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Introduction 

The two-component neutrino theory is more than satisfactory, 

being in the worst case an extremely good approximation of reality. 

Never~heless, it may be worth while to. plan new types of experi--menta which should _check whether neutrinos are _;-~ally what we 

-think the;y: are. 

I shall. discuss a few questions, which by tradition are not 

usually dealt with at High Energy Physics Conferenc~s, in order 

of increasing degree of remoteness. It will be seen that the 

·. questions can be answered, a"j; least in principle, by performing 

experiments which are not too fantastic. 

What is the_;!!~~..£L:.2-!~~!:..E~~? 

Recently a pailer 111 by Gell-Mann, Golberger, Kroll and Low 

has been published in which it was suggested that the "diagonal" 

and "nondiagonal" terms in the weak inte'raction Hamiitonianma;y 

• be of quite a different nature. While the nondiagonal weak pro-
·. . 

ceases are rathe~ well studied, information on the diagonal terms 

is rather scaree. It relates, f~rst, to the .nucleon part of the 

Hamiltonian and was based upon the e:)Cperimental investigation of 

.· .. parity nonconsen:ing effects in nuclear transitions 121; second, 
. -

some information on the ( e )Je. ) ( })~ e., ) . ter~ of the in- . 

teraction Hamiltonian has been obtained from experiments on high 

energy'neutrinos: an upper limit for the effective interaction 

constant G )Je was found : 131 
1. 2 . -5';. '2.. G .( 40 G , where G =10 1 Mp is the Fermi constant. ve.-

J 



Third~ .as was noticed(4 ) more than ten.years ago at. the 

Kiev High Energy Conference, the uqiversal theory prediction that 

there exists first orderY~- e scattering , leads to astrophysical 

consequences, the anSlysis of which allows, in principle, to check. 

the prediction(5); Theoretical investigations ofa~tropbysic~ 
< • ,. ' .I ' ' 

data sb.~w(G) that: G~e. · = 10°±2 G2• Fourth, at the pres~nt 
....., -

time experimental stud~es of the v~ + e -? v~ + e process 

are being perfo;med(?) and planned(B) with the ~elp of powerful 

reac'jiors. The results obtained so -far ( ?f by . Reines and Gurr per-

mit to conclude,that G 2· 2 
~e <. 4 G • 

Here I would like to stress the importance of investigating 

the spectrumof electron recoils from )!e. - e scatterlng. As a 

matter of fact the measurement of such spectrum is not much more .. 

difficult than the very obsery:ill.Qll... of i_;he 'Ve, - e scattering .pro

cess, the information obtained thereby being considerably. ric~ 

In. the p~p~r by Bardin, Bileric~ and Pontecorvo(9) the _i}ll-- e~cat- . 

tering process was investigated under the.most various assumptions 

on the antineutrino-~lectron interaction. The followirig possibi

lities were considered: 

1) The )Je, -e scattering process is due to a four-fermion 

weak interaction (V-A, V(A), S(P) ). 

2) The ij_-. e scattering process is due to.. "~omalous" 

electr~l!l8.gnetic properties of antineutrinos, that is to an 

anomalous electr,omagnetic radius or to a magnetic momentum. 
< - ' ,...., 

The electron recoil spectra in: the process JJe.. + e --t )Je.+e 

were calculated for· the known spectrum<10) of· impinging Ve. from 

an uranium reactor. We have demonstrated that measuring the recoil 
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electron spectrum in v~ - e scattering under practical conditions 

(that is with a reactor) would make it possible to draw important 

conclusions on the character of the diagonal ( e Ve. )( Ve. ~ ) inter

action. The calculated electron recoil spectra with energies in. 

the region from 1 to? MeV are tabulated in ref.(9) for five as

sumptions: V-A, V, S electromagnetic radius, magnetic momentum. 

Here it is_sufficient to note that the recoil electron spect-
• 0 • 

rum in the V-A theory .decreases with increasing energy far more 

rapidly than in the other four-fermion theories (this is due. to 

. the fact; that the Ye.-e scattering at 180° in the .limit m -~ 0 

is_forbidden for the V-A theory): even a rough measurement of the 
0 -' ' 

spectrum of recoil electrons from the -pe- + 'a ~ J)~ + : e process with 

.reactor antineutrinos would allow__to distinguish the V-A interaction 

from the other four-fermion interactions which were considered. 

As far as anomal~us neutrino-electron .electromagnetic inter

actions are concerned, .:,he calculations<9J _p~rlormed ~ain for the 

spectrum of imp~ ).J~ from reactors, show that the electron 

recoil spectrum is essentially softer when \{- e scatteri.ng_ is 

due to an antineutrino magnetic moment than in the ~ase when the 

scattering is due to ~ · elec.tromagnetic r~dius.' The necessity' of 

planning measuremen~s of th~ electron recoil spectrum in the 

}J'e_ + e --;. Ve. +·~·reaction with ){ from uranium reactors is 

· ~-arent. 

New sources of neutrinos 

In all the neutrino experiments which either have peen performed -
or'. are plann~d in high energy . Laboratories, it is assumed that the 

only existing neutrino sources are deceying pions and kaons. Ac-. . --cordinglY- physicists perform high energy neutrino experiments in~ --------- --:: ___.:....... 
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variably giving pions and kaons the chance of decaying in 
~ 

flight. But the question naturally arises: are 

other, unknown, so~ces of neutrinos ? 

·there not 

It seems that in the very high energy region (St~ford, Ser-

pukhov, Batavia) one should plan se.arch experiments which are~ to ·• 
-.,.,.. I 

·detect neutrinos with the help of classical high euergylneutr~o 

detectors, but without allowing pions and kaons to decay in flight •. 
. . : . -·___;.·__ . 

This means that the pr?ton or photon (electron) peam should 

directly fall upon the. shield behind which the neutrino detector 
'--

is placed. 

As an illustration, one could justify such experiments in 

terms of a search for the intermediate. boson or, even better, 

for a heavy lepton, which decaying ''immediately", would pro-

duce the neutrino(s). I understand that such a proposal 

was made also by M.Schwartz. Of course, in such terms the neu

trino intensity will be 1ow indeed~ but it is ~ratifYing that 

in such experiment.s. there should be about as many electron. 

as muon neutrinos (this is a notable difference.from experi

ments with neutrinos from pions). Incidentally, the presumably 

small.neutrino production rate in the p~oposed experiments 

would be partially compensated by a much better neutrino detec

tion efficiency, due to relatively small distances of source to 

detector.· 

However, such experiments have a phenomenol~gical interest 

that is independent of the rational explanations which may be 

· thought !'or them. 

As for the experiment backgrotind, one can say that it. is 

, mainly due to pion and kaons. decaying· in flight "against our ·- .. 
will"; the available length for their decay is obviously the 

typical hadron interaction length (a few em in heavy~ ma

terials). 
6 



1. l 

Is the lepton charge conserved? Is the neutrino 

mass really egual ~o zero? 

The question - are (is) lepton charges (charge) conserved 

exactly ? - is certainly not far-fetched from an elementary 

particle physics point of view. Below I will talk about some 
'----" 

ideas on such a question, which were'developed during the last 

few years mainly in the Soviet Union, but were not discussed. 

previously at high energy physics conferences. 

In all the well-known search experiments for possible ~ 

elations of lepton charge conservation,.one attempts to 
. // 

measure the rate or 
+ ·t-

( say' /A' -7 e t 0 , 
the cross section of a certain process 

VIA- +- p __,. (lft-trt.- • · ·), g one is measu-

ring the square of the amplitude of the searched ~or process. 

A few years ago, before Davis, Harmer and Hoffman first 

attempted to detect solar nimtrinosii with a detector based on 

the reaction Y.e + U 3~ e_- T A 37 
I 2, I pointed outiJ 

·that : 

i) the problem of possible lepton charge violations could 

be investigated at a new level in a very sensitive way'by me

thods of neutrino astronomy 
I 

11) such a problem is of-great importance for the astro

physical interpretation of observations in neutrino astronomy. 

The sensitivity of the proposed method is due t_o the enorm

ous distancep characterizing the solar system and is based on the 

possibility of-measuring the amplitude of a process instead of -a squared amplitude. Let it be said incidentally, it is just 

such a circumst~n.ce which leads to remarkable possibilities in· 

· the investigation of neutral kaons. Lepton nonconservation 
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leads to the possibility of oscillations in vacuum between dif

ferent neutrino states, Because a fraction of neutrino states - ·-----. 
II II • . 

is unobservable ( for ex_amr)l.e, low energy J)~ ) and because 

the oscillations avera~ lepton charge nonconservation 

leads, under ~ome conditions discussed below, to the following 
I . • 

effect : the intensity of solar neutrinos measurable at the 
,. 

earth'ssurface is~ as small as the intensity which would 

be expected under exact lepton charge conservationiJ. But ho\'l ia . 
. --- ' . 

one to estilliatethis'la~t intensity with sufficient accuracy? 

Our knowledge of the sun is not s.ufficienti4 , for the time 

being, to predict the number of (solar) neutrino induced 

events with an accuracy better than a factor of two ( an :.::_ 

ception is the case of events ind,J,l.Q.l3.d. by solar neutrinos gene

rated in _the thermonuclear r'eactions p+p-7 cite.-t-+Ye.
1 

e.-tp+p~d..tJJe.; but these neutrinos, the intensity_of which 

can be estimated to much better accuracy, have low energy 

and are consequently very hard to detect ). Thus, at least for 
~ ----..,. ~ 

the time being, absolute determinations of the solar neutrino 

event intensity at the earth's surface do not allow us to draw an 
-. ' ---- . --

important conclusion on the elementary particle problem at 

~ ·But .this is a question of time. In the future ·neutrino 

astronomy will give us methods of investigating the lepton con- · .Jv 
servation problem which are much more sensitive than the c.J.as-_ 

sical methods of nuclear and elementary particle phyaics.r·am 

going to illustrate this point once more.In the first experiment 

in neutrino astronomy,Davis et al.were not able to detect neu-- ,___... . 

II . trinos and found that the number of neutrino induced events 
-...___.. -
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in the 

twice
1 

31 A3t-
rea.ction lJe.. + U ~ (L- -t- is, at 

as small as is expected theoretica.llyi4• 

least, 

I do not think that the discrepancy is a. real one and that 

· it is due to the effect mentioned above ; . but I would like 

to stress that· the failure to draw a. very important elementary 

particle conclusion from neutrino astronomy is due ~impl~ to 

a. (momentary) insufficient information on the best known 

· star, the Sun. 

The description of transitions in vacuum between the vari

ous neutrino states is in ~~~interesting for particle 
. IJ 

physics. In ref. ·and also in.a.n unpublished paper of Kobza.-
....., ....., 

rev and Okun', possible ·oscUlations Ve.+! lJe. , })~:;:! J)~, 

Ve. iZ ))fl.- have been discussed. As it was pointed out in the 

paper by Gribov and Pontecorvo 15 , the first two types of oscil-,,.::'...

lations should not be consid~~OLif it is required that in 

nature there a.re.only fol:U' neutrino s~a.tes. In ref.I5 there 

are discussed the conditions under which oscillations do take 

place for. this case. 

We shall consider in the zeroth a.pproxi-

ma.tion (V-A theory ) four neutrino states with mass zero, 

which are ~ by two two-component spinors }Je_ and J)/N 
-

In such an approximation ;1t is convenient to think of two 

~xaotly conserved lepton charges (muon and electron charges). 

Lepton nonoO:nSer~ation leads to virtual or real transitions 

between the above mentioned neutrino states. All the possible --
;ra.nsitions may-be described with the help of an interaction 

Lagrangian 

+ Herm. conjug. , -
9 
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wher~ )) '=: ).J ( is the charge conjugated spinor. For the charge . 

conjugated spinors the notation )) 1 ' was adoptedinstead,,of 
:, . ..· ~ 

)) , to e._oid. confusion with ).) 

Below ,for' simplioity,it wil.l. be assumed that 11M -;;
1
1n - 1'11. 

17
_ 

- . • ''E~ f'f«-' e.("' 

are .real values, i.e. CP-invariance is assum_ed. Otherwise, the 

formulae become somewhat more complicate,d and in the ·present 

note. we. shall not give them for the general case~· T~e interaction 

can be easil.y diagonal.ized. The diagonal.· states are 

~I= c<r.sJ ( }Je_ +){')t ~ J ( })~+))~)' ' 

. ~'L = hM. J ( l-!e_+ )Je'J . -wsJ ( JJ,u. +JJ;) 
where 

- 2 'hte,P: • 
ty 2. J - ~ • ., - """~'-F 

.These states correspond to two Majorana neutrinos ( i.e. four 

states when the spin orientation is taken into account ) with 

the masses iM-1. and 1-v\..2_' ·, 

'Wt.,,'l. =±-[1vlee-+1vt..fP:!V(11-te~-'h"r--Fl+4-~~p: J 
( 

(if IV'vlz. (. 0 , the real state with the positive mass -IWL2. is 
I . 

Lf2.- 05 lf2_. ). 
The' two-component spinors ).Je and. 'V~ are no longer 

describing particl.es with zero mass, but mus~ be expressed in 

terms of four- component Majorana spinors V
1 

and ~'L 

~e. =t (I +05-)( r, Co-5 J + t;i ~f) 
.... 

JJrc-:=t ( / +((s-) (If, ~J- f2. Co-Sf) • 

10 . 
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In this oa.se the '(V-A) lepton current, to which weak pro:.. 

. · oesses are due, can be written as usual , 

jt\ = e. o-=~, )Je. + ~ ot\ J.JJ-1- ~ 
The mass difference· between Majorana neutrinos described 

. · · · I I 
by· <f, ·and Cf2. leads to the oscillations })e:~ J)~ J J)e~ j)f'l-

""" ( in _the. usual l!Q.'U.on.s.Ve:~ ~,....). If at the time t=O, one electron 

neutrino is generated, the probability of observing it at the 

time t is· 
'2.. . 2.. 2.. 'l. 1. ' 

I })e.( hI = / ~ (0) I S '*~ -IZ.#t.~p: + 2. ~eF ~ · US 2 4 t]. , (I) 
' L 1vt_ +it *eF tW!._ +'t- 'Wte.F 

, -~ where 

1\N\.. - ::::. !h-i.. - - 1\1\. -
e~Z. ~/-'-

. 1. l. 
11 =-' - ( "Wt, -ll,vL2. )= 2. p . 

and P is the neutrino momentum. 

It should l!,e emphasized that the oscillations take place 

only if 11Ae·l""- and. at least one of the values. *ee and 

"vv':.f-'-./-1- a.re different from: zero. This means physically in 
' ' ~ +y order that oscillations do exist it is required that thefA--~e.t 0 

decay probability ,not be zero and that at least· one of the 

cross sections for the processes, say ).J.e,+'h- ~e.-+ p; 
J)JA- +P -t (A-++ 'YL not be zero. In the absence at': ·oscillations 

there are two fossibilities. If /f;lt\..e.F ==-0 , then J =0
1 

·and th,ere exist two Majorana neutrinos (_without oscillations ). 

it is natural 

. to attribute an opposite sign of the lepton charge ( only one I). 
--------._ ,._ I -:- .I'----. 

11 
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to charged ·leptons; of equal electrical charge ( say, e and 

(1.--) I
6 ~nd .to consider ( ins.tead .of ,the degenerate· states~· 

I . . . , 
and Cf'L =Ys-lft. with the mass ;n= "hte..F-) ·the states with a de-

finit~ lepton·charge \{J=J{+Vi:" ~ lf1= Ye.I+J)fl- . ( this is ~he 
fc1;1r-compo~ent neutrino theory with parity nonconservation7 ). 

If IJ'Vle.'fl. and one. of the values 1'Ylee1 'Vvi.~'F are different 

from zero, i.e. if oscill,ations take place, a very attractive 

case arises when 'lnee J 'INI.,_.._F ~< IVvleF • In such a case · 

r,~ w ( <f+t'J., 
12_ ~ w ( t-lf'). (2) 

j ..... J[ 
- 'f- I. 

<-J 

I/ Do:-> /(D ana the oscillations are entirely similar to the Y\ +-' .. oscil-

lations, ~. and r'L being analogous to K~ and I< t . Accor.;. 

ding t'o (I) the 'oscillation amplitude '· in this case is the 
~- . 

largest possible one. The two ~ spin states, ~left and~right' 

are approximately the same as the observable "phenomenological" 
~ ·. 

i ,..._! I """"-' 

particles Ye and ))f' . ( or }.J. . ) ; similarly )J leftc:!' )J /""' 
,....J ''"'-/ ~ 

and. }J right-lJe.= lJe. • A very simpl.e picture of neutrino 

oscillations, similar to the Kci;J i{o oscillations,arises also 

if l\!\lleiZ: and 11A
1
,.,;p.. are ·no longer small in comparison with 'Wle..p: 

but are equal ( 'WLe_e .::.11A./"-Fl 
1 

in other words, if there is a {'--:..e. 
symm_ etry. In such a case ~ =.li.. and relations (2) are exact-. 

j f- . . 
In•ref.IJ and also,in an unpublished work of Kobzarev and 

Okun'., ther~ was discussed mainly the possibility that the neutri- . 

no oscillations are due to the so-called milliweak interaction 

which, in addition to PC, would violate lep~on charge conserva-
~ 

tion as well. 

12 



The oscillations might be also induced by a (first order) 

~~interaction which changes the lepton charge by two 
18 . 19 
~ • This interaction reminds us of the Wolfenstein super-

weak interactions, changing the strangeness by two units and 

might })e closely related to it. At-tempts to speculate about 

possible values· of the oscillation length 1/~ may be found 

in ref.IJ and also in ref. 20• But unfortunately nothing can 

be really said about the rnass values l);vt"e 1 ~W *e.fi- and 

about the oscillation length j/Ll , even if they were con-

nected with a definite "etiquette " (milliweak, superweak ), 

as the out-off energy is unknown~/ 
Returning now to neutrino astrophysics, we are going to 

consider only the simple oases wherethe oscillations are si-
. 0 

milar to the oscillations in the K meson beams, let us 

say when !Wtee;= I}YI..~j:i-. In such a case ·the intensity of obser

vable neutrinos of momentum P at a distance R from their -
source is simply 

(3) 

where 1:0 is the intensitl which would be observable for 

lepton conservation ( more exactly, for the case when 

~Q: 1'Vt.f.iZ """:' 0 ). I have already spoken of the main effect 

WhiO~ WOUld arise from _Values Of m~e, me../'"·/ 0 t 'namely Of 

( the decrease (due to averaged out oscillations) by a factor of 

two in the eXpected intensity of neutrino induced events. -~~ 

x/ Information on the oscillation 'length '.and hence' Qn 
the mass values m., can be obtained only by detechng 
solar neutrinos. -

lJ 



·, 

meranchukmentioned the possibility of detecting time varia-- -- ·. 
tions of the, solar neutrino intensity at the earth's surl~ce 

. which are connected with the time variati.on A R. of. th~ Sun

Earth distance. This proposa.J, can hardl;y be. put to work b'e;.. 
.' •' 

cause the relative.variation in the Sun-Earth distance is small 
. . . -·-

u~.rR../ft' ~ o, D 4-) and, consequentl;y, a neutrino detector with .. 
' . 

fantastic energy resolution and an extremely accurate intensi-
. ~· ty measurement would be required. As was mentioned in re,f. , 

----- r • • 

the use of a detector of-monoenergetic neutrinos could, in 

principle, result in discrepancies of·the'measurable·intensity 

·I from the calculated one :Co even larger than,a factor·of 

two. In the paper of Bahcall and Frautschi20 there was discussed 

the possibility of detecting the solar neutrino ~efrom the 

reactionet-p+p _, a.,+ve 
1 

the main point being that· in such 

a case the calculation of · To. is reliabl-e, and real discrepan-
...--...____. . . ' '-----:-----· 

~ith the '':bsolutely measured~ might be noticed. 

But under which conditions is possible an observation, 
4 ·-· -------., 

.based on relative measurements1 of the actual oscillating .term 

of eq. (J) ? It is clear that oscillations do not take place when 

1W1.,. - I}'IA _ = 0 and that the oscillating term is not 
ee., e~ . . . . 

~when ~e /IIVI..e.p: is so large (. i.e. when the oscil-

lation length p/1-nee:'W\eF for a neutrino o:£. ~ re~evan~ momen

tum is so small ) that the neutrino source ( i.e. the solar, re

gion which is effectively emitting neutrinos) is no longer a point. -----
sourc'e. Somewhere between these limits· one may attempt;· in 

principle, to observe the oscillations ; for IWLee!VY\.e~ values· 

11 ~mall" (I/I0~1 ), it is an ~~to·de-

14 
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teet 11 soft 11 solar neutrinos and for'Yv\,ee~eF- values "uncomfor

tably high/" (I/Io ~t )', it is an advantage to detect "hard 11 

neutrinos. · 

. Here I would like to mention a new ( true, quite remote) 

· possibility of observing relative effects connected with the os

cillating term: the measuring of the solar neutrino spectrum-in 

the ~igh energy region,with the help of an electronic method of 

~elativ~ly good energy resolution.It can be shown. that for fa

vourable nt.ee:mefivalues the change due to oscillations in the 

spectrum of observable high energy neutrinos with respect to 
6 

the known /3 spectrum might be noticed. An electronic detector 

suitable for solar neutrino astronomy does. not ~-now, but ,as 

.suggested by Pontecorvo and Zatsepin2~ could. be built in the 

future; on the basis of .recent d~velopments of liquid counters. 

What are the desirabie ·properties of such a· detector? 

I). It must be able to detect efficiently electrons from 

Ve.-e. scattering or electrons from inverse. ~ decay with 

an energy of ·rv I MeV. 

2). The weight of the sensitive part of the detector must 

at least be ·. about IO tons. 

J). The detector must give information on the direction · 

of the detected neutrinos. 

4). It must give some information about the spectrum of 

the electrons generated by neutrinos. 

5.). The d'eteotor must distinguish, to a sufficient extent, 

electrons generated by--neutrinos from bao,kground alec-

trons. 

15 
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.. 6) The detector shpuld be of the type "always ready", 

without film information. 

It seems that these requirements could be satisfied to a 

considerable degree by a large liquid chamber, designed on the 

basis of the Dolgoshein counters22 , liquid co~ters about 

which many of you will hear in a few days, at the Interna~ 

tional Instrumentation Conference in Dubna. _!ncidental~ .. 

a large liquid chamber ~ould be also a good detector for· 

reactor antineutrinos. 

Under.the assumption that there exist o~lyfour indepe~ 

dent neutrino states, I would like now to precise the state-
- -

ment that solar neutrino observations .are much more sensitive -than other methods for the investigation of the question as to 

whether the (averageJ neutrino mass is finite and the lepton 

charge is violated. We may express the sensitivity· of a given 

method ( measurement of th~ H3 {~ spectrum, double-beta decay, 

solar neutrinos •••• ) in terms of the (average) neutrino mass 

or in terms of the order of magnitude of the upper.limit for 

such mass which the method is capable of establishing. Accord---~to formula 1 in solar neutrino observations one can detect 

absolute or relative effects due to oscillations if, say, 

1\'\1\,e~ +'WLI'-F AI ('W\. - -!WI, -)1. +'f-1vi.~F 
f 'V ~e ~~ . 

.{l~i 
or, 

making the assumption simplifying, (but not essential in any 

way), of j-'t -e symmetry, if 

4- 'VVl~ €: 11-t.e. F ~ ~ 1 • 

For solar neutrinos with energy rv 10 MeV, for example, os- . 

16 



cillation effects will be observable if 

-1'L i. 
io (eV) . 1'\.1. - "llVL - > . ee. e./ ............ 

It may be useful to recall that -the two Majorana neutrinos ).J, and )..Jt 
the masses ~ and m

2 
of 

are given in our case, by: 
) 

m4. :::. tW\. e. e: + '\I1A.. ~ F- , -tvt 2. =- I '1Nt ~ e: - IJNL e. F I, 
and that the mass of the "phenomenologicaln particles l.Je. and V,.u. 

.·is ~efined as 1/2 (m1 + m2). It is seen that the sensitivity of the. 
f 

solar neutrino methods is better by seven orders of magnitude than 

· the sensi ti vi ty of the classical method of investigating the H3 · /~ 
spectrum, capable of giving an upper limit for the )Je_ mass of 
about 10 eV. 

It is taken for granted that the only interaction which neutri

nos undergo is the classical weak interac'tion. Nevertheless, the ques-

tion can be put .as to whether the neutrino may undergo additional in-" 
·teractions. Thework of Bardin, Bilenky and Pontecorvo23 is conc~rned 
with a possible interaction between neutrinos. Of course, there is 

an interaction between neutrinos arising in the second order of the 

usual weak interaction, but here we shall consider a new.(hypotheti

cal) V V .·interaction. To our surprise, it turned out that even a 
relatively strong lJ iF interaction is not in contradiction with 

·existing data. We suggest then new experiments which might give in-

formation on the V ~ interaction~ After our work was completed 

we found out that in a 1964 paper of Z.Bialynicka-Birula24 the ques-~ 

tion·of·au interaction between neutrinos was· discussed and that some· 

conclusions ·and proposals similar t'o our own were· made. 

In the presence of nonweak ~V interactions there will appear 

·.many phenomena ainong which· v1e · shall consider i) some new types of 

decays (see, for example, Fig. 1a), ii) some new types of 
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neutrino-induced processes at high energies 

]C.~ ( K.+> 

tt. f 

c 
Fig. I 

(see, for example, Fig.Ib), iii) neutrino. "form factors" 

(seeFig.Io). 
,, " 

In addition to the usual weak'·decays with emission of 

leptons, a }) )J interaction clearly impli~s decays with the 
-v 

emission of an additional V V pair. At first the processes 

ret---) e +-+))e.+))~+ lJe ) 1-(+ -7 e ++ })€.. + l-{ t D'e 
were considered in detail; for the sake of definitemess, an 

effective Hamiltonian describing the lJe.. Ve., interaction 

of the form Hv(.lJe_ = fvll-ve. ( ))~ Qc~, Ve.)( Ve. ;r.x Ve.) 
was selected. Naturally, the electron spectrum ~ these decays 

+.s expressed through the constant F)Je. Ve and other known oon

stants ( the weak interaction constant G.: io-?11.~ , the it'-decay 

18 



·constant lfrri=D192.'WI.T\ or the K-decay constant/fK/=0,2.51'VL.rr , 

. the electron mass and the pion or kaon mass ). Thus, in order 

.t9 ob~ain an upper limit for th~ ~onstant F).).IZ.vlt is necessary 

to investigate the positron spectrum in the rr+ and K+ de

cays. One may find the maximum number of positrons from the 
+ ......., + + ....J 'l'"rt"~ €., + Ve+}.).e. +)}e. and K ~e.. +))e. t}J.e..+)Je. 

decays, with energy within a suitable energy interval, by 
·. + + ' 25 

analysing the background in experiml!nts where the 1T ~e., + Ye 

and K+--7 e.f + }.)~ 26 decays were studied. From an analysis 
. . . ~ 

of pion and kaon decays one gets correspondingly F. ~ I 0 G 
6 )).IZ.))e., 

and ~e.}Je.. .( 2.10~· These are surprisingly large v~uesj 
a further search for the (K.+)~e-rrlJ.~Z.flJe+JJe. decay J 

aimed to decrease the above F, )) · upper limit1 is possible· as 
there is plenty v~ e + + . . ....J 

of room for improvement. Observing the processK~ft-+J),.,;t}Jf"'.,-)Jr-

with the aim of getting information on F)JI"')Jt'- is an 

even more difficult task, on account of the large _background 
.. . ... ·+ ·t- . ·+- : 
~ue to the processK~j-A--+J)f"-+0( the decays7(4e.,t.Y.e.+d" 

+ t . 
and K ~e+ )Je + 0 are strongly suppressed for the same reason 

that . the dec~s rr+~ e++- )J~ ana K+~ e.++ Y~ 
are suppressed ). 

Other decay pr~cesses such as decays of the nucleons, the 

hyperons and the muons are less interesting from the point of 

view of searching for a relatively strong Ve. lJe or ).)r- JJ~ 

interaction. In. conclusion let us remark that in the lepton 

·conserving double beta-decay, a V..?. })e., interaction would 

imply an additional (new type ) diagram. 
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Obviously decays with the. emission of two addi~ional neu

trinos are stron~y suppressed by phase space• Therefore, very 

h~gh energy neutrino experiments suggest themselves ; if ~here 

exists a strong )}~~~interaction, and we stress that the 

interaction might be quite different from the~~~tinteraction, 

take place: 
I 

the processes of. the following type will 

l.J IJv + 'h..- -----) fC + p + JJ ~"-' + jJ~ 
)) J-t-+ p --0) fA_++ '}'L, .+ J) /"-+ )J ~ 

(4) 

etc. Processes similar to reaction (4) are the most interesting 

ones from the experimental point of view: 1ri high energy events 

produced in VIA- beams there will appear ,muons of "wrong" sign 

charge. These processes, simulating lepton charge yiolation, 

can be revealed ·especially well when there are no charged pions· 

Table I 

Cross section for the reaction).)~+ p -7 jA-t+~Vt.-+ JJr--+ )J}A-

. ;::~:-::rgy ----- rrj( M ~ F )"i:--~- (}&c./< H~ pf--
in the lab, system -4-o ). ( . ;_t.ro ) 

(GeV) ( 10 -~ .10 ~'L _________ ___._;,.. ______ _ 
0.5 5.9 X I0-6 

I I.4 X I0-4 

2. I.I X IO-J 

J. J.2 x Io-3 

5 g.o x Io-3 

IO 2~7 x ro:-2 

20 6.o x ro-2 

50 r.5 x ro-1 

6.7 X I0-6 
I.9 x ro-4 
2.2 x ro-J 

. 7.7 X !0-J 
J.o x ro-2 

I.5 x 10-I 
6.I x ro-I 
J.S 

-------------------------
In the second column the cross section <r is given for the case 
where the\)JA-).Jrv interaction is mediated by a vector partie~ with 

the mass .')1\'\.x =.I GeV ( Interaction Hamiltonian H=(...Vlf 1\v..xV~V X--q. 
In the third column the cross section Ci~ is given for 
a local V~ interaction with the effective constant F. 
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i. 

in the final state, We ch.oose for the calculation of the process 

(4) cross section a model in which theVtv~~ interaction is me-

. dia.ted by a. v.ector particle of mass '~"Ax ( Inte~aotion Ha.m:l.l-

,. tonian H=L'V'2.FPi<-t'r- ~Wvx )J~~ Yr.-Xol). 
_It should be noted that such a. model was chosen only a.s a. way 

·of introducing the· c6rre spending })/"' ·).Jrv form factor. As for 

the_nuoleon form factors, .. we used thoee which fit experimentB;J

ela.stic neutrino events27• In table I the cross sections for in

coming neutrino energies in the interval of 0.5 - 50 GeV are 
I . ~ ~ 

given in terms ol the dim~nsionless parameter ( Mp Jf>,...))t'-). 
for ~X = I GeV. For comparison Table I gives also cross 

sections for local ))fA"').)(\- ·interaction. Our_ calculation, in 

· which the CERN. neutrino spectrum was taken into account, permits us 

to obtain a.n ~pper limit of Tf;~-'-j)l"'- from CERN data. on possible 
. I • 6G 

lepton charge nonoonserva.tion28 • ~1 J) ~ 2.. i 0 ., 
• I" t- /"-

It should oe noted, however, that the energy dependence of the 

cross sect~on and consequently the upper ~:i.mit of FJJf-))f- de

pends essentially up9n the model of )Jf- ))fA- interaction ( a.t 

high energies in our model a-' tv [yo-: and in the model of local . 
' 2 : ' <.WITt 

intera.ctionf"-' £)Jeo.t ). · · 

It may be concluded that in experiments a.t· high energies 

of -the type suggested. here lt would be possible to observe 

. the manifestation of a. ).)1-"-)Jf- interaction of sufficient strength, 

Experimenta.ldiffioulties connected with the contamination 
~ 
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"'-' 

of VI-'- in the ))/"'-·beam (at present amountinl8 to ~ io-2) 

will decrease when experiments with essentiallymonoencrgetic 

neutrinos will be feasible. 

It is clear that relatively strong))~ ).)IL and J)f- ))/"'

interactions imply a modification of the neutrinO:.lepton scatter ... 

ing amplitude. If a· relattvely strong Ve.. ))~ interaction also 

exists, in principle, there might become possible the scattering 

of ))~· s by electrons with a cross. section larger than the 

usua129 cross section for ).)/-'---e. scattering ( iLg.Io)~ 
Other manifestations of the).JJ~..j)~ interaction could be 

found in processes simulating muon charge violation of the 
- -../ 

type )J ~ + 'VI. ~ e +- p + ).J /-'-+ )..Je- • 

Clearl~ at high energies Table I refers also to this 

Process· :from CERU dataJO on possible muon charge nonconserva-
' 6 tion we obtain G, ,, <. 1·0 C • This upper limit is lower than 

~"-~f.-- ' 
the one we can deduce by a consideration of the electron spec-

,.:..~;,""'::~ ~ . •'. 

truro in f-t-decay. 

Keeping in mind future experiments which are apt to reve

al a))Il.. ).);-unteraction,we would lik~ to suggest al;o the reaction 

\)/""-+ p---) e..+t-n + ).J(L. +-}.)fA for which we might expect a very small ' 
~ 

background connected with contamination of ).{ •s in )J~beams. 

In conclusion we wish to make the following remarks : 

i) a relatively strong interac~ion between neutrinos 

would imply cut~off rGlues for purely leptonic processes much 

smaller than the so-called unitary cut-off, 

ii) the interaction between neutrinos discussed above, 
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if it exists, should have important astrophysical and. cosmolo

gical consequences, 

iii) the )J)) interaction is the only strong inte

raction· of neutrinos. which is not excluded by experiment: strong 

interactions· of neutrinos with nadrons and charged leptons 

are already excluded by existing data. 

In conclusion I wish to express my deep gratitude to 

D. Bardin, .S.Bile~, V .Gribov, I.Kobzarev. and L.Okunt 1 

together with whom the work presented above was performed •. 

.( 
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