$$
\frac{d e 34.6 a}{s-89}
$$

ОБЪЕДИНЕННЫЙ

Дубне

Z.S. Strugalski, I.V. Chuvilo, I.A. Ivanovskaja, L.S. Okhrimenko, B. Niczyporuk, T. Kanarek, Z. Jabłonski, B. Słowinski

STUDY OF NEUTRAL BOSONS DECAYING INTO π° MESONS AND γ QUANTA
1867.

E1-3100

Z.S. Strugalski, I.V. Chuvilo, I.A. Ivanovskaja, L.S. Okhrimenko, B. Niczyporik. T. Kanarek, Z. Jabłonski, B. Słowinski

STUDY OF NEUTRAL BOSONS DECAYING INTO π° MESONS AND γ QUANTA

The present work has been carried out jointly by the scientific workers of the following Institutes:

INSTITUTE OF NUCLEAR RESEARCH, Warsaw, Poland Z.S.Strugalski

INSTITUTE OF NYCLEAR RESEARCH, Cracow, Poland T.Kanarek

UNIVERSITY OF LODZ, Lodz, Poland Z.Jabłonski

INSTITUTE OF EXPERIMENTAL PHYSICS, Warsaw University B.Słowinski

In film obtained in an exposure of the JINR 23-inches xenon bubble chamber to a $2.34 \mathrm{BeV} / \mathrm{C} \pi^{+}$bean, we have searched for production and decays of neutral bosons decaying into π°-mesons and γ-quarta.

There are marly physical tupics concroning such lecays of bosons. These are connectert, for oxample, the prohlems of the existence of new neutral mesons $/ \mathrm{x}, 2$, with fre oxanination of the consequences of $S 1_{i}$ theory $/ 3 /$, and with the verification of the possible C, T noninvariance in the electromannetic interactions of stronelv interacting particles $/ 4-6 /$. It is important also to obtain the conplete set of informations concerning the noutral decays of η^{0}, ω^{0} and x^{0}.

We present in this papor the preliminary experimontal results which can be attributed to some of the above mentioned problems. Our results are based on a very small part of photographs avaibble disigued for this investigation. Thr experimental data weve analysed and discusbed.

II. Experimental Procedure

The scanning for interactions of beam particles occuring in a chosen central recion of the bubble chamber has been made tivice in succession. The interactions with 1 and 2 pronss and with some number $k=0,1,2, \ldots$ of γ-rays ascribed to the $=$ e interitations are searched. The lover limit of enerey for γ-rays detectable in the chamber with nearly constant efficiency was about 15 MeV . Ihe recording proba-
bility of \boldsymbol{y}-ravs generated in the chosen central region of the chamber and recorded within the fiducial volume equals $80-95 \%^{* /}$. The energy E_{γ} of γ rays was estimated according to the method worked out $8-11 /$. The accuracy of energy measurement in the energy interval $10-9000 \mathrm{MeV}$ is $12-30 \%$. The accuracy of the measurement of the angle $\Theta_{y y}$ between any two γ rays is equal to $0.5-2$ degrees.

Thus, it is possible to estimate the invariant mass $M_{k} \gamma$ combining some number k of γ. It was found that k can be equal up to 8 and it is still possible to distinguish single γ and to evaluate E_{γ}. The γ quanta used for the evaluation of $M_{k} \gamma$ are observed as generated in the point of interaction of incident π^{+}. Thus, the mass $M_{k \gamma}$ can be expressed by the formula

$$
\begin{equation*}
M_{k \gamma}^{2}=\sum_{\substack{i, j=1 \\ i \neq j}}^{n} M_{\gamma_{i}}^{2} \gamma_{j} \tag{1}
\end{equation*}
$$

irrespectively whether the γ are generated independently by the radiative decay of some particle x or by decays of x via, for example, π^{0} or $\eta \rightarrow 2 \gamma$. The accuracy in $M_{k v}$ determination depends on the accuracy of the $\theta_{y y}$ and E_{y} estimation, and is different for different values of k. For events with $k=2$ this accuracy reaches in average $10-12 \%$, for events with $k=3$ about $9-10 \%$, and for events with $k=4$ about 8-10\%.

The minimum energy value for detectable protons in stars with a small number of prongs (less than 4) is about 5 MeV . There exist the indications that in the high-energy interactions with a small number of prongs the pion-nucleon interactions of π, with the quasi-free nucleons in the nuclei play a predominant role $/ 12-13 /$.

Confining oneself to the investigation only the interactions with one observed secondary track stopping in the chamber, we can assume the selected interactions to be in general the process

[^0]\[

$$
\begin{equation*}
\pi^{+}+n \rightarrow \underset{L^{x} y}{ }+p \tag{2}
\end{equation*}
$$

\]

a being quasi-free neutron in the periphery of the xenon nucleus $x /$. The energy of the secondary charged particle, assumed as the proton, can be estimated by means of the range-energy relation. It is possible to select in this way the reaction of type (2) in which the total energy of secondary products, y quanta and p, is equal (in the frame of accuracy of determination of $F_{\gamma} \gamma$ and F_{p}, to the energy of the incoming n^{+}.

> IIl. Experimental Data

Out of 150000 photographs about 2500 events with one prong and about 4000 events with two prongs were selected. 573 events of type (2) with stopped secondary track were singled out. Later on only these events will be analysed in detail. Table 1. presents the distribution of events according to the number of γ-rays.

Table 1

The Distribution of Events-of Iype (2) According to the Number of γ-Rays

Number of γ	Number of events	Recording efficiency for $\mathrm{k} \gamma$
1	25	-
2	265	93.0
3	85	85.4
4	165	81.9
5	22	73.4
6	11	60.5

The events containing observable v particles are not placed in the $x /$ This follows from previous investigations $/ 12,13 /$.

Table 1. 40 events with one v and 12 events with two v were found.
In each event the geometry of inieraction was twice measured by means of UMT-21 microscope and aso no iess than twice the E_{y} of each γ was astimated. Thus, for any event the momenta of y rays, the energy of secondary charged particle, assumed as proton, were estimated, and also the invariant mass $u_{k y}$ were evaliated for all possible combinations of $2,3,4, \ldots$ rays.

A. Two γ Evients

We have plotted in Fig. 1 the distribution of the effective mass $M_{y y}$. Here you see the important peak at the $w^{\circ}-v a l u e$ as it must. A second group of events is present in the region of the η. The soid line represents the backgrouma, and was obtained by the Monte. Carlo method for the two γ mevents an mormalized to the rotai munber of events with the values $M_{y} \leq 90 \mathrm{MeV}$. It is also wortin pointing out that the shapes of the $M_{\gamma y}$ distributions obtained by the N: Nonte-Carlomethor for three and four γ events are also similar.

The distribution of the opening angle θ_{v} in the laboratory system is shown in Fig. 2. In this histogram two groups of events are presented. A first is present in the reggion of $0_{y \gamma}^{\mathrm{min}}$ value for π°, ard the second by $\theta_{\gamma \gamma}^{\mathrm{min}}$ value for η. The distributions of the events in these two groups are in gool agreement with the theoretical distribution for π^{0} icurve 1) and for η (curve 2).

With our statistics to rate it is not possible to say whether other resonances decaying into two γ are presented or not.

B. Three y Events

Fi.. 3 shows the spectrum of the effective mass $M_{3 y}$ of the 85 three γ events and does not exhibit any peak in the region of the ω^{0} mass. The solid curve is the $M_{3 y}$ backgrourd obtained by the MonteCarlo method and normalized in the region of $H_{3 y}$ values no higher than 0.5 GoV .

The histogram in Fig. 4 represents the spectrum of the effective mass $M_{y y}$ of two γ in the three γ events, and shows a significant peak at the π^{0} value. The solin curve is evaluated by the MonteCarlo method and mormalized to tho total number of event: with by sonMeV.

C. Four γ Events

For 165 events that fit the reaction (2) we have computed the effective mass of four γ system, $M_{4} y$. Figure 5 shows the mass spectra obtained after taking into account the recording probability for four γ events. The solid curve gives the distribution expected from phase space for the reaction $\pi^{+}+n \rightarrow \pi^{0}+\pi^{0}+p$.

The spectrum of the effective mass of two γ in the four γ events is shown in Fig. 6. The smooth curve was calculated by the MonteCarlo method and normalized to the total number of events with $\mathrm{M}_{y} \leq 90 \mathrm{MeV}$. In this histogram you can see an important peak at the π^{0} value.

The sample of four γ events contains 68 such events in which two (of six possible) independent $\gamma-\gamma \quad$ combinations give the values of mass $M_{y y}$ within the mass interval 90-180 MeV. Those remaining independent pairs of $\gamma-\gamma$ combinations contain $M_{\gamma y}$ values which lie either outside the interval $90-180 \mathrm{MeV}$ or $400-700 \mathrm{MeV}$. The first interval corresponds to the possible $M_{y y}$ value for π° and the second to the possible $M_{\gamma y}$ value for η within the mass estimation accuracy of about 30%. The events satisfied the above criteria were attributed to the two γ events. The designation $M_{\pi^{0}} \pi^{0}$ will be used in the course of this paper for effective mass M_{4}, in this group of $\pi^{0} \pi^{0}$ events.

The second group of four y events, containing 86 events, is such a sample in which only one of the possible $\gamma-\gamma$ combinations lies into M_{y} interval $90-180 \mathrm{MeV}$ and the other indepentent $\mathrm{M}_{y y}$ values lie outside the allowed, within 30% accuracy, values for mass of π^{0} or η. The designation $M_{\pi^{0}} y y$ for $M_{4 y}$ will be used here.

It is possible to select also the groups containing $\eta \pi^{\circ}, \eta \eta$ and $\eta \gamma \gamma$ events. Our statistics are not big enough to give any significant results concerning possible samples. We confine oneself to study the $\pi^{0} \pi^{0}$ and $\pi^{0} \gamma_{\gamma}$ evonts.

Fig. 7 shovs the distribution of ${ }^{M_{\pi}} \pi_{\pi^{0}}$. The solid curve 1 superimposed on the histogram represents the phase-space for reaction $\pi^{+}+n \rightarrow \pi^{0}+\pi^{0}+$ pnormalized to the total number of events. The curve 2 represents the background computed by the Monte-Carlo method, and normalized to the total number of events with values of $\mathrm{M}_{\pi^{0} \pi^{0}} \leq 0.5 \mathrm{GeV}$.

The effective mass $M_{\pi 0} 0$. distribution deviate from the expectation from phase space and from the background. This distribution shows the presence of two groups of particles. The first can be attributed to the mass value $\mathrm{M}_{\pi^{0} \pi^{0}}=709 \pm 18 \mathrm{MeV}$ and the second to the value $\mathrm{M}_{\pi^{0} \pi^{0}}=$ $1250 \pm 30 \mathrm{MeV}$.

In Eig. 8 the mass $M_{\pi^{o}}{ }_{\gamma \gamma}$ distribution is shown. Solid curve representing the background is normalized to the total number of everits with mass $M_{\pi^{0} y} \leq 0.45$ GoV. The Histribution shows evidence of two aroups of particles. One group contains the events with the weighted mean mass $M_{\pi^{0} \gamma \gamma}=560 \pm 16 \mathrm{MeV}$ and the second with the mass $M_{\pi y y}=945 \pm 24 \mathrm{MeV}$.

The ail possible effective mass distributions $M_{3 v}$, in all four γ events and in the samples of $\pi^{\circ} \pi^{\circ}$ and $\pi^{0} y \gamma$ events are shown in Figs. 9, 10, 11, respectively.

Firs. 12 and 13 show the $M_{\gamma} \gamma$ distributions in $\pi^{0} \pi^{\circ}$ and $\pi^{0} \gamma \gamma$ ments.
D. Five γ-Fvents

For 28 events with five y rays that fit the reaction (2) wo have computed tine effective mass $M_{b y}, M_{4}, M_{3 \gamma}, M_{2 \gamma}$. Results are presented in Figs. $14,15,16$ and 17.

```
5. Six y Events
```


V. Rusults and Discussion
 of tupe (2) shows the rexistence of an importunt peak at the π^{0} mass witue. The number of π° observed in am ${ }^{n} y$ distribution is nqual al ways to the member of π^{0} expected, which can he ascribed to the correspondine reaction (2). This resuit shovis strong evidence for corroctness of cur mothon amindicntes the possibility of diroct study of proticles drcarino iyto π° mesons, y rave η mosons ant so on.

The 14 events with values of mass $M_{y y}$ within the interval 400 700 MeV in the $\mathrm{M}_{y \gamma}$ distribution of the two γ events (Fig. 1) can be attributed to the generation of $\eta \rightarrow 2 \gamma$. The 124 events with mass in the interval $90-180 \mathrm{MeV}$ can be also ascribed to π^{0}. Approximately the same number of events are obtained, within the statistical fluctuations, from the distribution of the opening angle $\theta_{\nu v}$ (Fig. 2).

In average, the ratio $R \frac{\eta}{\pi^{0}}$ of number of $\eta \rightarrow 2 \gamma$ to the number of π^{0} generated in the reaction $\pi^{\pi^{\circ}} \pi^{+}+n \rightarrow \underset{\bigsqcup}{\rightarrow 2}+\underset{\gamma}{p} \quad$ is equal to

$$
\begin{equation*}
\mathrm{R} \frac{\eta}{\eta^{0}}=12.1 \pm 4.0 \% \tag{3}
\end{equation*}
$$

The distribution of $M_{3 \gamma}$ in three γ events (Fig. 3) does not exhibit any peak in the region of the ω^{0} mass. Taking into account the possible intensity of $\omega^{0} \rightarrow \pi^{0}+\gamma$ production in reaction under consideration, we expect to observe $6 \omega^{\circ}$ events. These events can be unobservable in the sample of three γ events in which the background reached about 85% of the total number of the three γ combinations.

In the sample of four y events, containing $\pi^{0} \pi^{0}$ and $\pi^{0} y \gamma$ events (Fig. 6,7) there are some irdications for the existence of the following particles ${ }^{x}$:

$$
\begin{array}{lll}
\eta \rightarrow \pi^{0}+\gamma+\gamma & , & M_{\pi^{0} \gamma \gamma}=560 \pm 16 \mathrm{MeV}, 12 \text { events; } \\
\mathrm{x} \rightarrow \pi^{0}+\gamma+\gamma & , & \mathrm{M}_{\pi^{0} \gamma \gamma}=945 \pm 24 \mathrm{MeV}, 21 \text { events; } \\
\mathrm{s}^{0} \rightarrow \pi^{0}+\pi^{0} & , & \mathrm{M}_{\pi^{0} \pi_{0}=709 \pm 18 \mathrm{MeV}, 20 \text { events; }}^{\mathrm{f}^{0} \rightarrow \pi^{0}+\pi^{0}} \quad, \quad \mathrm{M}_{\pi^{0} \pi^{0}}=1250 \pm 30 \mathrm{MeV}, 7 \text { events. }
\end{array}
$$

We evaluate now the decay branching ratio for $\eta \rightarrow$ neutrals.

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{\eta \rightarrow \pi^{0}+\gamma+\gamma}{\eta \rightarrow \gamma+\gamma}=0.86 \pm 0.47 \tag{4}
\end{equation*}
$$

Assuming the six y events with $M_{g y}$ within the interval value $400-$ 700 MeV to be $\eta \rightarrow \pi^{0}+\pi^{0}+\pi^{0}$, we estimate the upper limit for the
$x /$ The numbers of events were estimated in assumbtion that the values of mass of particles lie within the $\pm 20 \%$ intervals around average values of $M_{\pi^{0} \pi^{0}}$ or $M_{\pi^{0} y y}$ in the corresponding peaks.

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{\eta \rightarrow \pi^{0}+\pi^{0}+\pi^{0}}{\eta \rightarrow 2 \gamma} \leq 0.42 \tag{5}
\end{equation*}
$$

It should be noted that our results are very similar to those obtained with electronic technique $/ 14 /$. The authors give $R_{1}=0.90 \pm 0.14$ and $\mathrm{R}_{2}=0.50 \pm 0.09$. Ascribing the 21 events with the mass $M_{\pi^{0} r}=945+24 \mathrm{MeV}$ to the x^{0} particle $/ 15-17 /$, to be surprising seems the very big intensity of production of $x^{0} \rightarrow \pi^{0}+\gamma+\gamma$ in comparison with intensity o concerning other decay modes of $x^{0 / 15-17 /}$ with previous results We have performed a more detail peak at $M_{\pi^{0} y y}=945+24 \mathrm{MeV}$ analysis of the events from the of the π^{0} with the γ was performed all these events the correlation $\pi^{0} \gamma$ dent combinations of π^{0} with γ. There are two possible independistribution of these $M_{\pi^{0}} \gamma$ mass is from $\pi^{0} \gamma_{\gamma}$ four γ event. The bution there appears an indication shown in Fig. 23. From this distribution there appears an indication that the possible cascade decay of x

$$
\begin{gathered}
\mathrm{x} \rightarrow \omega^{0}+\gamma \\
\operatorname{m}^{0}+y
\end{gathered}
$$

is not excluded.
Other significant hint about this mode can follow the $M_{3 y}$ distribudion in all four γ events and in $\pi^{0} \gamma \gamma$ four γ events (Fig. 9,11) in comparison with the $\mathrm{M}_{3 y}$ distribution in $\pi^{\circ} \pi^{\circ}$ events with four γ (Fig. 10).

At present we must consider this result as an useful indication only. In order to get definite information concerning this problem the statistics of experimental material sound be enlarged.

The statistics of the five and six γ events are not big enough presently to give any significant results.

The authors wish to express their gratitude to professor M.Danysz for his interest for this work and discussions. They would also thank the all scanners of the xenon bubble group of the High-Energy Labor-

1. A.M.Baldin. Nuovo Cim., 37, 962 (2965)
2. V. ©̇.Guishin and G.l.Kopylov. Nuovo Cim, 37, 962 (1965).
3. S.Badier and C.Bouchiat. Phys.Lett, 15, 96 (1965).
4. J.Bernstein, G.Feinberg, T.D.Lee. Phys.Rev., 139, B165 (1965).
5. G.Feinberg. Phys.Rev., 140, B1402 (1965).
6. V.l.Sakharov, A.E.Kaidalov. JEPT 50, 203 (1966).
7. Z.S.Strugalski and T.Siemiarczuk. Phys.Lett., 11, 170 (1964).
8. Z.B.Strugalski. Preprint 796, Dubna 1961.
9. L.P.Konovalova, L.S. Okhrimenko. Z.S.Strugalski. PTE, 6, 26(1961).
10. O.Czyzewski, J.Danysz, Z.S.Strugalski. Acta Phys.Polonica, 24, 509 (1963).
11. B.Niczyporuk, Z.S.Strugalski. Preprint 1989, Dubnä (1965).
12. Z.S. Strugalski, T.Siemiarczuk. Phys.Lett., 13, 347 (1964).
13. Z.S.Strugalski. Preprint R-2097,Dubna(1965);Nucl.Phys.(to be published).
14. G.DiGiugno, R.Ouerzoli, G.Troise, F.Vanoki, M.Giorgi, P.Schiavon, V.Silvestrini. Phys.Rev.Lett., 16, 767 (1966).
15. G.R.Kalbfleisch, L.W.Alvarez, A.Barbaro-Galtieri, D.W.Merril,J.J.Murray, A. Rittenberg, R.R.Ross, J.B.Shaper, F.T.Shively, D.M.Siegel, G.A.Smith, and R.D.Tripp. Phys.Rev.Lett., 12, 527 (1964).
16. M. Goldberg, M.Gundzik, S.Lichtman, J.Leitner, M.Primer, P.L.Conolly, E.L.Hart, K.W.Lai, G.London, N.P.Samios and S.S. Yamamoto. Phys. Rev.Lett., 12, 546 (1964).
17. G.H.Trilling, J.L.Brown, G.Goldhaber, S.Goldhaber, J.A.Kadyk, and J.Scanio. Preprint UCRL-16294. on January 5, 1967.

Fig. 1. Distribution of the effective mass $M y$ in the two γ events.
The solid curve represents the background.

Fis. 2. Distribution of the opening angle ${ }^{-1} \gamma \gamma$ in the two y evonts (lab. syst.). The curves 1 and 2 represents the theoretical distributions.

Fig. 3. Distribution of M_{3} 保 the three γ events. The solid curve superimposed on the histogram represents the background.

Fig. 4. Distribution of $M_{y y}$ in events with three γ. The solid curve represents the background.

Fig. 5. Distribution of the effective mass $M_{4} \gamma$ in the four y everts. The curve 1 represents phase-space for reaction $\pi^{+}+n \rightarrow \pi^{0}+\pi^{0}+p$.

Fig. 6. Distribution of the $M_{\gamma y}$ in the four y events. The background is shown by the solid curve.

Fig. 7. Distribution of the mass $M_{\pi^{0}} \pi^{0}$ in the four γ events. The curve1 represents the phase-space ${ }^{\pi}$ for reaction $\pi^{+}+n \rightarrow \pi^{0}+\pi^{0}+p$, the curve 2 represents the background.

Fig. 8. Distribution of the mass $M_{\pi^{0}} y \gamma$ in the four γ events. The solid curve represents the background.

Fig. 9. Distribution of $M_{d y}$ in the all four y events.

Fi . 10. Distribution of M_{3}. in the four γ events with two π^{0}.

Fig. 11. Distribution of $m_{3} \gamma$ in the four γ events containing one
$\pi^{0}\left(\pi^{0} \gamma \gamma\right.$ events $)$.

Fig. 12. Distribution of ${ }^{\mathrm{M}} \mathrm{m}^{\circ}$. in the four γ events in which the two
${ }^{\circ}$ are present.

Fig. 13. Distribution of $M_{\gamma \gamma}$ in four γ events with only one π^{0}

Fig. 14. Distribution of $M_{5} \gamma$ in the five γ events.

Fig. 16. Distribution of $N_{3 y}$ in the five γ events.

Fig. 17. Distribution of ${ }^{3} y \gamma$ in the five γ events.

Fig. 18. Distribution of $M_{6 y}$ in the six γ events.

Fig. 19. Distribution of ${ }^{4} y$ in the six γ events.

Fig. 20. Distribution of $M_{t y}$ in the six γ events.

[in. 3h. M隹Bbuma of $M_{3 y}$ in the six y events.

Fig. 22. Distribution of ${ }^{\prime} H_{\gamma}$ in the six γ events.

Fig. 23. Distribution of $M_{\pi}^{0} y$ in $\pi^{0} \gamma \gamma$ four γ events with $M_{\pi^{0} \gamma \gamma}$
in the mass value interval $800-1100 \mathrm{MeV}$.

[^0]: $x /$ This probability depends on both the energy of γ and on the geometrical factors/7/.

