```
A-99
ОБЪЕДИНЕННЫЙ
    ИНСТИТУТ
    ЯДЕРНЫХ
    ИССЛЕДОВАНИЙ
Дубна
    Phys.let,, 1967,v.2V/B,N3,
```

M.A. Azimov, A.M. Baldin, A.S. Belousov*, J. Hladk $f^{* *}$, L.I. Zhuravleva, G.A. Ososkov, J. Manca***, A.T. Matyushin, V.T. Matyushin, R. Firkowski****, M.N. Khachaturyan, M.S. Khvastunov, I.V. Chuvilo, L.N. Shtarkov*

OBSERVATION OF THE ($e^{+} e^{-}$) • DECAY MODES OF NEUTRAL VECTOR MESONS

Submitted to $Я \Phi$
Phys.Let.

[^0]
Introduction

The importance of the experimental determination of the pirtial widths of the $V \rightarrow e^{+} e^{-}$decays(1) af vector mesons has been stressed sovoral times $|1-5|$. These decay probabilities are related to the important problems of strong and electromagnetic interactions. However, despite some attempts to experimentally determine $e^{+} e^{-}$decay rates $/ 6-10 /$ we have only the evaluations of the upper limits of these probabilities.

The difficulty to observe the above decays is riue to the fac:t that they are very rare (at least of the onder of magnitude of 10^{-4} of the basic decay mode). This circumstance malkes it necessary to s. whte the effect from thre large number of imitating processes amoris viction pion production is of importance.

In our exporiment in order to separate $e^{+}{ }^{-}$- decays a now mefford has been used of jointly operating spark chanbers and Curnkow vin-ma-spectrometers $/ 11,14 /$. The advantages of this methorl ait: li follow:

1) A possibility to measure both the angles of particle smorgence and their energies, and, hence, to calculate the effective mass of the resonance.
2) Higk apparatis sensitivity to particles of the shower origin (pirstons and electrons).
3) A possibility to simaltaneously datect the promessos 1 , , .
 alfras to mafely monsume rolatiore daciry mata.

The measmemont of the procesens $\left.1 \rightarrow \pi^{\prime \prime}\right\rangle \quad i=$ of : pecial intorost and besides allows to safely determma quatitatively tha rolitive probat. bilities of electron decays of vector mesons. Strictly apuivimi, tho malter is that in our experinents the differential croses soction of tworooses:

$$
\pi^{-}+\eta^{+}+e^{-}+n
$$

 using the value of this cross section the experinental diata are monesary

but also on its density matrix. Unfortunately, the available data are not complete. The measurement of the process $\mathrm{V} \rightarrow \pi^{0} \gamma$ simultaneously with the process $V \rightarrow e^{+}{ }_{e}$ eliminates this difficulty since the angular distributions of these processes coincide to an accuracy of 10^{-6} (see Appendix I).

This note reports on the first run as a result of which $e^{+} e^{-}$pair production cross sections have been measured in the reactions

$$
\begin{align*}
& n+\omega \rightarrow n+e^{+}+e^{-} \tag{2x}\\
& \pi^{-}+p \rightarrow \quad n+\rho \rightarrow n+e^{+}+e^{-} \tag{2b}\\
& n+\phi \rightarrow n+e^{+}+e^{-} \tag{2c}
\end{align*}
$$

and on the evaluation of the relative lecay rates of the lepton decays of vector pirticliss. Data on the study of $v \rightarrow \pi^{0} \gamma$ process are under treatment and will be published later.

2. Description of Experimental Apparatus

Vector mesons were produced by $4.0 \mathrm{GeV} / \mathrm{c}$ pions $\left(\Delta_{p} / \mathrm{p}= \pm 1.5 \%\right)$ in a liquid hydrogen target 50 cm long in reaction (2). In order to separate lepton recays use was made of a two-channel system of jointly operating spark chambers and Cerenkov total absorption samma-spectrometers.

For each event this system makes it possible to measure three parameters: the energios F_{1} und H_{2} of electrons produced as a result of the voctor pirticle decay and the opening angle (0) between them. The knowledse of the above three parameters allows to calculate the effective mitss of the event $/ 14 /$.

A schenatic view of the experimental seometry and apparatus is shown in Fig. 1. Scintillation counters s_{1} and s_{2} serve to monitor the incident particle beam. Sparic chambers in each of two identical chan-
nels are a system of four modules of the $50 \times 50 \mathrm{~cm}^{2}$ fiducial area each and a 10 cm discharge gap. For conversion of particles of the shower origin brass plates of the total thickness of $1.2(0.4 \times 3)$ rad. units are placed in front of the second and subsequent chambers.

In order to increase the triggering efficiency of the spark chamber system the counters s_{3} and $s_{4} 50 \times 50 \mathrm{~cm}^{2}$ large and 2 cm thick are put between the counters and the Cerenkov gamma-spectrometers.

Lead glass of high transparency $50 \times 50 \times 30 \mathrm{~cm}^{3}$ and $50 \times 50 \times 20 \mathrm{~cm}^{3}$ large, respectively, is used as radiator material in Cerenkov gamma-spectrometers. In order to collect Cerenkov light use is made of nine photomultipliers having a 17 cm photocathode dlameter.

The system of spark chambers is triggered by the $S_{1} S_{2} S_{8} S_{4} C_{1} C_{a}$ coincidences if

$$
\text { 1) } E_{1}>E_{1}^{0} \text {; 2) } E_{2}>E_{2}^{0} \quad \text {; 3) } E \equiv E_{1}+E_{2}>E^{0} .
$$

From the kinematic analysis of the process the account of the energy resolution of y-spectrometers in our experiment the trtreshold values have been found : $E_{1}^{0}=E_{2}^{0}=0,5 \mathrm{GeV}$ and $\mathrm{E}^{0}=3 \mathrm{GeV}$. The optinal experimental arrangement is found from the kinematic analysis of reactions (2) and corresponds to geometry when the direction of electron emergence at a minimum angle is near the detector axes. In this geometry the device is most sensitive to peripheral interactions when the momentum transferred to the nucleon is small. The optimal geometry and the curve of efficiency dependence upon the values of the momentum transfer have been calculated by using the electronic computer. The analysis of energy spectra of decay electrons from processes (2) in the optimal geometry shows that within solid angles viewed by detectors, electron energy spectra in each channel have the maximum at $E_{1^{2}}=E_{2} \simeq \frac{\mathrm{~F}_{\pi^{-}}}{2}$, where $\mathrm{F}_{\pi^{-}}^{-}$is the energy of the incident particle. It is evident that another condition also holds; namely, the energy sum $\mathrm{E}_{1}+\mathrm{F}_{2}$ equals the energy of the incident pion to an accuracy of the nucleon momentum transfer. The above conditions allow to use in measurements the logic system for selecting events of interest and thus, to considerably reduce the background.

3. Calibration

Cortawn gamma-spectrometers were calibrated with an fiectron beat in tif ancrar wnge from 1.5 to 4 GeV. Spectrometers operate linearly in this fnersy range th. energy resolution beins about $\pm 5-7 \%$. For effective mass calibration of the apparatus on $\eta \rightarrow \gamma \gamma$ and $\omega \rightarrow \pi^{0} \gamma$ decays wero used which had been obtainex: simultaneously in the same ciperi sent.

4. Experimental Procedure

The totat humber of negative pions passed through a liquid hydrogen torda: during the runs was about 3.10^{9}. We took 20000 pictures of the sparis chambers. From these pictures 46 were selected having a single, and onlv single, track of the charged particle in the 1-st and 2-nd chanrels.

There is pronounced peak with a centre at the energy equal to that of incident pions and the halfwidth at the halfmaximum of about 0.3 GeV in tho $\mathrm{F}_{1}+\mathrm{Fi}_{2}$ energy distribution for 46 events. This agrees with the energy resolution of the gamma-spectrometers calculated from the resolvine power of the Cerenkov spectrometer used. Hence, in the experimental corditions, the decays of meson produced in peripheral π interactions were mainly detected. Only events of the total energy (4 ± 0.4) GeV (25 everits) were included in the final list of (e^{+}e) events, which corresponls to the interval of two standard deviations.

The distribution for 25 candidates on the opening angle $\theta_{1,2}$ (Fig. 3) has its maximum at the minimum angle for two-particle decays of ρ and $\quad{ }^{\prime}-$ mesions at $4 \mathrm{GeV}: \theta \min =2 \mathrm{arc} \sin (\mathrm{m} / \mathrm{E})$. This shows that the apparatus detected, mainly, ρ - and ω - mesons. The events at angles smaller than 20° are due to the gamma-gamma conversion in the lipuid hudrosen target and spark chamber walls. The quantitative evaluations of tho conversion will be given below. Here we note that events latime the omoning, ancle larger than 20° (θ min $=22^{\circ}$ for ρ-and
ω-mesons) should be included in the final list of events, if selection by two standard deviations is used for the accuracy of determining the angle in the experiment.

The distribution for 25 candidates on the effective mass

$$
\begin{equation*}
M\left(e^{+} e^{-}\right)=\sqrt{2 E_{1} \cdot F_{2}\left(1-\cos \theta\left(e^{+} e^{7}\right)\right.} \tag{3}
\end{equation*}
$$

is shown in Fig. 4a. It shows, the same as the opening angle distribution, events having ρ and ω masses and the admixture of events having masses in the interval from 450 to 650 MeV .

The distribution for events selected from 25 was plotted in Fig. 4b using the above criteria: $\mathrm{F}(\mathrm{V})=(4.0 \pm 0.4) \mathrm{GeV}$, the opening angle $\theta\left(e^{+} e^{\prime}\right)=20^{\circ}$. Thus, 19 events were selected. Naturally, the peak in the ω and ρ-meson interval in this Fig. 4b is seen much better. One event in the 1100 MeV mass interval can be identified as the $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ decay. Solid curves in Figs. 3 and 4 are theoretical distribulions calculated by the Monte-Carlo method for the $\omega \rightarrow e^{+} e^{-}$decays. In the calculation use was made of the values of the mass $M(\omega)=783 \mathrm{MeV}$ and the width $\Gamma(\omega)=0$ and the dependence of the differential cross section of ω-meson production from t (the square of the four-momentum transfer) approximated by the expression $/ 21$:

$$
\begin{equation*}
\mathrm{d} \sigma / \mathrm{dt}=\exp (4 \mathrm{t}) \tag{4}
\end{equation*}
$$

The kinematical selection for the $\mathrm{V} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$events is shown in Fig. 5. Each event from 25 is shown in this figure by a point at the plane where along the ordinate axes there is the energy ratio for two decay particles, $\mathrm{E}_{\mathrm{e}_{1}} / \mathrm{F}_{\mathrm{e}_{2}}$, whereas along the absciss there is an opening angle. Curves 2 and 3 are theoretical ones calculated for the $\rho \rightarrow e^{+} e^{-}$ and $\omega \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$decays at $4 \mathrm{GeV} \pi^{-}$- meson energy. Curves 1 and 4 are boundaries for the position of curves 2 and 3 corresponding to two standard deviations from the energy and angle resolutions of the apparatus. As is seen from the Fig. 5, in the interval tivo standard deviations wide there are 1.3 events which were identified as ρ - and w -
mrson decays into the ($\mathrm{e}^{+} \mathrm{e}^{-}$) pairs. One event vas identified as the $\phi \rightarrow .^{+}-$decay. The events strictly identified as ($e^{+} e^{-}$) decays of $\rho-$, (") - ard 0 - mesons are shaded in Figs. 2-4. As possible back ground sources the following processes were considered:

1. Simulation of $e^{+} e^{-}$evorts by $\pi \pi$-pairs. A special run was carrised out in omer to clarily possible $\pi \pi$-pair contribution. The obtained data show that the probability of electron simulation by the pion, unlor tho condition that they have an equal momentum, does not exceed $\pi .10^{-4}$, inonco, for the overall system this probability is not larger than 2.5.1"。
\therefore The reactions of $e^{+} e^{-}$-paur production in $\pi^{-} p$-interactions avoidim: resonance states in the $\mathrm{O}^{+} \mathrm{e}^{-}$svstem (including Dalitz pairs,
 pondix III, the contribution of these pairs is negligibly small, if $e^{+} e^{-}-$ pairs havins the effective mass in is 0.5 GeV are detected.
2. Conversion due to danma-gamma events in the spark-chamber walls and in the tarset. In order to determine the values of the conversion backoround the exporimental data on gamm-gamma events obtained simultancously with the data on $e^{+} e^{-}$-events were used. Gamma-gamma events were selected according the oriteria analogous to that which were employed in selecting $\mathrm{e}^{+} \mathrm{e}^{-}$-events. The evaluations show that the value of the conversion bacisground in the mass interval from 4.50 in 550 MeV is 5 events, whereas in the mass interval from 650 to 950 MeV it dons not exceed 1.4 event, which is about 1.0% of the number of ($s^{\top} 0$) ovents indentified as vector particle decays.

5. Experimental Results

Since in tho experiment the differential cross section of processes (i) worn moasured in some angle region, then in treating the data it is newnseary to taks intn account angular distributions both of vector particls proviuction and decay.

> As is shown in Appendix II, the cross section of processes (2)
can be writion is
where $d \sigma_{v}$ is the cross section of vector porticle production, Γ_{a} / Γ the value measured in the present experiment, $3 / 4 \pi \cdot \frac{1}{2}\left[1-W_{\infty 0}\left(\theta^{*} \Phi\right)\right] d \Omega_{q}$ is the angular distribution of $e^{+} e^{-}$decay products in the vector particle rest system. The coordinate axes are taken so that the z axis is directed along the pion beam, whereas the y axis is going alons the normal to the reaction plane, $f\left(\mathrm{~m}^{2}\right) \mathrm{dm}^{2}$ is the mass distribution of the unstable particle. The fact that in the experiment the cross sections of the processes $V \rightarrow e^{+}$and $V \rightarrow \pi^{0} y$ are measured simultanoously, all the factors in formula (5) are similar (expect for Γ_{a}), allows to exclude unknown factors and determine the ratio $1_{4}{ }^{+} \int^{1} \pi^{0} \gamma$ bv using the ratio of the above cross sections. However, the lata on the $v \rightarrow \pi^{0} \gamma$ process have not been treated. Therefore, the values $\mathrm{d} \sigma_{v}$ and $W_{00}\left(0^{*}, \Phi\right) \quad$ taken from the interature $/ 12,13,19 /$ were substituted to formula (5). The anguiar distributions of vector mesons in reactions (2) were taken in the form of (4). At present the lata on the ${ }^{\prime \prime}$-meson production density matrix are most incertain. As iar as p - and ω meson production tensity matrix is concerned, $\rho_{00}=0.5-0.8^{/ 13 /}$ wheroas ρ_{10} and ρ_{1-1} are small (≤ 0.1). It can be shown that for our geometry the above information is sufficient to obtain required evaluations. Indeet, in the experiment, the angle θ^{*} has the values in the interval from $70^{\circ}-110^{\circ}$. In this angle region and the uncertainty interval of the donsity matrices the axpression $3 / 2\left|1-F_{00}(\theta, \Phi)\right|$ is varied within $1 \leq 3 / 2\left[1-\mathbb{W}_{00}\left(0^{*}, \Phi\right) \mid \leq 1,3\right.$.

Our experimental tata car be given as follows:

$$
\begin{align*}
& \frac{\Gamma\left(\rho \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)}{\Gamma(\rho)} \cdot \sigma_{t}(\rho)+\frac{\Gamma\left(\omega \rightarrow \mathrm{e}^{+} e T\right.}{\Gamma(\omega)} \cdot \sigma_{t}(\omega)=(0,45+0,12) \cdot 10^{-4} \mathrm{mb} \quad(6) \\
& \frac{\Gamma\left(\dot{\varphi} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)}{\Gamma(\phi)} \cdot \sigma_{\mathfrak{t}}(\phi) \leq 1,8 \cdot 10^{-5} \mathrm{mb} \tag{7}
\end{align*}
$$

In such a form they do not depend on the data of other experiments and certain physical suggestions. Assume that electromagnetic current is transformed according to the octet representation of $\operatorname{su(3)}$ and let $\theta=38^{\circ}$ for the $\omega-\phi$ mixing angle. Corrections for the $\mathrm{Su}(3)$ symmetry violation are introluced using the linear dependence I ($v \rightarrow e^{+} e^{-}$) on the vector particle mass ${ }^{/ 3 /}$.

For the cross sections $\sigma_{i}(\rho), \sigma_{i}(\omega)$ and $\sigma_{i}(\phi)$ the following data $/ 19,12 /$ are used:

$$
\begin{aligned}
& \sigma_{t}(\rho)=(0.75 \pm 0.13) \mathrm{mb} \\
& \sigma_{\mathrm{t}}(\omega)=(0.34 \pm 0.07) \mathrm{mb} \\
& \sigma_{\mathrm{t}}(\phi)=(0.009 \pm 0.005) \mathrm{mb}
\end{aligned}
$$

Under these assumptions from (6) and (7) one can make two independent evaluations of the important physical parameter: the width of the vector meson octet decay into e^{+}and e^{-}:

$$
\begin{align*}
& \Gamma\left(V_{s} \rightarrow e^{+} e^{-}\right)=(0.45 \pm 0.14) \cdot 10^{-8} \mathrm{MeV} \tag{8}\\
& \Gamma^{\prime}\left(V_{8} \rightarrow e^{+} e^{-}\right) \leq 2.6 \cdot 10^{-2} \mathrm{MeV}: \tag{9}
\end{align*}
$$

As is seen, both the evaluations are in agreement. The evaluations correspond to the following ratios:

$$
\begin{aligned}
& \frac{\Gamma\left(\rho \rightarrow e^{+} e^{-}\right)}{\Gamma(\rho)}=(0,39 \pm 0,12) \cdot 10^{-4} \\
& \frac{\Gamma\left(\omega \rightarrow e^{+} e^{-}\right)}{\Gamma(\omega)}=(0,48 \pm 0,15) \cdot 10^{-4} \\
& \frac{\Gamma\left(\phi \rightarrow e^{+} e^{-}\right)}{\Gamma(\phi)} \leq 2 \cdot 10^{-3}
\end{aligned}
$$

In order to compare the width $i\left(V_{s} \mathrm{e}^{+} \mathrm{e}^{-}\right)$with indirect estimates let us express it by the $V-\gamma$-interaction constant: $g_{v} y^{m}{ }_{v}^{2} \Phi_{\mu} A^{\mu}$ which is of importance for electromagnetic processes. Here $m v$ is vector particle mass, $\Phi_{\mu} \quad$ is the operator of the meson field, A^{μ} is the vectorpotential of the electromagnetic field.

(8) we find:

$$
\varepsilon_{\rho \gamma}^{2}=(0,34 \pm 0,11) \cdot a
$$

where a is the fine structure constant. If one assumes that the alectromagnetic structure of the pion is completely due to the $;$-mosion, the charge of the pion is expressed using $\varepsilon_{\rho y}$ as follows: $\mathrm{e}^{2}=\varepsilon_{\gamma}^{2},{ }_{f}^{\mathrm{f}}{ }_{\rho / \mathrm{m}}^{2}$ If $:_{\rho \pi \pi}^{2}$ is ta'sen trom the $\rho \rightarrow 2 \pi$ decay width, ${ }_{\beta}^{2}{ }_{Y \rho}^{2}=0,42 \cdot a$ Recently an evaluation was mede $/ 15 /$ of the same constant trom the p-meson photoproduction cross section at small ansies and tho following value was found: $E^{2} p y=0.24 \cdot a \cdot(2 \pm 0.3)$. Thus, our evaluation of the $Y\left(v_{s} \ldots_{\mu}{ }^{+}\right)$, width within experimental errors agrees with indirect evaluations.
Note: The basic data of the present investigation were reported at the \times III International Conference on High Energy Physics, Ber'seley. Recently A Wehmann at al, $/ 20 /$ have measured the ratio
$\frac{1\left(\rho \rightarrow \mu+\mu^{-\prime} ;\right.}{[1 \rho \rightarrow 2=}=(4.3+1.4) \cdot 10^{-5}$. This value has been obtained uncier the assumption that the ω-meson contribution is negligibly small and agrees with our data within experimental errors.

The authors wish to express their thanks to the proton symerrotron staff for excelient accelerator operation during the experiment V.S.Fantuyev, B.Zelenov for taking part in the apparatus adjustment and in measurements, V.lvanov, V.Arihhipov and V.Prokhorov for help in preparing and running the experiment, E.Maltsev and VoKomolova for preparing the computer programmes.

We gratefully acknowledge the continuous interest of P.A.Cerenkov, a correspondent-member of the USSR Acallemy of Sciences, Prof.M.I.Poxtsoretsky and Dr. V.A.Sviridov for helpful liscussions.

APPENDIX I

Angular Distributions of the Processes

$$
v^{0} \rightarrow e^{+}+e^{-} \text {and } v^{0} \rightarrow \pi^{0}+\gamma
$$

Let us take the density matrix $\langle m| \rho\left|m^{\prime}\right\rangle$ in the vector particle rest system: λ_{a} and λ_{b} are spiralities of the decay particles. Using the methods of refs. $/ 16,17\rangle$ for the angular distribution of the two-particle decay we have:
N^{\prime} is normalization, $\Lambda=\lambda_{a}-\lambda_{b}$ are coordinate axes taken according to Fig. 6.

According to the requirements of the Hermitian character $\rho, S_{p} \rho=1$ and from the symmetry condition $\left.\left.\langle m| \rho\right|_{m}{ }^{\prime}\right\rangle=(-1)^{m \rightarrow m^{\prime}}\langle-m| \rho\left|-m^{\prime}\right\rangle$ (the invariance with respect to reflection) we have the usual parametrization | $<\mu$ | ρ | m |
| :--- | :--- | :--- | ;

$$
\begin{aligned}
& \rho_{11} \quad \rho_{10} \quad \rho_{1-1} \\
& \rho_{10}^{*} 1-2 \rho_{11} \\
& \rho_{1-1}-\rho_{10}^{*}-\rho_{10} \\
& \rho_{11}
\end{aligned} \quad \rho_{00}=1-2 \rho_{11}, \rho_{11}, \rho_{1-1} \text { are real } \begin{aligned}
& \text { numbers }
\end{aligned}
$$

Thus, the angular distribution is expressed only by one dynamic parameter describing the decay. From I. 1 we obtain

$$
\begin{equation*}
W_{10}\left(\theta^{*}, \Phi\right)=\frac{1}{2}\left[1-W_{00}\left(\theta^{*}, \Phi\right)\right] \frac{3}{4 \pi} \mathrm{I}_{\mathrm{p} \gamma}, \tag{1.2}
\end{equation*}
$$

where $\quad W_{00}=\rho_{00} \cos ^{2} \theta^{*}+\rho_{11} \sin ^{2} \theta^{*}-\rho_{1-1} \sin ^{2} \theta^{*} \cos 2 \Phi-$

$$
\begin{equation*}
-\sqrt{2} \operatorname{Re} \rho_{10} \sin 2 \theta^{*} \cos \Phi \tag{I.3}
\end{equation*}
$$

coincides with the angular distribution of the $v^{0} \rightarrow P+P$ decay. $\Gamma_{p \gamma}=2|A(0+1)|^{2}$ is the width of the $v^{0} \rightarrow P+\gamma$ decay.

Consider the $\mathrm{v}^{0} \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}$decay. In this case $\lambda_{\mathrm{a}}= \pm 1 / 2, \lambda_{\mathrm{b}}= \pm 1 / 2$ and the invariance requirement with respect to the reflection gives

$$
|A(+1 / 2,+1 / 2)|^{2}=|A(-1 / 2,-1 / 2)|^{2} ;|A(+1 / 2,-1 / 2)|^{2}=|A(-1 / 2,+1 / 2)|^{2} .
$$

Thus, the angular distribution of the decay is expressed with two independent parameters. Using (I.1) and the real form of d-functions it is easy to find:

$$
\begin{equation*}
W_{1_{2} \psi_{2}}\left(\theta^{*}, \Phi\right)=2\left[|A(+1 / 2,+1 / 2)|^{2} w_{00}\left(\theta^{*}, \Phi\right)+\left|A\left(+^{1 / 2},--^{1 / 2}\right)\right|^{2} W_{10}\left(\theta^{*}, \Phi\right)\right] \tag{I.4}
\end{equation*}
$$

Expression (I.4) is a consequence of the momentum and parity conservation laws only. Using the fact that a fraction of the process is lescribed by quantum electrodynamics, show that the first term is always smaller than the second one.

The amplitude $\left\langle p^{\prime} \lambda_{a} \lambda_{b}\right| A \mid I_{m}>$ should be of the form (singlephoton approximation)
where

$$
\begin{equation*}
\left\langle\mathrm{P}^{\prime} \lambda_{\mathrm{a}} \lambda_{\mathrm{b}}\right| \mathrm{i}_{\mu}|0\rangle \frac{\mathrm{e}^{2}}{\mathrm{q}^{2}}\langle 0| \mathrm{J}_{\mu}|1 \mathrm{~m}\rangle, \tag{1.5}
\end{equation*}
$$

$$
\left\langle\vec{p} \lambda_{a} \lambda_{b}\right| i^{\mu}|0\rangle=\bar{u}_{\lambda}\left(p^{\prime}\right) \gamma_{\mu} v_{\lambda}(p) \delta\left(\overrightarrow{p^{\prime}}+\vec{p}\right)=\bar{u}_{-\lambda}(\vec{p}) e^{1 \pi s_{2}} \gamma_{\mu} v_{\lambda}(p) \delta\left(\overrightarrow{p^{\prime}}+\vec{p}\right)
$$

$\gamma_{\mu} ;{ }_{\lambda}, v_{\lambda}$ are Dirac matrices and spinors, j_{μ} - hadron current S_{2} is an operator of the momentum projection at the $+\vec{p}$ axis. In order to find the amplitudes of interest matrix element (1.5) should be transformed into the total momentum representation

$$
\begin{equation*}
A\left(+t^{1 / 2}, \pm 1 / 2\right)=\frac{e^{2}}{q^{2}}<0\|J\| \left\lvert\, 1>\sum_{m} \int\left\langle m,,^{1 / 2} \pm 1 / 2 \vec{p}^{\prime} \pm \pm \frac{1 / 2}{}>\vec{u}+(\vec{p}) e^{i \pi S_{2}} \gamma_{\mu}^{v} \pm(\vec{p})+\Omega .\right.\right. \tag{I.6}
\end{equation*}
$$

Here $\left\langle 0\left\|J_{\mu}, i m>=<0\right\| j \| l>\delta_{M m} \quad\right.$ is used. Calculation (I.6) provides:

$$
\begin{equation*}
\left|A\left(-\frac{1}{2},+\frac{1 / 2}{}\right)\right|^{2}=2\left(\frac{m_{1}}{m_{v}}\right)^{9}\left(\left.A(-1 / 2,-1 / 2)\right|^{2}\right. \tag{I.7}
\end{equation*}
$$

where m, is electron mass, m_{v} is vector particle mass. Comparing (1.7), (1.1) and (1.2) one can see that the argular distributions of the precesses $\forall^{u} \rightarrow .^{+}+z^{-}$alkl $V^{0} \rightarrow \pi^{0}+\gamma$ comivide to an accuracy of many orders of magritucte exceeding thet of the present day experiment.

APPENDIX II

The differential cross section of the reactions

$$
\begin{equation*}
e^{+}+e^{-}+n \tag{II.1}
\end{equation*}
$$

$$
\pi^{-}+p \rightarrow \quad \pi^{0}+\gamma+n
$$

are of the form

$$
\left.d \sigma=\frac{4 \pi}{V E_{\pi} E_{p}} \frac{1}{2} \frac{d^{3} P_{1}}{E_{1}} \frac{d^{3} P_{2}}{F_{2}} \frac{d^{3} P_{3}}{E_{3}} \delta\left(P_{1}+P_{2}+P_{3}-P_{\pi}-P_{p}\right) \sum \lambda_{1} \lambda_{2} \lambda_{3} \right\rvert\,<\lambda_{1} P_{1} \lambda_{2} \times \quad(\mathrm{Il} .3)
$$

where $P_{\pi}, P_{p}, E_{\pi}, F_{p}$ are monenta and energies of initial particles, V is their relative velocity, $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}, \mathrm{~F}_{1}, \mathrm{~F}_{2} \mathrm{~F}_{3}$ are three-dimensional momenta and energies of residual particles $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are spiralities of residual particles, λ_{D} is proton spirality, $\langle M\rangle$ is an invariant matrix elemont.

Reactions (II.1) and (II.2) will be considered as going in two stages:
I. Production of the unstable particle V; II. The V particle decay.

The kinematics of these processes is especially simple when the first stage is considered in the $\pi^{-}{ }_{p}$ c.m.s., whereas the decay is considered in the V-particle rest system. In this connection introduce the summed momentum of particles 1 and 2 (the V particle momentum) $t=P_{1}+P_{2}$ and the momentum $\overrightarrow{\mathbf{q}}=1 / 2\left(\vec{P}_{1}-\vec{P}_{2}\right)$ and tiansform the invariant phase space as follows:

$$
\begin{array}{r}
\frac{d^{3} P_{1}}{F_{t}} \frac{d^{3} P_{2}}{T F_{i}} \frac{d^{3} P_{3}}{F_{3}} \delta\left(t+P_{3}-P_{\pi}-P_{p}\right)= \\
=\left[\frac{d^{3}:}{t_{0}} \frac{d^{3} P_{3}}{F_{3}} \delta{ }^{4}\left(t+P_{g}-P_{\pi}-P_{D}\right)\right]\left(\frac{t_{0} d \vec{q}}{E_{1} F_{2}}\right) . \tag{II.4}
\end{array}
$$

Since the first factor is relativisticallv invariant, the second factor is also invariant and they can be considered in different coordinate systems. In the system where $t=0$ (the V-particle rest system) the second factor is of the form:

$$
\frac{m}{\sqrt{m^{2}+q^{2}} \sqrt{m_{2}^{2}+q^{2}}} q^{2} d q d \Omega
$$

where $m=\sqrt{m_{1}^{2}+q}+\sqrt{m_{2}^{2}+q^{2}}$ is the V particle mass by definition. Passing from the variable q to the variable m, we have for the phase space:

$$
\begin{equation*}
\frac{d^{3} P_{3}}{F_{s}} \frac{d^{3} t}{t_{0}} \delta^{4}\left[t+P_{3}-P_{\pi}-P_{p}\right] q \frac{d m^{2}}{2 m} d \Omega_{q} . \tag{II.5}
\end{equation*}
$$

If the V particle is considered to be stable, the invariant matrix element contains the factor $\delta\left(\mathrm{m}^{2}-\mathrm{m}_{2}^{2}\right)$ and the integration over the effective mass is of formal importance. If according to the same experimental conditions it is necessary to ta'se into account the final resonance width, then instead of the δ-function the distribution $/ 18 /$ is introduced of the type:

$$
\begin{equation*}
\frac{1}{\pi} \frac{1 \cdot(m)}{\left(m_{2}^{2}-m^{2}\right)^{8}+\Gamma^{2}(\mathrm{in})} \tag{III.6}
\end{equation*}
$$

Invarinnt factor (II.6) can be considered as a part of the propagator correlating the production and the decay of the unstable particle. The matrix element u should be given as the sum of the products of invariant co-factors:

$$
\begin{aligned}
\left\langle\lambda_{1} P_{1} \lambda_{2} P_{2} \lambda_{B} P_{3} a\right| M\left|\lambda_{p} P_{p} P_{F}\right\rangle=\sum_{\lambda \nu} & \left.<\lambda_{1} P_{1} \lambda_{2} P_{2} a|A| t \lambda_{V} J_{v}\right\rangle \times \\
& \times\left\langle t \lambda_{V} J_{V} P_{3} \lambda_{3}\right| R\left|\lambda_{p} P_{D} P_{\pi}\right\rangle
\end{aligned}
$$

here $\left\langle\lambda_{1} \mathrm{P}_{1} \lambda_{2} \mathrm{P}_{2} a\right| \mathrm{A}\left|t \lambda_{v} \mathrm{~J}_{\mathrm{v}}\right\rangle$ is the decay amplitude, J_{v} is the unstable particle spin, λ_{v} is its spirality, alpha numerates the decay channel, $\left\langle I \lambda_{y} J_{v} P_{3} \lambda_{3}\right| R\left|\lambda_{p} P_{p} P_{\pi}\right\rangle \quad$ is the reaction amplitude. The strike of M means that M^{\prime} differs from M by a factor type (II.6). Now use relativistic invariance and write A in the rest system of the v particle:

$$
\left\langle\lambda_{1} \vec{p}_{1} \lambda_{2} \overrightarrow{\mathrm{P}} a\right| A\left|\vec{i}_{J_{v}} \lambda_{v}\right\rangle=\left\langle\lambda_{1}^{\prime} \vec{q} \lambda_{2}^{\prime}-\vec{q} a\right| A\left|0 J_{v} \lambda_{v}\right\rangle
$$

The spiralitiers of residual particles in such Lorerty ut theformation der changed. However, futher they will be summeri up and that changre will have no effect.

The reltive decay probability of the chamma \therefore (witt the is , int of (II.5), is writen as:
 over all particie chaniele we obtain the cross wection of whemble furticle production.

In the literature ${ }^{i \not 2 /}$ tho densitr, patrix ot unstable particjow; it! \cdot. axes svotem is usually conciderel $a=$ shown m Fige fithe v-partion rest system).
 licle rest syritem:

This rotation takes the spin projection from the V porticle momerntums over to the piori mermentum.

Irtrorluce tho density matrix:

The differemtial crose section of the y-partiole proxluction 15 wit ton $3:$

$$
\frac{d, T}{d \Omega}=\operatorname{sp} \rho
$$

Introduce almo tha nomalizex density matro

$$
\because \bar{\Gamma} H=\frac{\langle M \rho \mid M\rangle}{\operatorname{sip}}
$$

$$
\begin{aligned}
d \Omega_{\mathrm{D}} d \Omega_{\mathrm{G}} \sum_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}}^{\Sigma}<\lambda_{1}^{\prime} q \lambda_{2}^{\prime} & -\vec{q} a: A\left|0 \mathrm{JM}^{\prime}>^{*}<\mathrm{M}^{\prime}\right| \rho \mid M>\times \\
& \times<\mathrm{JMO}|\mathrm{~A}| \lambda_{1}^{\prime} \vec{q} \lambda_{2}^{\prime}-\overrightarrow{\mathrm{q}} a>\frac{\mathrm{q}}{2 \mathrm{~m}} f\left(\mathrm{~m}^{2}\right) \mathrm{dm}^{2}
\end{aligned}
$$

where $f\left(m^{2}\right)=\delta\left(m^{2}-m_{2}^{2}\right) \quad$ or (ח.6). Using Appendix I and the definition $\frac{l_{a}}{I^{\prime}}$ we find for the cross section

$$
\begin{aligned}
& \langle\langle M| \vec{\rho} \mid \mathrm{M}\rangle=\mathrm{d} \sigma_{\mathrm{v}} \mathrm{~d} \Omega_{q} \frac{\Gamma_{a}}{\Gamma} \frac{3}{4 \pi} \frac{1}{2}\left[1-W_{00}\left(\theta^{m}, \Phi\right)\right] f\left(\mathrm{~m}^{2}\right) \mathrm{dm}^{2}
\end{aligned}
$$

Consider the curiuibution of ($e^{+} e$)-pairs produced in collisions of strongly interacting particles when this process does not so throush the resonance state in the ($e^{+} e^{-}$)-channel.

In other words, consider the reaction

$$
\begin{equation*}
a+b \rightarrow c+j+\ldots-+e^{+}+e^{-} \tag{III.1}
\end{equation*}
$$

where a, b, c... are any strongly interacting particles. The matrix element of process (III.1) is given as

$$
\begin{equation*}
\left.M=J_{\mu} \frac{e^{2}}{t^{2}} \vec{u}\left(P_{2}\right) \gamma^{\mu} \quad v\left(P_{i}\right)\right) \tag{III.2}
\end{equation*}
$$

t is the four-dimensional momentum of the virtual photon $\left(t=P_{1}+P_{2}\right.$, where P_{2} and P_{1} are electron and positron momenta), $u\left(P_{2}\right), v\left(P_{1}\right), \gamma^{\mu}$ spinors and Dirac matrices, J_{μ} - the operator, describing strong interactions. The differential cross section of process (III. 1) can be written using formula (n.5):

$$
\begin{equation*}
\mathrm{d} \sigma=\frac{4 \pi^{2}}{V \mathrm{E}_{\mathrm{a}} \mathrm{E}_{\mathrm{b}}} \frac{1}{2} \prod_{i} \frac{\mathrm{~d}^{3} \mathrm{P}_{\mathrm{i}}}{\mathrm{E}_{1}} \frac{\mathrm{~d}^{3} \mathrm{t}}{\mathrm{t}_{0}} \delta^{4}\left[\Sigma \mathrm{P}_{\mathrm{i}}+\mathrm{t}-\left.\mathrm{P}_{0}\left|\mathrm{dniq} \mathrm{~d} \Omega_{q} \Sigma\right| M\right|^{2} .\right. \tag{III.3}
\end{equation*}
$$

where $\quad P_{i}$-momenta of particles of the final state expect and e^{+}, e^{-}. Integrating this expression over $d^{8} t \| d^{3} P_{t}$, passing over to $\vec{t}=0$ and distinctly separating the dependence of M upon t, we fird:

$$
\begin{equation*}
\mathrm{d} \sigma=\frac{\mathrm{dm}}{\mathrm{~m}^{8}} \sqrt{m^{2}-4 m^{2}} \tag{III.1}
\end{equation*}
$$

where $\quad i n=2 \sqrt{m_{e}^{2}}+4^{2}$, in \quad is electron mass, f is tice rolativistically invariant function of the electron mass. The assumption thist itml has
 ance has been considered in Appendix II.

Consider the case when I is weakly dependent on m (there is no resomance in the ($e^{+} e^{-}$)-system, however, the processes of $V^{0} \rightarrow \pi^{0}++^{+}+c^{-}, \pi^{0} \rightarrow \gamma^{+}+{c^{+}+e^{-}}$refer to the case in question as the are are rns.nances in another channel). From formula (IIT.4) it is seen that do has a very sharp peak near $m=2 m$. The upper-limit of the numher of pairs having the effective mass m larger than the given value

4 (to the total number of pairs, produced in process III.1) is written as

$$
\begin{equation*}
\frac{N(m>M)}{N_{\text {tot }}}=\left(\frac{2 m e}{m}\right)^{3}-\ldots- \tag{III.5}
\end{equation*}
$$

From formula (III. 5) it is seen that with m $\Rightarrow 0.5 \mathrm{GeV}$ the contribution of the nonresonance ($e^{+} e^{-}$) pairs is negligibly small. This is also valid to such cases when the number of resonance pairs is considerably smaller thar the total number of nonresonance pairs $v_{\text {tot }}$ (for instance

$$
\left.\frac{N_{\operatorname{tnt}}\left(\omega \rightarrow \pi^{0}+\mathrm{e}^{+}+\mathrm{e}^{-}\right)}{\mathrm{N}\left(\omega \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}\right)}=10\right)
$$

R eferences

1. Y.Nambu and J.J.Sakurai. Phys.Rev.Lett., 8, 79 (1962).
2. M.Gell-Mann, D.Sharp and W.G.Wagner. Phys. Rev.Lett., 8, 261(1962).
3. R.F.Dashon and D.H.Sharp. Phys.Rev., 133, 7B 1585 (1964).
4. Ғ. Д. Жижин и В. В, Соловьев. ЖЭТФ 45, 268 (1962).

万. Нгуен Ван Хьеу и Фам Куи Ты. Препринт ОИЯИ Р-2338 (1965).
ㄱ. В.В. Бармин, А.Г. Долголенко, Ю.С. Крестников, А.Г. Менковский, В.А.Шебанов. ЖЭТФ, 45, 6(12) 2082 (1963).
․ J.J. Murrarv, M.Forro-Luziri, D.O.Hiwe, I.B.Shairer, F.T.Solmitz, M.Lynn Stevenson. Phys.Lett., 7, 3583 (1963).
3. A. Hesaguet, J.Nguyen-IKhac, A.Rousset, A.Haatuft, A.Halsteinlid, R. S.Lunchforl, F.R. Jtannard. Phys.Lett., 12, 70 (1964).
?. R.A.Zdanis, L.Madansky, R.W.Kraemer, S.Hertzbach, R.Strand. Phys. Rev.Lett., 1.1, 721 (1965).

1H. I). M. Rirmie, A.Duane, NIR.Jane, V. G.Jomes, D.C.N.xson, J.A.Neuth, i). (..l'ntter, Ijaz Vir Kahthan, J. Nalters, J.Dickinson, R,J.Ellison,
 ' リs: $5 . L e t t ., 18,3-13$ (175.5).
11. М.А. Азимов, А.М. Белдин, В.С. Пантуев, Л.В. Сильвестров, М.Н.Хачатурян, И.В. Чувило. Публикадия ОИЯИ Б7-2070 (1965).
1.2. A.Benson, L.Lovell, C.T.Murphy, B.Roc, D.Sinclair, I.Vander-Velde. Preliminary Version Submitted to the XIII th International Conf. on High Energy Physics, Univ. California.
13. L.D.Jackson, I.T.Donohue, K.Gottfried, R.Keyser and B.E.Y.Svensson. Phys.Rev., 139, 8428 (1965).
14. M.A.Azimov, A.S.Belousov, I.V.Chuvilo, R.Firkowski, M.N. Khachaturyan, M.S.Khvastunov, L.G.Makarov, E.LMaltsev, A.T.Matyushin, V.T.Matyushin, V.S.Pantuyev, L.N.Shtarkov, D.V.Uralsky, B.A.Zelenov, L.I. H^{2} huravleva. Preprint E13-2971, Dubna (1966).
15. M.Ross., L.Stodolsky. Preprint Univ. of Michigan. BNL 10146(1966).
16. M.Jacobe, G.C.Wick. Ann.Phys., ? 404 (1959).
17. K.Gottfried, J.D.Jackson. Nuovo Cimento 33, 309 (1964).
18. S.Bergia, F.Binsignari and A. Stanghellini. Nuovo Cimento 16,1073(1960).
19. ABBBHLM. Collaboration. Nuovo Cinento 31, 729 (1964).
20. A. Wehmann, E.Engels, Ir.L.N.Hand, C.M.Hoffmarin, P.G.Innucenti, Richard Wilson, W.A.Blànpied, D.I.Drickey and D.G. Etairs. Phys. Rev.Lett., 131113 (1966).
21. E.Shibato and M.Wahlig. Phys.Lett., 22, 354 (1966).

> Received by Publishing Departinent on January $31,196 ?$.

Fic. 1. Schematic vies of the experimental arrangement and seometry $S_{1}, S_{2}, S_{3}, S_{4}$ are scintillation counters. C_{1}, C_{3} are Cerenkov total absorption gamina-spectrometers. H_{2} is a liquid hyrtrogen target 50 cin long.

 ト,

Firs. A. Effective mass distributions for a) 25 candidates for e ${ }^{+}$,- -pairs selected according to spark chamber pictures and to their total energy; b) 19 candidates for $e^{+} e^{*-}$-pairs selected; 1) accondins to spark chamber pictures: a sinsle track of the oharsed particle in spark chambers of the first and second channels, 2) acconding to their energy: $F_{1}>0.5 \mathrm{GeV} \mathrm{F}_{1} \mathrm{E}_{2}>0.5 \mathrm{GeV}$ and $3.6<\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)$
 labosystemi). Continuous curve is a theoretical ono calculated for a) -mesons.

 responctite t, t:

Fig. 6. The direction of the coordinate axes in the rest system of the decaying particle.

Азімов M.A., Балдкн A.M., Бепоусоз A.C., Гладки я.,

 Штархов Л.Н.

Наблодевие ($\mathrm{e}^{+} \mathrm{e}^{-}$)-распадов неитралыных вехторных мезонов

 cefurtial $\phi^{\circ}+{ }^{+}+{ }^{+}$.

$$
\begin{aligned}
& \Gamma\left[\nabla_{0}+ \pm^{+}\right) \leq 20.10^{-7} H \operatorname{men}
\end{aligned}
$$

 maverye 0 为.

Дубпа, 1807.

Azimov M.A., Baldin A.M., Belousov A.S., Hledky J., Zhuravleva L.I., Osookov G.A., El-3148 Manca J., Matyushin A.T. Matyouhin V.T., Firkowaki R, Khachaturyan M.N., Khvastenov M.S., Chuvilo I'V., Shtarkov L.in.

Observation of the $\left(e^{+} e^{-}\right)$-Decay Modes of Neutral Vector Mesons
The cross secrions of ($e^{+} e^{-}$) pair prodection have been measured in the ronctione $\pi^{-}+p \rightarrow V^{0}+\mathrm{D}$, $\mathrm{v}^{0} \rightarrow \mathrm{e}^{+}$- at $^{-} \mathbf{P} \mathbf{4 . 0} \mathrm{GeV} / \mathrm{c}$ naing a system of jointly operating spark chambers ind Cerenkov total absorption γ-spectrometers. In contrast to onrlier techniques our apparatas made it posetble to measure both the opening angles and the energias of the V^{0}-partale docay products and, hence, to deteraine its offective mass in each event. 13 events were detected and identified as the $p \rightarrow e^{+} a^{-}$and $\omega \rightarrow e^{+} e^{-}$ decays and one $\phi \rightarrow e^{+} e^{-}$event.

From the crosis sections obtained and total croses sections for ρ, ω and ϕ-mesons known from the literature two independent determizations of the width of the vector meson octet decay into e^{+}and
 corroaponds to probability ratios: $\frac{\Gamma\left(0 \rightarrow 0^{+-1}\right)}{\Gamma(p)}=(0.39 \pm 0.12) \cdot 10^{-4} ; \frac{\Gamma(0) \rightarrow+{ }^{+}{ }^{-1}}{\Gamma(\omega)}=(0.48 \pm 0.15) \cdot 10^{-4}$ $\Gamma\left(\phi \rightarrow \mathrm{e}^{+}+0\right)<2.10^{-8}$. The value $\theta=38^{\circ}{ }^{\Gamma}(\rho)$ wan used for the $\omega-\phi^{\circ}$ mixing angle.

> Preprint. Joint Institute for Nuclear Research. Dubons, 1967.

[^0]: * P.N.Lebedev Physics Institute, Moscow, USSR.
 * Physical Institute of the Czechoslovak Academy of Sciences, Praha, Czechoslovakia.
 ** Electrotechnical Institute of the Slovak Academy of Sciences, Bratislava, Czechoslovakia.
 *** Institute for Nuclear Research, Łodz, Poland,

