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The phase-shift analysis is one of the most convenient methods of
reconstructing the NN = scattering matrix from pp~ and ap -scatter-
ing experimental data. A single set of phase shifts is now determined for
the range of energies from 23 to 310 MeV,

Outside this range the amount of obtained experimental data is not
sufficient to determine a single set of phase shifts,
Thus it is necessary to use both reg,ression/l/ and discriminating
experiments,

An example of the necessity of the first type of experiments is the
need of a precise estimation of the np -scattering mixing parameter ¢
which allowed to define the role of tensor forces in NN -~interaction/27.
Discriminating experiments are needed for the elimination of ambiguities
in phase shifts which occur within a broad region of energies,

The purpose of this paper is to develop further the planning methods

/ 1,3,4,6/)

(see, e.g. of experiments of the above types. The two below dis-~

cussed methods essentially rest on the formula (5).

1. The Design of Experiments for the Specification of

Parameters

Let n(x) be the measured quantity:

n(x)=3 0 f (x)= 5'?(x), Y

a=1



where £, (x) are given functions,
f(x)= f (x)
.2
t"m(x)
/ 6, - are unknown parameters, the prime
0 = 92 denotes the transposition of a vector.
ém

If n(x,0) is a nonlinear function of the parameters, it is necessary to

.use a linear approximation (/1/, chapter II, 9):

» +0 = A~
n (@) en(x,8 Ty 3 2O g gt (D
@ =1 a0 g=6(c) a a
a
In(x, 8
f e "
o (%) Y l5=5‘°" (3)

”
where 6'% is the estimate of the parameters at the time t= 0O,

Let the dispersion matrix (the error matrix) of the parameters g

at the beginning of the planned experiment have the value D(0).

After making the measurement during the time T the dispersion mat-

rix will take on the value D(T,x). We shall consider the measurement

made at the point x, more efficient than the analogous one at the point

X, if
k
0™ (Tx DI (T ) |, (4)
where DY¥¥(T,x) is the submatrix of the matrix D(T,x) which corres—
ponds to those parameters 61 62 61; which are of interest to the

experimenter (k < m)



The design of an additional experiment which specifies the para-

meters 6! ¢92 7] " consists in finding such a point x for

which (D“(T,x)) takes the minimal value, It should be noted that the

minimum 1D“l corresponds to the minimal value of the dispersion
/5/, chapter 22} in the space of the parameters 0] 6, 8 4o

It may be shown (see Appendix I} that after the measurement made

ellipsoid (see

at the point x during the time T the dispersion matrix takes the value:

X > > 5
D(T,x)= (1, - —AIDO IIG_ ypp), “

1rA(OTE (x) D(OYE(x)

/
where 1 is a mxm matrix, A (x) is the efficiency/ Y of the
experiment measuring 7(x,9) The optimal position x, of the measure-

ment instrument is defined by rne ecusation:

P (r,x ) - min | D**(T, )|, (6)
x

where T*f(T,x) is the submatrix of the dispersion matrix D(T,x) which
corresponds to (5), The analytical expression for (D** (T, x)) for an
arbitrary k is given in the appendix I. Simple and obvicus results
are obtained for k=m ard %=1. In the first case

™

DT, x)] = PO ,
1+02 (22 {2) T
where o(yx) is the corridor of the errors of the curve n(x,g“”) It

follows from (7) that if it is necessary to specify the whole set of the
parameters 6 the measuring instrument should be placed in the point

x in which oi(x).\(x) is maximal,
If it is necessarv to specify a single parameter Ga(k=1) the posi-

tion of the measuring instrument will be defined by the function

o1






L with the weights w wooa Let the statistics we have

pee ey

be insufficient to give preference to either of the estimates. That means

that the sums:

n

{0} 2
SO T w Ly, =908, x,)] (12)
and
L (n) 2
S (0) = ): [y -nl 0 L )]
do not differ essentially. Here y, is a result of the measurement at X,

The purpose of the planning is to find such a point X, in which

a measurement will give the maximum difference increment S (T, x)—S (T,x)

supposing that the k -th hypothesis is true. (See also/ ). (’I‘he hypothe-

sis H means that the true vector lies near 810) or, more exactly,
that 6:{0) is an unbiased estimate of 8 ). Here:
n L 2 .3
S$(T,x)= X w [y —n¢ ej,x)] +/\(X)T[y~7[\6) L0, (13)
t=1

where v is the. resuit of the additional measurement made at x
during the time T, b, (i = 1,2) are estimates including the additlonal
measurement, The value of §,.(T,x) depends on the result of the measu-
rement at x. Apriori the value of v is unknown, so that we cannot
determine the exact value of S (T,x) before the experiment. However
we can give its mean value, Actuallv assuming that 0‘0’ is unbiased

(see (1), (2) and apperdix 2 in 1/) the random variable

. n(e”’ x) (14)

= -—-.-ﬁ___________
’

! s, (x)

where s, (x)=y(A(x) T)-I+ 0,2 (x) has a normal distribution with parameters 0,1:



4 a
1
b (u )du = -1 ' odu . (15)
V2n
Let the hypothesis H, be true, From (5), (13) and (15) follows that
the mean value of (T,x)~8 (T,x) with respect to u, is equal (s ap-
pendix 2)

3 2
0! vy (8'9 )12 -
E‘[Sz(T,x)—Sl(T,x)]=Sz(0)-—Sl(0)+ [n( s %) 77(0! %)) +[122(x) a?(x)]

2
s, (x)

Evidently, the optimal experimental poirt x, Is the one where
E,[S,(T,x)~$5,(T,x)] attains its maximum, The disign of discriminat-

ing experiment consists in a search for the

[n(gzo),x)-n(gl(o:x)] +a:(x)-af(x) (17)

max
2

x s T (x
2(0

If H, is true, the measurement must be made at the point which
is given by:

3 kS
(0. %) = 2061”01 o (1) =0 (x)
max  —— (18)

* sf(x)

I the points obtained by (17) and (18) don’t coincide, then the measurement

must be made in the point obtai 1 from:

max § W, E, [SZ(T,x)——S AT+ wzF‘z[S J(T,x)-SZ-(T,x)] i, (19)

where the weights W, and V¥, generally speaking, depend on the alm
of the experiment, If the loss occuring when the false hypothesis is ac-
cepted is equal to the loss occuring when the true hypothesis is rejected,

the weights are defined as:



]
robe

(0) ~-1s, 10
W ~e , =e%2()

1 2 (20)

In some cases the aim of the experimer can: be express in a
which allows to find the ratio of the loss due to the false acceptati
the first hypothesis to the loss due to the false acceptation of the
cord one., In such a case the measurement must be made at the point

obtained from:

mex_min E [S (T,x)-S (T,0)]. (21)
x 1=12 k s
Ty

Let us compare the above method of designing discriminating experiments

14/

due to the original formulation of the problem of planning,

with the method proposed In' . The main difference of these methods is
In the present paper the criterion for optimality is the require it
for the maximum increment of the difference Sj(T,x)—Sk(T,x) supposing
that the &k ~th hypothesis is correct { T is fixed). Thus fwr silmat
51 and 6,2 obtained following a certain rule ar2 compared.
}5{4/ two complex hypotheses (/ 5/, chapter 35) with the parameters
”(51 , x ),0,(x) and 7;(_(;2 sx),0,(x) are considered., The experi-
ment {for fixed T ) as a result of which the probabllity of taking the
false hypothesis will be minimal is optimal. In principle ln/4/ two possi~

bilities are compared: either the true vector 0 belongs to the set with
the parameter 5l(2°), D, or toAthat with the parameter (?;o) ,D,. (The
values 7;((:):’ ,x),o’ (x) and 55 , are supposed to be one-to-o
related, see (1) and (1.9)).

1t may be shown that if o (x)=02(x) the position of the optimal
measuring point X4 is the same for both methods and f \ws from

the equation:

[n(g(zo),xo) -—ry(é’(!o),xo)]2 [n(é’;o,,x ) - n(-é(lo) , X )]2(22)
5 = max —
s (xo) x 8 (x)




If o (x)+# az(x) then the position of the optimal points differs the

more the larger Is the term

si(x) 2

[1- ]
sf (%)
2

The authors express their deep gratitude to N,P.Klepikov for his
helpful comments,

APPENDIX 1

Theorem I-I
If the quantity n(6,x)=60"f(x) s measured at the poirt 12 during
‘he time 1T |, then the dispersion matrix of the parameters is expressed

Al

DT, )= (1~ _-_)I»\TD(O);(X)F'(X) Yy D(0) (xL)
L+ axl £7(x)D(0)f(n)

where A(x) is the efficiency of the experiment ard D(0) is the disper-
sion matrix at the tme T= 0.

Proof.

As is known (see/j'/, chapter T1I)
_ - o (1.2
DTN T)=D X0+ AT I T (x) )

or
BT =[ D0+ A ()T K T (x)] =

- s - . o (13
1D +A ()T D(O) £(x) (DO 1=[Im+/\(x)TD(0)f(x)f’(x)]- (0.

We shall use the matrix formula:

(1.4)

~1 ~1
(1,+AB) =1 -A(l_+BA) B,

where 1 and 1 are unit matrices of the rank p and g¢,A 1is a
pxq matrix and B is a pxg matrix, Let us denote

10



A<A(x)TD(0)f(x) amd  =f(x) . (1.5)
F 1 (1L3), 1) and (1,5) we obtain:

DT x)o(l ~ MOTDOE) (x)

= )D(0). (1.6)
L+ A()TE()ID(0)F (x)

The theorem is proved.
An analogical result was first obtained by Box ard Huntexj 8/ for
discrete measu nents with equal weights,

ma I-I

If A and B are two pxp matrices with the ranks r(A)=p arnd
1(B)=1 then

. (179
A+Bl=|Aj(1+ I AP B_).
ESLIETVRCRNS I wr e
Proof.
Let us denote al(ﬁ‘) the i-th column A(B). Then:
(1.8)
|A+B{=|“1+ﬁ;>'“’”p+ﬁp|= ‘ax’az""’ap“‘ﬁl’":"""p“'*lal 2 B | »

P

In (1.8) we drop all determinants containing two or more columns of the
matrix B, They are equal to zero, since t(B)=1. We decompose the deter-
minants in (1.8) in terms of the elements of the B . (i=1,...,p) and
attain (1.8). The lemma is psoved.
Theorem 1-2

Using the assumptions of theorem I-1 the determinant of the disper-

sion matrix of the “useful” parameters is equal to:

X
A()T S (Do)

Kt Kk -1
D (T,x)|=1D "(0)} (1 = ——md C
| x)1=1 (@1 ¢ 1+0%(x)A(x)TaB=1 afl

A0-(1:9)

Here a,ﬁ:l,...,k, o’(x)=t-"’(x) D(O);(x) is the cc lor of errors of the

curve 1(8'°,x)  and C=D(0)f(x)f'(x)D(0).

11



Proof,

It follows from (1,1) that

- % Dus(0s(4(x) D (0)
ln“(r,x)l=!!y§,' p(0 - 2= @0 OFORLD,

D
A 1+ GO T D(D) F(x) a6i(1.10)
= HDaB (0) ~ __A.(_')_T_._

Cunt .
1+ oz(x))x(x)T ab aﬁl

Since the rank of C

is equal to I, we shall use the lemma I-I. From
(1.7) ard (1.10) follows:

kk kk A(x)T : kk -1 <1'11)
DT o= D0 (1 - —2T 5 gy (0], 5C, 4(x)).
1+ 6" (x)A(x)T afS=; af

The theorem is proved,

From (1.9) the formulas (6), (7), (10) and (11) are obtained.

APPENDIX II

Theorem -1
[
I »(0t9, %) is the estimate of n(x) at «x°’ for t = 0 and if

T is the time of the measwrement at x then for t=T the esti-

mate of n(x) at x’ s expressed as:

1,2 =n(00%, 57 o 20LM(yo W05y | (L)
AT 102 ()

where o’ (x,x)=f'(x")D(0)f(x) and
perdix I,
Proof,

1e other notations are as In ap—~

As is known (see/l/, chapter II):

9=D(T,x);(T,x). (II.2)

12



Here T,x) is given by (L1) and the wvector Y(T,x) is equal to:

(1m.3)

> n

Y(T,x)= % y,wif(x1)+)\(x)Tyf(x).
1 =1
Substituting (L.1), (I.2) and (IL3) into () we obts after simple calculations:

ANTDO f0 (),
1+A(x)Tf’(x)D(0)F(X) (11.4)

3 >
n(8,x= " (xHl1_~
x D(0)[ % yiw‘-f.(xl)a»}\(x)Ty_f’(x)] =
1=1

ST AT (1) DOy = F(x) 5]
1+A(x)T £(x)D(0)F(x)

Using the notations given above we rewrite (I.4) as to obtain (IL1).

The theorem is proved.

Theorem I-2

If the measurement is made at x during the time T and if

0 . . .
Loy s an unbiased estimate, then the mean value of the sum of the

0
k
weighted squared deviations §, -8, (f#%k,i=12) is given as:

(
[n(ejo),x)—n(ﬂu,)x)] +02(x)+ai(x’)(m5)

B, (3,-8,)=5,(0)=8,(0)« =
§

where
s2(x)= (A (x) T )"””(x).

Proof.

After the measurement at x the sum of the weighted squared devia-

tions 8 (§=1,2)

n 5,\ 2
S’(T,x)=150 (nCO,, x )=~y ) w . (1.6)

The index =0 correspords to the measurement at the point X, W, =A(x)T.

13



Using (IL.1) we transform (11.6) to the form:

n 2
$,(T,1)=8 0+ I w,A%0x,, 1)+ A(0)Tly (' 0)=A (x,x)" )
i=1 !
-2 2 wl[y,—n(gfn’,x, NA (x,x),
where t=1

1 ":(0)
A!(_x/‘_,x)=zl(x1'X)(y-7’(e ,x)) . (II.B)
2
s, (x)

"~
Let 0‘10) be the unbiased estimate. Then from (14) and (15) follows
that:

Eu!A,(x!.x)=0

4
E, A (x,,x) = o, x)
! s’ (x)
! (L.9)
02(
I‘:u Az(x,rx)= 2 x“x)

1 s_(x) [7’(3(10)':)-7’(5(20)")]
2 ,

4
Eu}A:(x,.x)=—‘-7—’—(—’:‘—'—‘——)——&:(:)+(q(§‘°’,x)-q(5‘.°’,xj 1.
sz(x) 1 3
From (I1,7) and (IL9) follows:
4
B, 15,(To)-5 01=5,0)-5 (0)+s2(x) 3 5 1220022
1=
4 4 4 52(!)
m(x,, ) o,(x) o (%)

- —— +8% (x)w [ z ]
5:(” ! o s:(x) 541(’() "

(I.10)

30y floy 2. n ot (x , X
+(p(0, ", x)-n(8, \x))Y [ X w, _...2..._4_‘._.___)**+_.___;____-_,_]~
=1 sz(x) wgz(x)
FATITRY ey

-."L( ) w ( (g(o) N2
Ly =m0 2 Yo, (x,x)).

[V

s X 1=1
2\)



Simplifying the obtained expression using the definition of o%(x ,x)

get:
4
02 (xer) 1 . po - - -
‘S v, s‘;(x) = s;(x) % w f (xl)D2(O)fz(x)fz(xi)Dz(O)fz(x)(n_n)
Using f(x, 1D (O {(x) =T (IO {(x,) we rewrite

(IL.I) in the form:

e 1 P op 0 ¥ w Fx) T 0t
C T st s ? R 1=1W1 2(!‘”2(){‘)]D2< Y, (-
2 2

1 - _ o, - i
£,(x)7 0D (0)D, (031, (x).

s* (x)
2
finally:
ot ) 2 (1.1
S w 2 ‘¥ X _ Ty (x)
L 4 4
i sz(X) sz(x)

Analogical transformations are used for other terms in (IL10):

4 2 N
n o (x,,%) oy (%}

'

w
1=y s4(x) s’ (x)
b 2 - 3 Iz f (x)= .13
o, o2 (x,,%) i,‘"l v, £ (x)D_(0)F (x) = (I.13)

= fi:(x)Dz(O)iS=1 LA fz(x)=f; (x)Dz(O)Y2 =
=+ +(0) S0y )
=1, (x) 0, =q(0, ,x);

n -’(D)
b3 wi'qz(@2
=1

2
yx ) o, (x %)=



J; <x)1>2(0)1>:'(0)5‘2"’= (8!, x).
(I.15)

Substituting (I1,12) - (IL15) into (I.10), we obtain in a straightforward way:

E, [8,(Tx)=5 (T, 0)1=5,(0) -5, (0)+
2 3
[n (61%2) = 5 (8!, ) 12+ a:(x)—a:(x)

4+ — — !

s:(x)

The theorem is proved.
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