ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

E1 - 6994

16/10

1459/2 -73 G.Jancsó, J.M.Kohli

11

II BRARES

AN ESTIMATE OF ELASTIC π_p AND COHERENT π^-c INTERACTION CROSS-SECTIONS AT 40 GEV/C

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

E1 - 6994

G.Jancsó, J.M.Kohli*

AN ESTIMATE OF ELASTIC π_{p} AND COHERENT π_{C} INTERACTION CROSS-SECTIONS AT 40 GEV/C

Submitted to $\mathcal{A}\Phi$

* On leave from the Department of Physics, Panjab University; Chandigarh, India.

1. Introduction

In this paper we present results regarding the elastic and coherent cross-sections obtained in $\pi^- p$ and $\pi^- C$ interactions at pc = 40 GeV. The experiment was performed at Serpukhov by exposing a 2m propane $(C_3 || s)$ bubble chamber to a π^- meson beam. About 17 000 pictures were scanned thrice for the location of 2- to 5-prong interactions and the associated γ -quanta which were materialized in the effective volume of the chamber. Finally, a special methodical scanning was performed in order to ensure maximum efficiency (100%) for the location of such events and γ -quanta. Other details regarding the selection criteria of $\pi^- p$, $\pi^- n$ and $\pi^- C$ interactions have been discussed in Ref.

Two independent methods were made in order to determine the above-said cross-sections. Firstly, we have estimated the elastic and coherent cross-sections from the distribution of the number of) -quanta associated with the scanned events. The second method is based on the multiplicity distribution of charged secondaries in $\pi^- p + \pi^- n$ interactions. The angles and energies of the secondary particles have not yet been measured on all the tracks and in this regard our estimations are rather preliminary.

2. Distribution of γ -Quanta Associated with 2-5-Prong Events

Table 1 shows the distribution of γ -quanta in 2-5-prong events. The distribution is presented in such a way that all the events with $N_{\gamma} \geq 1$ have been normalized to 100 for each type of event. We have defined a parameter η which gives us the percentage of the number of events with $N_{\gamma} = 0$ to the total number of events in a particular type of interaction. There is a marked enhancement of η in the case of 2- and 3-prong events, whereas in 4-prong events η is minumum 33.63. This enhancement, we assume, is due to the presence of elastic events of the type

 $\pi^- p \longrightarrow \pi^- p$

(1)

in two-prong events without γ -quantum. In three-prong and five-prong events this is due to the presence of coherent interactions of the type

$$\pi^- C \rightarrow \pi^- \pi^+ \pi^- C \tag{2}$$

and

 $\pi^- C \rightarrow 3\pi^- 2\pi^+ C \qquad (3)$

It is interesting to note that the average value $\langle N_{\gamma} \rangle$ for events with $N_{\gamma} \geq I$ remains constant independent of charged prong number up to 5 and the γ -quanta distribution of such events is also identical irrespective of the number of created charged particles. For higher charged prong events, however, $\langle N_{\gamma} \rangle$ does not remain constant but increases $\langle 2/\rangle$.

Figure 1 shows the distribution of the number of γ -quanta associated with 2 - 5-prong events: A single exponential law of the form

$$N = C e^{-0, 43 N \gamma}$$
(4)

can represent the experimental data with $\chi^2 = 6^2$

On the assumption that the same law holds good for events with $N_{\gamma} = 0$ and enhancements of such events in 2-, 3- and 5-prong events are due to elastic and coherent interactions, one can estimate the percentage and hence the cross-sections for their production. Table II shows the results obtained under the heading "Method 1".

3. Charged Prong Multiplicity of π^{-p} and π^{-n} Interactions

The results regarding the multiplicity distribution of charged particles are based upon 50000 pictures taken from the 2m Dubna chamber exposed to the 40 GeV π^- beam $^{/1/}$. The experimental multiplicity distributions for π^-p and π^-n interactions were fitted with the predictions of Wang Model 1 $^{/3/}$

$$P_{(n_{cb})} = \frac{(1/2 < n_{cb} - a >)^{1/2} (n_{cb} - a)}{1/2 (n_{cb} - a)!} e^{-1/2 < n_{cb} - a >},$$
 (5)

where α is the number of charged particles in the initial state. The values of χ^2 for $\pi^- p$ and $\pi^- n$ events are 25 and 40 respectively. Such bad fits were attributed to the presence

of elastic interactions in π^{-p} events and coherent interactions in 3- and 5-prong events, the contrubution of which must be subtracted correctly. Calculations were again made on the basis of the above formula (5) without taking into consideration 2-prong events in π^{-p} interactions and 3- and 5-prong events in π^{-n} interactions. With the knowledge of new parameters, thus obtained, the theoretical distributions were extrapolated in the regions of 2-, 3- and 5-prong events and the correct percentages of the contributions of elastic and coherent events were determined.

Figure 2 shows the charged prong multiplicity distributions of $\pi^- p$ and $\pi^- n$ events and the new values of χ^2 obtained after subtracting the contribution of elastic and coherent events. The values of cross-sections are presented in Table II under the heading ''Method 2''. The values obtained by methods 1 and 2 are in good agreement within the experimental errors. In the estimation of coherent interactions in 3-prong event of the type (2), we have taken into consideration the admixture of such $\pi^- C \rightarrow 3\pi^{\pm} 2\pi^{\circ} C$ events. In accordance with the statistical isospin model/ $\frac{4}{\sigma}(\pi^- C \rightarrow 3\pi^{\pm} 2\pi^{\circ})/\sigma(\pi^- C \rightarrow 3\pi^{\pm} 2\pi^{+}) = 2.2$. In case of elastic scatterings $\frac{6}{\gamma}$, we have taken into consideration that 30% of the elastic events are not visible because of the inability of our chamber to record slow recoil protons ($p \leq 180$ MeV/c).

Figure 3 shows the dependence of coherent cross-sections for 3-prong events on the primary energy. Our experimental point agrees well with the theoretical results obtained by Grishin et al. $^{/5'}$ based purely on kinematical considerations.

The authors are thankful to V.G.Grishin for useful discussion of results.

References

- 1. Bucharest Budapest Cracow Dubna Hanoi Serpukhov -Sofia - Tashkent - Ulan-Bator - Warsaw Collaboration. Phys.Lett., B39, 571 (1972).
- Bucharest Budapest Cracow Dubna Hanoi Serpukhov -Sofia - Tashkent - Ulan-Bator - Warsaw Collaboration. JINR, Pl-6491, Dubna, 1972. Submitted to Nuclear Physics.
 C. D. Worr, Phys. Rev. 180, 1462 (1960)
- 3. C.P.Wang. Phys.Rev., 180, 1463 (1969).
- 4. S.Z.Belenkiy, V.M.Malsimenko, A.I.Nikishov, I.L.Rozental. UFN 62, vypusk 2, 1 (1957). F.Cerulus. Nuovo Cim., 19, 528 (1961).
 - I.Bartke, O.Czyzewski. Nucl.Phys., B5, 583 (1968).
- 5. V.Grishin, G.Jancso and B.Yuldashev. Yad.Fiz., 14, 1276 (1971).

6. Elastic Scattering of $\pi^{-}p$, $K^{-}p$ and pp at 25 and 40 GeV/c. CERN-IHEP Boson Spectrometer. (Presented at the 4th Int. Conf. on High-Energy Collisions, Oxford, 1972).

> Received by Publishing Department on March 13, 1973.

Fig. 1. Distribution of the number of γ -quanta associated with 2 - 5-prong events. The continuous line is due to Eq. 4.

Fig. 2. Charged prong multiplicity distribution of secondaries in case of π^{-p} and π^{-n} interactions. The continuous line is due to Eq. 5.

Fig. 3. Dependence of coherent production cross-sections upon the incident energy in the lab. system. The continuous line is due to

y associated with 2 - 5-prong interactions Table I Distribution of the number of)

Average		35 .9<u>+</u>2. 3	24 .9<u>+</u>1. 8	15.4±1.4	8.1 <u>+</u> 1.0	6 . 7 <u>+</u> 0.9	3.5±0.7			
5p	57.0	33.9	28.6	17.8	7.1	4.5	3.6	36.36	2.51±0.2	
4p 4	51.0	35.1	22.3	16.1	9.3	7.1	4.3	33.63	2.68 <u>+</u> 0.2	
Эр	97•0	37.0	26.0	13.7	7.5	8.2	2.7	49.82	2.53 <u>+0</u> .2	
2p	122.0	36.8	24.4	13.8	6•3	5.7	2.3	54.56	2.58 <u>+</u> 0.2	
N Type	0	J	5	3	4	5	9	4	$\langle N_{\lambda} \rangle^{*}$	$* N_{\gamma} \ge I$

~

Table II

· · ·						
(Burne)	Cross-section (mb)					
туре	Method 1	Method 2				
2-prong Elastic	4.0 <u>+</u> 0.4	3.5 <u>+</u> 0.3				
3-prong Coherent	3.2 <u>+</u> 0.4	3.5 <u>+</u> 0.3				
5-prong Coherent	0.2 <u>+</u> 0.1	0.3 <u>+</u> 0.1				

1488 R. R. R.