pm 0,19$	$-2,48 \pm 0,11$	$0,61 \pm 0,07$	$0,65 \pm 0,07$	$\frac{223}{191}$	5,48\%

Fig. I.

Fig. 2.

[^0]: ${ }^{+\prime}$ ^ possibility for such a behaviour of the structure functions was discussed by Markov $/ 3 /$ many years ago.
 ++)
 Prelininary reaults were submitted to the XVI Conference on High Energy Physics at Chicago, Batavia, Septenber 1972.

