ОБ ВЕАИНЕННЫЙ ИНСТИТУТ
 คAEPHЫX
 ИССАЕАОВАНИЙ

$\frac{c 346.4 b}{J-23}$
AY5HA

AN ESTIMATE OF ELASTIC $\boldsymbol{\pi}^{-} p$
AND COHERENT $\pi^{-} \mathrm{C}$ INTERACTION
CROSS-SECTIONS AT 40 GEV/C

1972

ААБОРАТОРИЯ ВЫСОНИХ ӨНЕРГИЙ

G.Jancsó, J:M.Kohli*

AN ESTIMATE OF ELASTIC $\pi^{-} p$ AND COHERENT $\pi^{-} \mathrm{C}$ INTERACTION CROSS-SECTIONS AT 40 GEV/C

Submitted to $\boldsymbol{G D}$

* On leave from the Department of Physics, Panjab University; Chandigarh, India.

1. Introduction

In this paper we present results regarding the elastic and coherent cross-sections obtained in π^{-p} and π^{-C} interactions at $p r=40 \mathrm{GeV}$. The experiment was performed at Serpukhov by exposing a 2 m propane $\left(C_{3} \|_{8}\right)$ bubble chamber to a π^{-}meson beam. About 17000 pictures were scanned thrice for the location of 2- to 5 -prong interactions and the associated γ-quanta which were materialized in the effective volume of the chamber Finally, a special methodical scanning was performed in order to ensure maximum efficiency (100%) for the location of such events and γ-quanta. Other details regarding the selection criteria of $\pi^{-}-\pi^{-} n$ and $\pi^{-} C$ interactions have been discussed in Ref.

Two independent methods were made in order to determine the above-said cross-sections. Firstly, we have estimated the elastic and coherent cross-sections from the distribution of the number of - -quanta associated with the scanned events. The second method is based on the multiplicity distribution of charged secondaries in $\pi^{-} p_{i, \pi^{-}} n$ interactions. The angles and energies of the secondary particles have not yet been measured on all the tracks and in this regard our estimations are rather preliminary.
2. Distribution of y-Quanta Associated with 2-5-Prong Events

Table 1 shows the distribution of y-quanta in 2-5-prong events. The distribution is presented in such a way that all the events with $N_{\gamma}=1$ have been normalized to 100 for each type of event. We have defined a parameter η which gives us the percentage of the number of events with $\mathcal{N}_{y}=0$ to the total number of events in a particular type of interaction. There is a marked enhancement of η in the case of $2-$ and 3 -prong events, whereas in 4-prong events η is minumum 33.63. This enhancement, we assume, is due to the presence of elastic rvents of the type

$$
\begin{equation*}
\pi^{-} p \rightarrow \pi-p \tag{1}
\end{equation*}
$$

in two-prong events without γ-quantum. In three-prong and five-prong events this is due to the presence of coherent interactions of the type

$$
\begin{equation*}
\pi^{-} C \rightarrow \pi^{-} \pi^{+} \pi^{-} C \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi^{-} C \rightarrow 3 \pi^{-} 2 \pi^{+} C \tag{3}
\end{equation*}
$$

It is interesting to note that the average value $\left\langle N_{\gamma}\right\rangle$ for events with $N_{\gamma} \geq l$ remains constant independent of charged prong number up to 5 and the γ-quanta distribution of such events is also identical irrespective of the number of created charged particles: For higher charged prong, events, however, $\left\langle N_{\gamma}\right\rangle$ does not remain constant but increases ${ }^{2 /}$.
.Figure 1 shows the distribution of the number of γ-quanta associated with 2 - 5-prong events: A single exponential law of the form

$$
\begin{equation*}
N=C e^{-0,43 N_{\gamma}} \tag{4}
\end{equation*}
$$

can represent the experimental data with $\chi^{2}=6$
On the assumption that the same law holds good for events with $N_{\gamma}=0$ and enhancements of such events in 2-, 3-and 5 -prong events are due to elastic and coherent interactions, one can estimate the percentage and hence the cross-sections for their production. Table II shows the results obtained under the heading "'Method l'".

3. Charged Prong Multiplicity of $\pi^{-} p$ and $\pi^{-} n$ Interactions

The results regarding the multiplicity distribution of charged particles are based upon 50000 pictures taken from the 2 m Dubna chamber exposed to the $40 \mathrm{GeV} \pi^{-}$beam ${ }^{1 /}$. The experimental multiplicity distributions for $\pi^{-} p$ and $\pi^{-} n$ interactions were fitted with the predictions of Wang Model $1 / 3 /$

$$
\begin{equation*}
P_{\left(n_{c b}\right)}=\frac{\left(1 / 2<n_{c b}-a>\right)^{1 / 2\left(n_{c b}-a\right)}}{1 / 2\left(n_{c b}-a\right)!} e^{-1 / 2<n_{c b}-a>} \tag{5}
\end{equation*}
$$

where α is the number of charged particles in the initial state. The values of χ^{2} for $\pi^{-} p$ and $\pi^{-} n$ events are 25 and 40 respectively. Such bad fits were attributed to the presence
of elastic interactions in $\pi-p$ events and coherent interactions in 3- and 5 -prong events, the contrubution of which must be subtracted correctly. Calculations were again made on the basis of the above formula (5) without taking into consideration 2-prong events in $\pi^{-} p$, interactions and 3 - and 5 -prong events in πn interactions. With the knowledge of new parameters, thus obtained, the theoretical distributions were extrapolated in the regions of 2-, 3- and 5 -prong events and the correct percentages of the contributions of elastic and coherent events were determined.

Figure 2 shows the charged prong multiplicity distributions of $\pi^{-} p$ and $\pi^{-} n$ events and the new values of χ^{2} obtained after subtracting the contribution of elastic and coherent events. The values of cross-sections are presented in Table II under the heading "Method 2'". The values obtained by methods 1 and 2 are in good agreement within the experimental errors. In the estimation of coherent interactions in 3 -prong event of the type (2), we have taken into consideration the admixture of such $\pi^{-} C \rightarrow 3 \pi^{ \pm} 2 \pi^{\circ} C$
events: In accordance with the statistical isospin model $\left./ 4 / \sigma\left(\pi^{-} C \rightarrow 3 \pi^{ \pm} 2 \pi^{\circ}\right) / \sigma \pi^{-} C \rightarrow 3 \pi^{-} 2 \pi^{+}\right)=2.2$. In case of elastic scatterings $/ \sigma /$, we have taken into consideration that 30% of the elastic events are not visible because of the inability of our chamber to record slow recoil protons ($p \leq 180 \mathrm{MeV} / \mathrm{c}$).

Figure 3 shows the dependence of coherent cross-sections for 3 -prong events on the primary energy. Our experimental point agrees, well with the theoretical results obtained by Grishin et al. ${ }^{5}$ based purely on kinematical considerations.

The authors are thankful to V.G.Grishin for useful discussion of results.

References

1. Bucharest - Budapest - Cracow - Dubna - Hanoi - Serpukhov Sofia - Tashkent - Ulan-Bator - Warsaw Collaboration. Phys.Lett., B39, 571 (1972).
2. Bucharest - Budapest - Cracow - Dubna- Hanoi - Serpukhov Sofia - Tashkent - Ulan-Bator - Warsaw Collaboration. JINR, Pl-6491, Dubna, 1972. Submitted to Nuclear Physics.
3. C.P.Wang. Phys.Rev., 180, 1463 (1969).
4. S.Z.Belenkiy, V.M.Malsimenko, A.I.Nikishov, I.L.Rozental. UFN 62, vypusk 2, 1 (1957).
F.Cerulus. Nuovo Cim., 19, 528 (1961).
I.Bartke, O.Czyzewski. Nucl.Phys., B5, 583 (1968).
5. V.Grishin, G.Jancso and B.Yuldashev. Yad.Fiz., 14, 1276 (1971).
6. Elastic Scattering of $\pi^{-} \cdot{ }^{-}, K^{-} p$ and $\overline{p p}$ at 25 and $40 \mathrm{GeV} / \mathrm{c}$. CERN-IHEP Boson Spectrometer. (Presented at the 4th Int. Conf. on High-Energy Collisions, Oxford, 1972).

Received by Publishing Department
on March 13, 1973.

Fig. 1. Distribution of the number of γ-quanta associated with 2-5-prong events. The continuous line is due to Eq. 4.

Fig. 2. Charged prong multiplicity distribution of secondaries in case of $\pi-p$ and $\pi-n$ interactions. The continuous line is due to Eq. 5.

Fig. 3. Dependence of coherent production cross-sections upon the incident energy in the lab. system. The continuous line is due to

Table II

Mype	Cross-section (mb)	
	Method 1	Method 2
2-prong Elastic	4.0 ± 0.4	3.5 ± 0.3
3-prong Coherent	3.2 ± 0.4	3.5 ± 0.3
5-prong Coherent	0.2 ± 0.1	0.3 ± 0.1

