ОБЪЕДИНЕННЫЙ
ИНСТИТУТ яДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

S.I.Bilenkaya, J.Bystricky, Z.Janout, Yu.M.Kazarinov, F.Lehar, A.Pázman

N-N SCATTERING PHASE-SHIFT ANALYSIS

AT ENERGIES NEAR 20 MeV WITH
A NEW METHOD OF PHASE - SHIFT SETS TESTING

1968

S.I.Bilenkaya, J.Bystrick \boldsymbol{y}^{\prime}, Z.Janout, Yu.M.Kazarinov, F.Lehar, A.Pázman

N-N SCATTERING PHASE-SHIFT ANALYSIS AT ENERGIES NEAR 20 MeV WITH A NEW METHOD OF PHASE - SHIFT SETS TESTING

Submitted to Czechoslovak Journal of Physics

1. Introduction

Recently, the $N-N$ elastic scattering data at energies near 20 MeV was considerably increased. The accurate data (accuracy about 0.001) of polarization in $p-p$ scattering/ $1 /$, the spin correlation coefficient $C_{n q}^{p p} / 2 /$, polarization and spin-correlation in the $n-p$ scattering/3/ and of the total $n-p$ cross section/4/ at energies about 20 MeV were measured.

It is interesting to note, that the Slobodrian's data measured in Berkeley/ $5 /$ does not coincide with the highly accurate data of Saclay/ $1 /$.

In the present paper the results of phase-shift analysis, performed, while taking into account the new data, are discussed. One of our aims is to show, which $p-p$ polarization data agrees best with the whole set of the $\mathrm{N}-\mathrm{N}$ experimental data.

A new method for the discrimination of the obtained phaseshifts sets previously published in ref. $6 /$ was performed. The description of the principles and the performance of this method (the
so called r -criterion) for the concrete case of phase-shift analysis is given.

2. Experimental Data

The experimental quantities used in phase-shift analysis are given in Table 1. From the whole number of 84 points there are 40 points measured in $\mathrm{p}-\mathrm{p}$ scattering and 44 points in $\mathrm{n}-\mathrm{p}$ scattering. All the experimental data is given in Table 2.

The phase-shift analysis was performed at the effective energy of 23.1 MeV . Therefore it was necessary to transform the known data of effective cross section of $p-p$ and $n-p$ scattering to this energy. Since the total cross section at 23.1 MeV is unknown, we made the normalization of the $p-p$ cross section data in the following way. The data of $\sigma_{p p}$ at 90° in the energy region 9.7-44 MeV (see Tab. 3) was approximated by the function

$$
\begin{equation*}
f\left(E, 90^{\circ}\right)=a_{0}+\frac{a_{1}}{E}+\frac{a_{2}}{E^{2}}, \tag{1}
\end{equation*}
$$

where E is the energy in $10^{-2} \mathrm{MeV}$. The values of the coefficients:

$$
a_{0}=-1.185 \pm 0.196 \quad, \quad a_{1}=4.572 \quad \pm 0.088 \quad \text { and } \quad a_{2}=0.097 \pm 0.008
$$

were obtained by using the least squares method.
The obtained dependence of $f\left(E, 90^{\circ}\right)$ on energy is shown in fig. .2.

For the normalization of $\sigma_{p p}$ data, measured at 25.63 MeV to the effective 23.1 MeV , we need the ratio of the calculated values

$$
\begin{equation*}
-\frac{f\left(23.1 \mathrm{MeV}, 90^{\circ}\right)}{\mathrm{f}\left(25.63 \mathrm{MeV}, 90^{\circ}\right)}=1.126 . \tag{2}
\end{equation*}
$$

All the data of $\sigma_{p p}$ at 25.63 MeV was multiplied by this value. The data of $n-p$ effective cross section at $22.5 \mathrm{MeV} / 7,8 /$ and $27.5 \mathrm{MeV} / 8 /$ was normalized, so that the total cross section $\sigma \underset{\operatorname{tot}}{\mathrm{np}}$ is equal to $(397.2 \pm 1.7) \mathrm{mb} / 4 /$.

For this purpose the following functional has been minimized by the linearisation method /9/

$$
\begin{equation*}
x^{2}=\operatorname{Min}\left[\sum_{k} \sum_{1}\left(\frac{\sigma_{1}^{k}-N_{k} f}{\Delta_{1}^{k}}\right)^{2}+\left(\frac{\sigma_{t o t}-2 \pi_{0}^{\pi} \int_{f \sin \nu d \nu}^{\Delta_{t o t}}}{)^{2}}\right]\right. \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
f=i(\cos \nu)=a_{0}+a_{2} \cos ^{2} \nu . \tag{4}
\end{equation*}
$$

The index ${ }^{i}$ denotes the number of experimental points, $k(k=1,2,3)$ is the experiment number and a_{0}, a_{2}, N_{k} are the variable coefficients, for which we obtained the following values:

$$
\begin{array}{ll}
a_{0}=30.89 \pm 0.34 & N_{1}=1.065 \pm 0.015 \\
a_{2}=2.14 \pm 0.94 & N_{2}=1.048 \pm 0.020 \\
& N_{8}=0.865 \pm 0.014
\end{array}
$$

The experimental data σ_{np}, measured by Flynn at $22.5 \mathrm{MeV} / \mathrm{7} /$, by Scanton et al. (at 22.5 MeV and 27.5)/8/ was divided by $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3}, respectively.

The phase-shift analyses were performed at $\ell_{\max }=2$ and $\ell_{\max }=3$ according to the programme described in refol $10 /$. The phase-shifts in the states with $\ell>\ell_{\max } \quad$ were taken into account by one pion exchange approximation.

The data of $P_{D D}$, measured in Saclay/ $1 /$ was included also into the phase-shift analysis at 18.2 MeV , together with the previously known data/ 11,12/. To this data the total $n-p$ cross section $v_{\text {Lot }}^{\text {np }}=493.3 \pm 2.4 \quad \mathrm{mb}$ measured at $19.565 \mathrm{MeV} / 4 /$ and the last data of $C_{n n}$ and $A_{a s}$ measured in Saclay/ 2/ were added.

3. Phase-Shift Analysis

The experimental data at 23.1 MeV is described by two different sets of phase-shifts with approximately equal values of χ^{2}. The first set corresponds to solution 1 of ref./ 13/, the second set corresponds to the solution C, of Arndt and Mac-Gregor/14/. Only 11 coeffeicients ($\ell_{\max }=2, \ell^{2}$ - fixed) are sufficient for the good description of experimental points. These can be seen from the values of χ^{2} / \bar{x}^{2}, which are equal to 0.95 and 0.88 for the first and second sets, respectively. Both sets of phase-shifts are given in Table 4. From this table it follows that both the solutions differ, mainly in the wave ${ }^{8} \mathrm{~S}_{1}$ and the other phase-shifts coincide within their errors. At
$\ell_{\max }=2$ the x^{2} - value is lower for the second set than for the first one.

It is interesting that for $\ell_{\max }=3$ we get for the first set a lower x^{2} - value than for the second one, as it is shown in Table 5. The coupling constant f^{2} was fixed and taken equal to 0.08.

Varying the coupling constant f^{2}, the x^{2}-value for the second set remains approximately the same. On the contrary the x^{2}-value for the first set considerably decreases (see Table 6). The calculated values of f^{2} at 23.1 MeV in both solutions differ from the value of 0.08, measured in $\pi-N$ scattering.

By specifying the three previously known sets of phase-shifts at $18.2 \mathrm{MeV} / 11,12 /$ the results given in Table 7 were obtained. From this table it follows that the x^{2}-value for the first and the second sets remained nearly the same (15.75 and 15.78 , respectively,) but for the third set the x^{2} - value considerably increased (up to 26.91).

The question of the unambiguity of the phase-shift analysis at both energies was discussed on the basis of the criterion/6/, described in the next section. Here, the principles of the new criterion are generally discussed.

4. Discrimination Criterion

We are speaking about an ambiguous phase-shift analysis if obtaining several relative maxima of the likelihood function with nearly equal amplitude (approximately equal x^{2}-values). For rejecting
a false set of phase-shifts, various methods of mathematical statistics were used, mainly the x^{2}-test. However this test is not sufficiently powerful, as has been shown previously (see ref. 15,16/.) This means that the $x^{2}-$ test needs a superfluous amount of experiments for rejecting a false phase-shift set. It seems reasonable to base the test on the difference Δ of the x^{2}-values, i.e. on the logarithm of the likelihood ratiol $17,6 /$ (the ratio of the relative maxima of the likelihood function). Such a test is described in ref. $16 /$ but calculation of the Type I error seems to be rather complicated and gives only a rough upper estimate of the Type I error.

In the present paper the r-criterion, described in detail in ref. $/ 6 /$, is used. This criterion is a modification of the likelihood ratio test, which is more effective than the one described in/ $16 /$. Comparison of these two criteria on a certain example will be des cribed further.

Let us characterize the main features of the T-criterion for testing phase shift sets. We denote by y_{1}, \ldots, y_{n} the experimental data (as effective errors section, polarization etc.) , $\eta_{1}(\vec{\theta}), \ldots \eta_{n}(\vec{\theta})$ the respective calculated values for the phase-shifts, $\vec{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$, $\sigma_{1}, \ldots \sigma_{n}$ the experimental errors, $\hat{\vec{\theta}}$ and $\vec{\Phi}$ two discussed phase-shift sets. This means that for the vectors $\hat{\vec{\theta}}$ and $\hat{\Phi}$ the relative minima of

$$
\begin{equation*}
x^{2}(\vec{\theta})=\sum_{i=1}^{n} \frac{1}{\sigma_{1}^{2}}\left[y_{1}-\eta_{i}(\vec{\theta})\right]^{2} \tag{5}
\end{equation*}
$$

are reached. Let us suppose that $\chi^{2}(\overrightarrow{\vec{\theta}})>\chi^{2}(\vec{\Phi})$

For the correctness of the x^{2}-criterion, of the criterion defcribed in ref. $16 /$ and of the r-criterion, the following quasilinearity assumption is. necessary. In the neighbourhoods of $\hat{\vec{\theta}}$ and $\hat{\vec{\Phi}}$ given by the respective ellipsoides of concentration, the non linear functions $\eta_{1}(\vec{\theta}),(i=1, ., n)$ can be approximated by:

$$
\begin{align*}
& \eta_{1}(\vec{\theta})=\sum_{k=1}^{m} F_{i k}\left(\theta_{k}-\hat{\theta}_{k}\right)+\eta_{i}(\hat{\vec{\theta}}) \\
& \eta_{i}(\vec{\theta})=\sum_{k=1}^{m} G_{i k}\left(\theta_{k}-\hat{\Phi}_{k}\right)+\eta_{i}(\hat{\dot{\Phi}}) \tag{6}\\
& i=1, \ldots, n
\end{align*}
$$

in the neighbourhood of $\hat{\vec{\theta}}$ and $\hat{\boldsymbol{\Phi}}$, respectively. Here

$$
\begin{align*}
& F_{i k}=\left.\frac{\partial \eta_{1}(\vec{\theta})}{\partial \theta_{\mathbf{k}}}\right|_{\vec{\theta}}=\hat{\vec{\theta}} \\
& \left.G_{\mathbf{k}}=\frac{\partial \eta_{1}(\vec{\theta})}{\partial \theta_{\mathbf{k}}} \right\rvert\, \vec{\theta}=\hat{\mathbf{\Phi}} \tag{7}
\end{align*}
$$

Besides these actual sets $\hat{\vec{\theta}}$ and $\hat{\vec{\Phi}}$ an auxiliary set $\hat{\vec{\Phi}}_{\hat{\theta}}$ is used. This is the set for which the minimum

$$
\begin{equation*}
\operatorname{Min}_{\vec{\theta}} \sum_{k=1}^{\mathrm{n}} \frac{1}{\sigma_{i}^{2}}\left[\eta_{i}(\hat{\theta})-\eta_{1}(\hat{\Phi})-\sum_{k=1}^{m} G_{i k}\left(\theta_{k}-\hat{\Phi}_{k}\right)\right]^{2} \tag{8}
\end{equation*}
$$

is obtained.
The - test is based on the following quantity /6/

$$
\begin{equation*}
r=\frac{\sum_{i=1}^{n} \frac{1}{\sigma_{1}^{2}}\left[y_{i}-\eta_{i}(\hat{\vec{\theta}})\right] x_{i}}{\left[\sum_{i=1}^{n} \frac{x_{1}^{2}}{\sigma_{1}^{2}}-\sum_{i=1}^{m}\left(\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} F_{i k}\right) D_{k \mathcal{L}}\left(\sum_{j=1}^{n} \frac{x_{j}}{\sigma_{j}^{2}} F_{j \ell}\right)\right]^{1 / 2}}, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{i}=\eta_{i}(\hat{\Phi} \hat{\theta})-\eta_{i}(\hat{\vec{\theta}}) \tag{10}
\end{equation*}
$$

and $D_{k \ell}(k, R=1, \ldots m)$ are the elements of the matrix of errors which correspond to the set $\hat{\vec{\theta}}$. In ref/ $6 /$ the following basic result is proved. The probability

$$
\begin{equation*}
P\{r>k\}=\frac{1}{\sqrt{2 \pi}} \int_{k}^{\infty} e^{-\frac{x^{2}}{2}} d x \tag{11}
\end{equation*}
$$

under the hypothesis \mathcal{H}_{θ} that $\vec{\theta}$ is the true solution (precisely that the true value of $\vec{\theta}$. is in the neiahbourhood of $\hat{\boldsymbol{\theta}}$).

The integral in (11) is a well known normal distribution function taloulated in detail, e.g. in ref./ 18/.

We emphasize that $\hat{\vec{\theta}}$ is the set with the larger χ^{2}-value. That is why instead of (11) we have to use the inequality

$$
\begin{equation*}
P\left\{r>k \quad \text { and } \quad x_{\hat{\theta}}^{2}>x_{\hat{\Phi}}^{2}\right\} \leq a \tag{12}
\end{equation*}
$$

unter the hypothesis \mathcal{H}_{θ}.
Formula (12) follows from (11) and from the fact that for arbitrary events A and B the relation $P(A$ and $B) \leq P(A)$ is valid.

It can be shown, that for large values of k the probabilities in (11) and (12) differ only slightly.

The decision procedure is as follows. We can choose an available value of the Type I error a, and compute the respective value of k from the equation:

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{k}^{\infty} e^{-\frac{x^{2}}{2}} d x=a \tag{13}
\end{equation*}
$$

If the computed value of r, is larger than $k, \hat{\theta}$ is to be reiected, i.e. Φ can be accepted. The probability that this decision is talse (Iype 1 error) is equal to a. It r is smaller than k, it is necessary to continue the experiments. The probability that this second decision is false, that is: $\hat{\mathbf{\Phi}}$ is true and we are making unnecessary suplementary experiments, is the Type Il error. Evidently the Type II error defines the power (the efficiency) of the test, and it is sufficient to know it only approximately. It is shown in/6/ that asymptotically (for a large number of experiments) the Type Il error is minimal, i.e. the proposed test is asymptotically optimal, which is not true for the x^{2}-test.

For the calculation of the value r the existing programme of the phaseshift analysis with a small additional part was used/10/. The block-scheme of this addition is given in fig. 2 .

It is interesting to compare the time which is necessary for the calculation of the valuer with that for the value $\Delta / 16 /$.

For example, if we have 25 parameters and 153 experimental points, we need about 10 hours on a computer of $\mathrm{M}-20$ type for the calculation of Δ, while for the calculation of I under the same conditions only about 7 minutes are necessary. These calculations were made for two sets of the phase-shift analysis at $400 \mathrm{MeV} / 19 /$ in order to compare the properties of x^{2}, Δ and r-criteria.

The results are as follows:
criterion:
χ^{2}
α (see formula (12)): 52.8\%
0.59%
0.02%

It can be seen, that according to the χ^{2}-criterion no solution is to be preferred, while using the r-criterion, we can reject cre of the solutions with a negligible small Type I error. This error is much smaller then the estimation of the Type I error obtained using the Δ-criterion.

5. Results

On the basis of the r - criterion an attempt was made to r ject one of the existing solutions at 23.1 MeV . It appeared that for $\ell_{\max }=2$ it is possible to reject the "worse" set (with the higher \dot{x}^{2}-value) only with a probability of Type I error $a=1,05 \%$. This seems to be rather a great probability and therefore discrimination of the two solutions needs additional experiments.

With the help of the two sets of phase-shifts the angular dependences; of experimental quantities were calculated. The most interesting of them are plotted in figs. 3, 4. From the graphs it can be seen that the discrimination of the two sets will be possible only after measurements of $n-p$ triple scattering parameters. The measurementrs af $D_{n p}$ and R_{t} seem to be most efficient.

The experimental data of the $p-p$ polarization together with the calculated curve are shown in fig. $3 a_{\text {, (}}$ (the curves for both the sets coincide). The Berkeley data/5/ is the cause of the increase of the x^{2}-value up to 72.72 and 71.58 for the first and second sets for $\ell_{\max }=3$, respectively. This fact gives evidence, that the data in
question does not coincide with the other measurements. . $_{\text {. }}$)
At energy 18.2 MeV the second and third sets of phase-shifts were compared with the first one separately. The third set has the probability of Type I error equal to 2.11%. The same probability for the second set is equal to 77.4%. Both these probabilities are too high for rejecting the corresponding solutions and so need a continuation of experiments. As in the case discussed above, the triple scattering parameters could also give the possibility to discriminate the three remaining sets at energy 18.2 MeV .

Also at this energy the $P_{p p}$ Berkeley data has not been described with any of the obtained sets of phase-shifts. (The x^{2}-value increases up to 52.5 for the first and second sets and up to 48.1 for the third set.)

Acknowledgement

The authors express their deep gratitude to P. Catillon and M.H. MacGregor for useful discussions and for sending us his results before their publication and to E. Dudova for help in our work.

[^0]
References

1. P. Catillon, J.Sura, A.Tarras. Phys. Rev. Letts, 20, 602 (1968). 2. P.Catillon, M.Chapellier, D.Garreta. Nucl. Phys., B2, 93 (1967). 3. J.E.Simmons. Rev. Mod. Phy:s., 39542 (1967).
2. D.E. Groce, B.D. Sowerby, J.M. Morris. Phys. Letts., 17, 40 (1965).
3. R.J.Slobodrian, J.S.C.McKee, H.Bichsel, W.F.Tivol, Phys. Rev. Letts., 19, 704 (1967).
4. A.Pázman. JINR Preprint E5- 3775 Dubna (1968).
5. E.R.Flynn, P.J.Bendt. Phys. Revo, 128, 1268 (1962).
B. J.P.Scanion, G.H.Stafford, J.J.Thresher, P.H.Bowen, Nucl. Phys., 41, 401 (1963).
6. С.Н. Соколов, И.Н. Силин, Препринт оияи Д-810, Дубна (1861).
7. Ю.М. Казаринов, И.Н. Силин。 ЖЭТФ, 43, 692 (1962).
8. Yu.M.Kazarinov, F.Lehar, Z.Janout. Rev. Mod. Phys., 39, 571 (1967).
9. Z.Janout, Yu.M.Kazarinov, F.Lehar, I.Ulehla. Czech. J. Phys., B1.8, 18 (1968).
13.С.И. Биленькая, Ю.М. Казаринов, Ф. Легар, З. Яноут. Я.Ф. 4. 892 (1966).
10. RoA.Arndt, M. HoMacGregor. Phys. Rev., 1541549 (196?).
11. A.A. Tyapkin. JINR Preprint E-2353, Dubna (1965).
12. Ю.М. Казаринов, В.С. Киселев, А.М. Розанова, И.Н. Силнн. Препринт оияи Р1-3268, Дубна (1967).
13. E.L.Lehman. Testing Statistical Hypotheses J. Wiley, New York.
14. D.B.Owen. Handbook of Statistical tables. Addison - Wesley Publishing Conf. Inc Palo Alto, London.
15. Z.Janout Yu.M.Kazarinov, F.Lehar, A.M.Rozanova. JINR Preprint E1-3707, Dubna (1968).
16. T.H.Jeong, L.H.Johnston, D.E. Young, C.N. Waddell. Phys. Revo, 118, 1080 (1960).
17. P.Christmas, A.E.Taylor. Nucl. Phys., 41388 (1963).
18. A.Ashmore, B.W.Davies, M.Devine, S.J.Hoey, J.Litt, M.E.Shepherd, R.C.Hanna, L.P.Robertson. Nucl. Phys., 73, 256 (1965).
19. R.B.Perkins, J.E. Simmons, Phys. Rev. 130, 272 (1963).
20. J.J.Malanify, P.J. Bendt, T.R.Roberts, J.E.Simmons, Phys. Rev. Letts.g 17. 481 (1966).
21. R.B. Perkins, J.E. Simmons. Comp. Reud. Du Congr. Intern. de Phys. Nucl., Paris 1964, p.5.
22. O.N.Jarvis, B.Rose. Phys. Letts., 15, 271 (1965).
23. Р. Вилсон. Нуклон-нуклонные взаимоденствия. Изд. "Мир" Mocirba (1965).
24. B. Cork, W.Hartsongh. Phys. Rev., 94, 1300 (1954).
25. J.L. Yntema, M. G.White. Phys. Rev., 95,1226 (1954).
26. C.J.Batty, R.S.Gilmore, G.H.Stafford. Nucl. Phys. 51,225 (1964).
27. L.H.Johnston, Y.S.Tsai. Phys. Rev. 115, 1293 (1959).
28. L.H.Johnston, D.A.Swenson, Phys. Rev.,111, 212 (1958).

> Received by Publishing Department on May 30, 1968 .

The Experimental Data Used in Phase-Shift Analysis at 23.1 MeV .

heasured quantity	$\begin{aligned} & \text { Energy } \\ & \text { [wev] } \end{aligned}$	Angular Kange comos.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Points } \end{aligned}$	$\Delta x_{1}^{2 *)}$	$\Delta \chi_{\text {II }}{ }^{\text {* }}$)	Authors	Refs.
$\sigma_{p p}$	25.63**)	$10^{\circ}-91^{\circ}$	23	9.236	9.342	Jeong et al.	[-u]
${ }^{\text {pp }}$	20.2	$34^{\circ}-90^{\circ}$	8	0.857	0.799	Catillon	[1]
	27.4***	45°	1	0.034	0.045	Christmas	[2 I]
$A^{\text {pp }}$	27.6	$23^{\circ}-55^{\circ}$	3	1.676	1.760	Ashmore	[22]
$R_{p p}$	27.6	$23^{\circ}-55^{\circ}$	3	4.133	4.045	Ashmore	[22]
${ }_{\mathrm{c}}^{\mathrm{pp}}$	23.45	90°	1	0.160	0.053	Catillon	[2]
${ }_{\text {A }}^{\text {Ps }}$ P	23.45	90°	1	0.014	0.007	Catillon	[2]
$\sigma_{n p}$	$22.5{ }^{+1}$	$65^{\circ}-175^{\circ}$	12	9.187	7.253	Flynn	[7]
	$22.5{ }^{+1}$	$7^{\circ}-51^{\circ}$	6	7.163	9.389	Scanion	[8]
	27.5*)	$7^{0}-72^{\circ}$	ε^{++1}	2.224	1.312	Scanlon	[8]
6_{t}^{np}	23.951		1	0.318	0.427	Groce	[4]
$P_{n p}$	23.1	$50^{\circ}-150^{\circ}$	6	2.048	2.122	Perkins	[23]
	23.1	140°	1	0.053	0.030	Ualanify	[24]
	23.1	$70^{\circ}-150^{\circ}$	3	0.141	0.071	Simmons	[3]
$D_{\text {np }}$	23.1	$70^{\circ}-110^{\circ}$	3	1.638	3.498	Perkins	[25]
$c_{n n}^{n p}$	23.1	$140^{\circ}, 174^{\circ}$	2	0.211	0.259	Malanify	[24]
	23.1	$130^{\circ}, 150^{\circ}$	2	0.649	0.119	Simmons	[3]

*) The contributions to x^{2} for the $1-$ st and $2-$ nd sets (f^{2}-fixed, $\left.\mathbb{R}_{\operatorname{tax}} \mathrm{E}^{3}\right)$.
**) Corrected according to the ratio of the cross sections at 90° (see fig. 1)
***) This value should be multiplied by a factor of 0.89 according to O.N.Jarvis and B.Rose (see ref. 26/).
+) All data were normalized according to the total cross section (ref./4/)
++ The values at angles $159^{\circ}, 166^{\circ}$ and 173° were not included in the phase-shift analysis.

Table 2

The Experimental Data Used in Phase-Shift Analysis for pp-and np-Scattering at Energy 23.1 MeV .

Quantity	$\frac{\text { mergy }}{[\mathrm{MeV}]}$	$\underset{\operatorname{com} \cdot v_{0}}{\nu_{0}}$	vieasured value	Statistical error \pm	Kefs.
$\begin{gathered} \sigma_{\mathrm{pp}} \\ {[\mathrm{mb} / \mathrm{sc}]} \end{gathered}$	25.63	10.07	109.6	1.8*)	[20]
		12.08	56.31	2.1	
		14.09	33.20	0.6	
		16.11	23.76	0.5	
		18.12	19.90	0.5	
		19.13	18.70	0.5	
		20.13	17.98	0.5	
		22.15	17.33	0.5	
		24.16	17.09	0.5	
		25.16	17.16	0.5	
		26.17	17.17	0.5	
		28.18	17.30	0.5	
		30.19	17.43	0.5	
		32.21	17.68	0.5	
		34.22	17.80	0.5	
		36.23	17.93	0.5	
		40.25	18.20	0.5	
		44.27	18.33	0.5	
		50.30	18.52	0.5	
		60.34	18.56	0.5	
		70.37	18.65	0.5	
		80.38	18.60	0.5	
		90.39	28.59	0.5	
P_{PD}	27.4	45.0	0.0031	0.0046	$[<2]^{\text {(4) }}$

*) The relative errors in percent are given. The errors must be multiplied by a factor of 1.5 (see ref/ $27 /$).
\%) This value should be multiplied by a factor of 0.89 according to O.N. Jarvis and B. Rose (see ref. $26 /$).

Table 2
Continuation

Quantity	$\begin{aligned} & \text { Energy } \\ & {[\mathrm{MeV}]} \end{aligned}$	${\underset{c o s}{v_{0}^{0}}}^{2}$	Measured value	Statistical error +	Refs.
$P_{p p}$	20.2	34.6	-0.0024	0.0030	[1]
		42.6	-0.0002	0.0012	
		46.0	0.0000	0.0016	
		49.6	0.0008	0.0016	
		60.0	0.0013	0.0010	
		65.6	0.0003	0.0016	
		66.0	0.0000	0.0020	
		90.0	-0.0001	0.0006	
$A_{\text {pp }}$	27.6	23.2	0.012	0.030	[22]
		39.0	0.037	0.025	
		54.6	0.090	0.022	
R_{pp}	27.6	23.2	-0.324	0.063	[22]
		39.0	-0.187	0.030	
		54.6	-0.243	0.026	
$C_{n n}^{p p}$	23.45	90.0	-0.791	0.019	[2]
$\mathrm{A}_{\mathrm{sp}}^{\mathrm{pp}}$	23.45	90.0	-0.945	0.022	[2]
$\begin{gathered} \sigma_{\mathrm{np}} \\ {[\mathrm{mb} / \mathrm{sr}]} \end{gathered}$	22.5	175	35.9	12.0 *)	$[7]^{* *)}$
		165	34.3	7.5	
		155	34.0	5.7	
		145	37.0	4.7	
		135	35.6	4.3	
		125	34.7	4.0	
		215	32.4	4.0	
		105	32.2	3.8	
		95	33.2	3.7	
		85	32.7	3.7	

*)
The errors of relative measurements in percent are given.
\%) The differential cross section was normalized to the total cross section 425 mb for 22.5 MeV , assuming the capture cross seation to be negligible. (Neutron cross section - see Report BNL 325 (1958).)

Quentity	Energy [MeV]	$\begin{gathered} V^{00} \\ c m_{0} e_{0} \end{gathered}$	Measured value	Statistical error \pm	Refs.
$\begin{gathered} \sigma_{\mathrm{np}} \\ {[\mathrm{mb} / \mathrm{ar}]} \end{gathered}$	22.5	75	32.8	4.5	[7]
		65	33.3	$5 \cdot 7$	
		7	32.8	3.6*)	[8]
		1.4	32.6	4.7	
		21	35.6	5.1	
		31	34.4	3.3	
		41	32.8	4.1	
		51	35.5	3.0	
σ_{np}	27.5	7	28.5	$3.7{ }^{*}$	[8]
		1.4	28.5	4.7	
[$\mathrm{mb} / \mathrm{sr}$]		21	29.6	5.2	
		31	28.3	3.5	
		41	27.5	4.3	
		51	27.3	3.2	
		62	26.5	4.6	
		72	27.0	3.6	
		159	25.3	3.2	
		166	26.8	2.8	
		173	29.9	3.1	
$\begin{gathered} 6_{\mathrm{t}}^{\mathrm{np}} \\ {[\mathrm{mb}]} \end{gathered}$	23.951		397.2	1.7 [mb]	[4]
$P_{n p}$	23.1	50	0.0492	0.0140	[23]
		70	0.0529	0.0100	
		90	0.0522	0.0071	
		110	0.0310	0.007	
		130	0.0247	0.0090	
		150	-0.0036	0.0090	
$P_{n p}$	23.1	140	0.011	0.006	[24]

*)
Only the statistical errors in percent are given. The systamatical and nomalization errors are about 3% (see ref. $/ 27 /$ p. 258).

Table 2
Continuation

Quantity	Energy [MeV]	$V_{\operatorname{comos}}^{V^{0}}$	Measured value	Statistical error \pm	Refs.
$P_{n p}$	23.1	70	0.0587	0.0081	[3]
		90	0.0513	0.0065	
		150	0.0059	0.0102	
$D_{n p}$	$23.1 *)$	70	0.56	0.20	[25]
		90	0.81	0.17	
		110	0.81	0.20	
$c_{n n}^{n p}$	23.1	140	0.074	0.024	[24]
		174	. -0.014	0.011	
$c_{\text {nn }}^{n p}$	23.1	130	0.131	0.042	[3]
		150	0.052	0.021	

*) This data was taken from the graph (see ref. $3 /$).

Table 3
Experimental Data of $\sigma_{p p}$ at the Angle 90° comos.

Energy				
$[$ MeV]	$\sigma_{\mathrm{pp}} \pm \Delta \sigma_{\mathrm{pp}}$	Authors	Refs.	
9.73	56.11	0.23	Cork et al.	$[28]$
18.2	27.32	0.38	Yntema et al.	$[29]$
21.95	21.13	0.11	Batty et al.	$[30]$
25.62	18.30	0.09	Batty et al.	$[30]$
25.63	18.59	$0.14^{*)}$	Jeong et al.	$[20]$
28.2	16.27	0.21	Johnston et al.	$[31]$
30.33	15.01	0.08	Batty et al.	$[30]$
31.1	14.68	0.15	Johnston et al.	$[31]$
34.2	13.36	0.13	Johnston et al.	$[31]$
34.27	12.82	0.06	Batty et al.	$[30]$
36.9	12.14	0.12	Johnston et al.	$[31]$
39.4	11.16	0.08	Johnston et al.	$[32]$
39.6	11.19	0.11	Johnston et al.	$[31]$
40.75	10.54	0.05	Batty et al.	$[30]$
44.7	9.51	0.11	Johnston et al.	$[31]$

[^1]The N-N Scattering Phase Shifts in Degress (the Stapp Panametrization) for $\ell_{\max }=2$ at 23.1 MeV .

	1-st set	2-nd set
f^{2}	0.08 fix.	0.08 fix
Phase Shifte	$\delta \pm \Delta \delta$	$\delta \pm \Delta \delta$
${ }^{1} S_{0}$	50.430 .20	50.410 .20
${ }^{3} \mathrm{~S}_{2}$	104.841 .15	$74.82 \quad 2.34$
${ }^{3} \mathbf{P}_{0}$	7.210 .40	$7.57 \quad 0.43$
$1_{P_{1}}$	-1.59 0.91	-1.84 2.26
${ }^{3} \mathrm{P}_{1}$	-3.94 0.20	-3.89 0.20
${ }^{3} p_{2}$	$2.58 \quad 0.07$	$2.48 \quad 0.07$
ε_{1}	$-0.810 .83$	-0.46 2.07
${ }^{3} 1$	2.072 .14	-3.38 4.73
${ }^{1}{ }_{2}$	$0.80 \quad 0.03$	$0.80 \quad 0.03$
${ }^{3} \mathrm{D}_{2}$	-3.85 1.34	0.402 .93
${ }^{3} \mathrm{D}_{3}$	0.561 .05	-0.25 2.15
x^{2}	68.80	63.43
$x^{2} / \overline{x^{2}}$	0.95	0.88

The NN Scattering Phase Shifts in Degrees (the Stapp Parametrization) for $\ell_{\max }=3$ at 23.1 MeV .

Table 6
The N-N Scattering Phase Shifts in Degrees
(the Stapp Parametrization) for $\left(\ell_{\text {max }} \neq 3\right.$ at 23.1 MeV . The Coupling Constant f^{2} Is Taken as a Variable Parameter.

	1-st set		2- nd set	
f^{2}	0.450 ± 0.107		0.202 ± 0.107	
Phase Shifts	$\delta \pm \Delta \delta$		$\delta \pm \Delta \delta$	
${ }^{1} S_{0}$	50.33	0.22	$50.38 \quad 0.25$	
${ }^{3} S_{1}$	105.63	1.30	$75.55 \quad 1.30$	
${ }^{3}{ }_{0}$	6.87	0.52	$6.52 \quad 0.60$	
I_{1}	1.92	1.10	-0.80 1.32	
${ }^{3} \mathbf{P}_{1}$	-3.63	0.45	-4.17 0.44	
${ }^{3} \mathbf{P}_{2}$	2.60	0.21	$2.00 \quad 0.34$	
ε_{1}	-0.40	0.96	-0.81 1.09	
${ }^{3} \mathrm{D}_{1}$	-4.41	1.84	-2.16 3.28	
${ }^{1}{ }_{2}$	1.07	0.09	$0.98 \quad 0.07$	
$3 \mathrm{D}_{2}$	2.14	1.99	2.842 .49	
$3_{D_{3}}$	-1.52	0.59	0.111 .37	
ε_{2}	-1.59	0.32	-1.18 0.23	
$3^{F_{2}}$	0.43	0.19	0.040 .26	
${ }_{1}{ }_{5}$	-1.78	0.51	-0.92 0.65	
${ }^{3} \mathrm{~F}_{3}$	-0.59	0.42	0.450 .62	
${ }^{3} F_{4}$	0.08	0.10	0.060 .10	
x^{2}	32.32		39.69	
x^{2} / x^{2}			0.59	

Table 7
The $\mathrm{N}-\mathrm{N}$ Scattering Phase Shifts in Degrees (the Stapp Parametrization) for $\left(\ell_{\max }=2\right.$ at 18.2 MeV .

	1 - st set	2 - nd set	$3-\mathrm{rdset}$
f^{2}	0.08 fix.	0.08 fix.	0.00 fix.
Phase Shifts	$\delta \pm \Delta \delta$	$\delta \pm \Delta \delta$	$\delta \pm \Delta \delta$
${ }^{S_{0}}$	52.410 .20	52.390 .28	51.650 .33
3_{S}	$107.70 \quad 4.49$	70.787 .43	-72.90 2.18
${ }^{3} \mathrm{P}$	6.220 .86	$6.40 \quad 0.93$	-7.99 0.65
$1_{1_{1}}$	-7.09 2.84	-8.68 17.28	-4.98 5.54
${ }^{3} \mathrm{P}_{1}$	-3.17 0.50	-3.16 0.49	5.530 .64
$3^{p_{2}}$	$2.54 \quad 0.30$	2.280 .30	1.600 .18
ε_{1}	$2.11 \quad 4.87$	2.9719 .70	-0.25 8.18
${ }^{3} \mathrm{D}_{1}$	3.319 .54	-5.78 27.98	3.106 .67
$\mathrm{I}_{\mathrm{D}_{2}}$	0.58 0.06	$0.58 \quad 0.06$	0.180 .05
${ }^{3} \mathrm{D}_{2}$	-0.70 8.19	1.3937 .53	-0.79 5.43
$3_{D_{3}}$	$2.32 \quad 3.73$	-2.83 5.64	2.052 .86
4	15.75	15.78	26.91
$\gamma^{2} / \sqrt{\gamma^{2}}$	0.48	0.48	0.02

Fig. 1. The calculated dependence of the p-p elastic scattering effective cross - section $f\left(E, 90^{\circ}\right)$ on energy. The experimental points are given in Table 3.

Fig. 2. The block scheme of the additional standard programme for the r - criterion test.
${ }^{k}$ This evaluation is made inside the arithmetical part of the programme of the phase - shift analysis if only one (the initial) step of the minimization is realized.

Fig.3. Curves 1 and 2 are the angular dependences of the experi--mental quantities calculated for the 1-st and 2-nd solutions at 23.1 MeV , respectively. The dashed curves denote the corridors of errors. The experimenral points are denote by the following way:
a) $\quad \$$ - data from ref. $/ 1 /$
b) $\quad 5$ - data from ref. 23/
d) $\quad 1$ - data from ref. $/ 3 /$

Fig. 4. Curves 1 and 2 are the angular dependence of the experjmental quantities calculated for the 1-st and 2 - nd solutions at 23.1 MeV , respectively. The dashed curves denote the corridors of errors. The experimental points of $D_{n p}$ are the

[^0]: x The contribution of the Saclay $p_{p p}$ data to the x^{2}-value is equal to 0.091 and 0.86 and that of the Berkeley is equal to 33.84 and 31.88 for the first and second sets respectively.

[^1]: *) The value of the error is corrected according to the note of Wilson (see ref. $27 /$).

