$$
\begin{aligned}
& \text { СООБЩЕНИЯ } \\
& \text { ОБЪЕАИНЕННОГО } \\
& \text { ИНСТИТУТА } \\
& \text { ЯАЕРНЫХ } \\
& \text { ИССАЕАОВАНИЙ }
\end{aligned}
$$

АУБНА
G.T.Adylov, F.K.Aliev, W.Gajewski, I.X.Ion, B.A.Kulakov, B.Niczyporuk, T.S.Nigmanov, E.N.Tsyganov, K.Wala , E.Dally , D.Drickey , A.Liberman ,P.Shepard, J.Tompkins

REAL-TIME ON-LINE PROGRAMS
FOR THE $\boldsymbol{\pi}$-e SCATTERING EXPERIMENT USING AN HP 2116 B COMPUTER. II

G.T.Adylov, F.K.Aliev, W.Gajewski, I.X.Ion, B.A.Kulakov, B.Niczyporuk, T.S.Nigmanov, E.N.Tsyganov, K.Wala , E.Dally*, D.Drickey*, A.Liberman*, P.Shepard,* J.Tompkins*

REAL-TIME ON-LINE ;PROGRAMS FOR THE $\boldsymbol{\pi}$-e SCATTERING EXPERIMENT USING AN HP $2116 B$ COMPUTER. II

[^0]```
Адылов Г.Т., Алиев Ф.К., Гаевски В. и др. : E1 - 6908
 Матемалическое обеспечение л-е эксперимента в реальном
```



```
 的
 Часть 2
 Дано описание, программы геометрического и кинематического
восстановления упругих двухлучевых, собыгий в реальном масштабе
времени'экспперимента по̆ п - е рассеянию, выполненного на ЭВМ HP 2116R
```

This paper presents a detailed description of the program TRFIT. The software of the pl-e elastic scattering experiment for the HP 2ll6B computer uses this program. The basic software is described in ref. $/ 1 /$ the experimental setup is presented in ref. ${ }^{2 /}$.

The program TRFIT is written in assembler language and is disk-resident, TRFIT is scheduled by the control program ASR (see ref. ${ }^{1 /}$ ).

The program includes the main program TRFIT and subroutines: BOX ${ }_{1-3}$, TRFIN, PAIR, FITER, DPMLY and RESID. The subroutines BOX ${ }_{1-3}$ decode information by appropriate blocks of spark and proportional chambers. The arrays of spark coordinates ("xy") and of the number of sparks in the chambers ('Nsxy"jare used by the surwedtine TRFIN for track finding in one view ( $x \circ z$ or $\gamma \circ \geq$ ) in each block. The parameters of tracks found have beem calculated by the least-square method using FITER. We use DPMLY for fitting track parameters in double precision words because the maximum available number of modules, 4, is 32768. RESID calculates the residuals for each track in thetisen chamber. The main program initiates the work of the deosdog and track-finding subroutines in all blocks of the chambers. PAIR is called for two- and three-track events in the second block and looks for an intersection (pail vertex) of two tracks in the target, calculates the momenta of secondary particles and analyzes the coplanarity of the event.
a) Subroutine for decoding information from the spark and proportional chambers.

The coordinate of the $i$-th spark in the $i$-th chamber in the orthogonal coordinate system of the given block of the chambers in $x \circ z$ view is expressed by the formula:

$$
x_{i, 1}=x_{i, 1}^{\prime} \cdot D_{i, x}+C_{i, x}
$$

and correspondingly in yoz view:

$$
Y_{i, i}=Y_{i, i}^{\prime} \cdot D_{i, y}+C_{i, y}
$$

where $x^{\prime}$ (or $Y^{\prime}$ ) is the spark coordinate in the coordinate system of the chamber along $o x$ (or or )axis; $D_{X}\left(D_{Y}\right)$ is the normalized signal velocity in the magnetostrictive ribbon. This value is determined by the program FUDUK $/ 1 / . c_{x}$ (or $c_{\gamma}$ ) is the correction constant (compensate for chamber misalignment) of the chamber; $i$ is the index of the chamber number; $i$ is the index of the spark number in the $i$-th chamber; $x$ (or $\gamma$ ) is a new spark coordinate in the orthogonal coordinate system of the given block.

The spark coordinates were used as integer numbers and corresponded to counts of the 20 megacycle oscillator of the readout electronics ("clock" counts).

The spark coordinates of the rotated chambers in the coordinate system of the given block are obtained by transforming:

$$
\begin{aligned}
& X_{i}=X_{i}^{\prime} \cdot D_{I, X} \cdot \cos a+Y_{i}^{\prime} \cdot D_{I, Y} \cdot \sin a+C_{I, X} \\
& Y_{I I}=Y_{i i}^{\prime} \cdot D_{i, X} \cdot \cos a-X_{i}^{\prime} \cdot D_{i, X} \cdot \sin a+C_{I, Y} .
\end{aligned}
$$

where $a$ is the rotation angle of the $i$-th chamber.
For the proportional chambers the numbers of the wires fired are also calculated in the coordinate system of the first block, namely:

$$
x=N \cdot K+c_{X}: \quad Y=N \cdot K+C_{Y} .
$$

where $N$ is the number of a wire fired; $K$ is the coefficient of transformation of the coordinate into the "clock" counts (this value is equal to 11.196 mm ) $c_{X}\left(\quad c_{Y}\right.$, is the diddle constant.

When two adjacent wires fired in the proportional chamber we used an average coordinate value of both wires; in the case of three wires we used the coordinate of the average wire. The cases with four or more wires were not considered.

## b) Track finding algorithm

The track finding algorithm in (xoz or roz) views in one block of the chambers is as follows. Two chambers, called "'magic chambers"' were chosen. A straight line was drawn through two sparks of the two chambers. This straight line was considered as a new one if it had parameters (e.g., slope) different from previously found tracks (slope - 1 mrad , intercept -5 mm ). Sparks in the other planes are found on condition that:

$$
\left|x_{1}-x^{\prime}\right|<\epsilon
$$

where $x_{1}$ is the coordinate of the $l$ th spark in the chamber; $x^{\prime}$ is the coordinate of the straight line projection onto the plane of the chamber; $\epsilon$ is the five standard deviations of coordinate accuracy ( $\pm 3 \mathrm{~mm}$ ).
In each track we required four sparks as the minimum number to define a track. The coordinates of a new track were compared with the coordinates of all previous tracks. If the new track was different from the previous ones by at least one spark in the first $K$ sparks ( $K$ is a constant for each block), the track was considered to be a new one. It could happen that the coordinate of one and the same spark or even the coordinates of $k-1$ sparks are used for two different tracks. Such a procedure is necessary for finding pair events with a small opening angle ( $\approx 2 \mathrm{mrad}$ ). Then the parameters of each new track were calculated by the least-square method: For the slope parameter o we have:

$$
n=\frac{n \sum_{i}^{n} x_{1} z_{i}-\sum_{1}^{n} x_{i} \sum_{i}^{n} z_{i}}{n \sum_{i}^{n} z_{i}^{2}-\left(\sum z_{1}\right)^{2}}
$$

where $n$ is the number of sparks in the track; $x_{i}$ is the spark coordinate in the 1 -th chamber; $z_{1}$ is the position of the 1 -th chamber along the beam. The slope parameter was expressed in units: "clock"'counts $/ 8$ meters ( $\approx 0.03 \mathrm{mrad}$ ).

The intercept $b$ is as follows:

$$
b=\frac{\Sigma x_{i} \cdot \Sigma z_{1}^{2}-\Sigma x_{i} z_{i} \Sigma z_{i}}{n \Sigma z_{i}^{2}-\left(\Sigma z_{i}\right)^{2}}
$$

The quality of the track parameters found was estimated by the $x^{2}$ criterion:

$$
x^{2}=\Sigma\left(-\frac{x_{i}-a \cdot z_{i}-b}{\sigma}\right)^{2}<\eta
$$

where $\eta$ is a limit on the limiting value of,$x^{2}$ and $\sigma$ is the coordinate error of the chambers. The value $x^{2}$ normalized to the number of sparks, was introduced into the histogram of the $x^{2}$ distribution. Figure 1 presents this distribution for tracks in the first block.

In order to continue track finding, a new straight line was drawn through other spark combinations in the chambers. If all sparks of one of the chambers were considered the program uses the next two '"magic' chambers. For each block we used three pairs of the 'magic" chambers. For a more efficient
performance of the program and fast rejection of background events, special conditions - characteristic for each block were required for track finding. The track finding conditions for the first block are as follows:

- it is necessary that the proportional chambers ("x"or " $y$ ") should fire only for one track;
- the track found should project through the liquid hydrogen target;
- only one-track events were considered.

The track finding conditions for the second block are:

- each track in the target must be matched to the track of the first block;
- $K-1$ sparks ( $K=4$ for the second block) of one track can be used by another track;
- track finding was stopped after three matching tracks were found.
The track finding conditions for the third block of the chambers are:
- only those straight lines that are matched to tracks of the second block are drawn through the sparks of the chambers: the coordinate difference of the track projections from the second and third blocks into the center of the magnet in $x o z$ and roz views must be less than 10 mm , and in the Yoz view, more than 3 mrad in slope;
- only one spark can be used by two different tracks;
- only the first three matched tracks were used.


## c) Selection of "pair" events

The momentum $p$ is calculated for each track of the second block that matched a track in the thipd one. The magnetic field is assumed to be homogeneous.

$$
p=\frac{H}{x_{3}^{\prime}-x_{2}^{\prime}+a}
$$

where $H$ is the constant for the analyzing magnet SP-12 at a field of 17 kilogauss; $X_{3}^{\prime}$ and $X_{2}^{\prime}$ are the slope parameters of the track in the third and second blocks respectively; $\alpha$ is the rotation angle of the third block ( 65 mrad ).

Tracks found in block two were tested two at a time to look for a pair vertex. Each combination was tested as a pair and then for kinematic cuts. The events were tested as a pair as follows. The opening angle of secondary particles is determined
in each view. The $z$-vertex of the pair is determined in the view. (xoz or yoz) that has the largest opening angle. The difference between the projections $A_{1}$ from the second block $A_{2}$ from the first block is defined as the $z$-coordinate. The given event satisfies a pair test if the difference between $A_{1}$ and $A_{2}$ satisfies the inequality:

$$
\left|A_{1 X}-A_{2 X}\right|<\epsilon \quad \text { and } \quad\left|A_{1 Y}-A_{2 Y}\right|<\epsilon
$$

$\epsilon$ is the number that depends on the angular accuracy of the chamber blocks.

The distributions of the corresponding coordinates $A_{x}$, $A_{Y}$. and $z$ are presented in Figs. 2,3 and 4. Figure 5 gives the total momentum distribution of events from the selected pairs.

Finally, the combination was tested for coplanarity. The event withstood a coplanarity test if $\cos ^{2} \theta$ between the primary particle and the perpendicular to two secondary tracks satisfied the cut:
$\cos ^{2} \theta=\frac{1}{X_{3}^{\prime 2}+Y_{3}^{\prime 2}+1}\left\{\frac{\left(X_{1}^{\prime} Y_{2}^{\prime}-Y_{1}^{\prime} X_{2}^{\prime}\right)+\left(X_{2}^{\prime} Y_{3}^{\prime}-Y_{2}^{\prime} X_{3}^{\prime}\right)+\left(X_{3}^{\prime} Y_{1}^{\prime}-X_{1}^{\prime} Y_{3}^{\prime}\right)}{\sqrt{\left(Y_{1}^{\prime}-Y_{2}^{\prime}\right)^{2}+\left(X_{2}^{\prime}-X_{1}^{\prime}\right)^{2}+\left(X_{1}^{\prime} Y_{2}^{\prime}-Y_{1}^{\prime} X_{2}^{\prime}\right)^{2}}}\right\}{ }^{2}{ }^{2}$
where $\eta$ is a small value equal to $25 \times 10^{-10}$ rad.; and $Y_{i}^{\prime}$ and $X_{i}^{\prime}$ are the slope parameters of the $i$ tracks in YOZ and XoZ views, respectively.
Figure 6 gives the histogram of the $\cos ^{2} \theta$ distribution.
The transverse momentum was calculated by the formula:

$$
p_{x}=x_{0}^{\prime} \cdot p_{0}-x_{1}^{\prime} \cdot p_{1}-x_{2}^{\prime} \cdot p_{2}
$$

where $x_{0}^{\prime}$ is the slope of the track in the first block; $x_{1}^{\prime}$ and $x_{2}^{\prime}$ are the slopes of the tracks in the second block; $P_{0}$ is the beam momentum ( 50 GeV ); and $P_{1}$ and $P_{2}$ are the momenta of secondary particles.

Thus, the following independent conditions were used to select pair events:

- the total momentum of secondary particles must correspond to that of the incident beam;
- the position of $x, y$ and $z$ vertices must be in the target;
- the event must be coplanar;
- the sum of transverse momenta of primary and secondary particles must be close to zero.

The number of the events satisfying all these conditions was also determined.

1. G.T.Adylov et al. JINR Preprint, El-6907, Dubna, 1973. 2. G.T.Adylov et al. JINR Preprint, El3-6658. Dubna, 1972.

Received by Publishing Department on January 22, 1973.


96s GIIYLNZ do घZgWnn TrLOa
 r
 ${ }_{2}^{2}$

 STOGRAM 000
000
000
000
000
000
000
000
000
090
000
000
090
180
$4 I S$ $\stackrel{\rightharpoonup}{0}$ NUMBF.R NUM

869
saİg+Na do y3awni TVI

 $\stackrel{0}{\infty}$


Fig. 6. Coplanarity.


[^0]:    * University of California, Los Angeles, USA

