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NapumaneHo-sonHosol ananus peakyuu K7p » Ax'n’
e cbnactin pesowaHca A(1520)

NMpoBegeH nNapuMansHO-BOMHOBON aHanua peakymn K pAw n”
8 obnacTu pesomanca A(1520) ¢ yueTom mknaga TPeyroneHOro
| rradvika. MonyueHs napuvansHuie WMpWHL pacnaga peaoHaHca
A(1520)  no kananam: A(1520) » (1385 o A(1520) -~ Amr.
NonyueHa oueHKka yrna cMmewmsanma SU3-cunarneTta ¢ M30CKanAp-
HOM KOMnoHeHTOM orkteta JP=(3/2)7. lonycTumseie 3Hauenun yrna
cMeumsanmna 19° <., |<35° naxopATcA B cormacuu c npegcKasa-
Huam BU(3)  cummerpun, Onpegenena BERXHAA rpanMua S -sonHO-
BOM [ANUHB 77 -pacCeAHUA w;. BenuumnHa ag<1l2ﬂhnnﬂm C YPOBHEM
BocTOBEpHOCTM 95%.

PaBota eeinonuena B JlaGopaTopuu AROepHbix npobnem OUANK.
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Partial-Wave Analysis of the K'p+Ar =« Reaction
near the A(1520) Resonance

The partial-wave analysis of the K p +Az" %~ reaction
near the A{1520) resonance has been performed by taking in-
to account the triangular graphs. The partial widths of the
A(1520) resonance decays have been obtained for the follow-
ing channels: A(1520) - Z(1385)~ and  A{1520) -+ Awam.

The angle of mixing of the SU(3) singlet with the iso-
scalar component of 'the (3/2)~ octet has been estimated to
be 19°:16,;, I£35% This is in good agreement with the
predictions. The upper 1imit for S-wave scattering length
has been determined to be 8}£0.21(h/m_c) with a 95% confi-
dence level.

The investigation has been performed at the Laboratory
of Nuclear Problems, JINR.
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1. INTRODUCTION

The results of the partial-wave analysis of the KpoAsn™
reaction at the momenta of primary K -mesons (370-420) MeV/c
are reported. The same éxperimental data as in’l’ are used
in the present paper.

The main aim of our work was to estimate the 5 -wave scat-
tering length in thel =0 isospin state by taking into account
the contribution of a triangular graph. A similar analysis
of the #N-orrN reaction taking intoc account the triangular
graphs has been made previously in ref./Z:3’

The major information, concerning the structure and the
properties of resonance states in three particle systems is
extracted now from the partial wave analysis of the reactions
with three particle production at intermediate energies. So-
me version of the isobar model proposed first by Lindenbaun
and Sternheimer’*’ and then develdped by Ollson and Iodh’®’
Deler and Valladas’®’ and others, serves as a basis for such
an analysis. The iscbar model assumes that the amplitude of
the reaction with a three-particle production

a+hbh - 1243 (N

is saturated by two-particle intermediate states among
which rescnance states predominate. In other -words, it is
assumed that the diagrams of figs. la,b,c give the main cont-
ribution to the amplitude of reaction (1).However, in two
particle subsystems of reaction (1) there are always both
resonant states and nonrescnant states which produce a compa-
ratively smooth background. The contribution of nonresonant
states into amplitude (1) can be schematically shown in fig.ld.
To understand which intermediate states are to be taken into
account in the amplitude of the a+b -+ 1+ 2+ 3 transition,
one should use the unitary condition. The contribution of
three particle intermediate states to unitarity conditicon

for three particle production amplitude Tez is

ImTpy = | Tog - Ty dl'y, €2}



where Tga3 is the amplitude of the process 3 -3 and the in-
tegration in (2) covers the three particle phase space.

- In the framework of the isobar model it is assumed that
the whole Tg33 amplitude is saturated by pair collisions of
particles (i.e., three particie collisions are negligible).
At intermediate energies of the primary beam (when the ki-
netic enerqgy of the produced particles reaches some hundreds
of MeV) the amplitudes of pair interaction do not probably
contain smallness parameter. So taking into account diffe-—
rent diagrams in the amplitude Tg3 is reasonable only if we
can in any way distinguish diagrams between each other by
their contributions to the full amplitude T,y . It becomes
possible when one studies the analytical properties of the
three particle amplitude.

The amplituodes, corresponding to intermediate states in
Tgz3 with resonance interaction of one or two pairs of par-
ticles (e.qg., figs. 1i,qg type diagrams) have specific ana-
lytical properties which are peculiar to such amplitudes
only. o
Namely, the amplitude corresponding to the Fig. 1gq diag-
ram has a singularity of logarithmic type (i.e., at some
point it tends to infinity as a logarithm).

It is known that the Breit-Wigner pole describing the
resonance, e.g., in the system of particles 2 and 3, is pla-
ced at definite my =V (p,+ Py )¢ irrespective of the value of
other variables on which the Tpy amplitude depends. Unlike
this logarithmic singularity of diagram lg is placed under
different My values depending on W=v (p,+n, w:,ps)Z which is
the total energy of three particles in their c.m.s. {or un—
der differentW values depending on m, }. Its location is
defined by two variables.

Analogously, the amplitude of graph 1i has a pole in the
complex plane myy which corresponds to the resonance inte-
raction of particles 2 and 3, and iogarlthmlc singularity
of the type mentioned.

From the above said it follows that in order to. satlsfy _
the strict unitarity condition the isobar model ‘must include
both specific amplitudes corresponding to triangular graphs
1i,q and the resonance production amplltudes ia,b,c and the
"background” amplitudes 1d.

Unfortunately, these cbvious arguments ‘were doubted at
the Chicago conference in 197277/, G.Lovelace in his rappor-
teur talk devoted to the progress in resonance'phjsiCS‘has'
noted that including a triangular graphs intoc.isobar model
leads to double*countlng and breaks the unltarlty condltlon-,
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Fig. la,b,c Diagrams of the producticn of resonance ampli-
tudes in the iscbar model, d - background diagram in the
isobar model, e,f,g,h ~ diagrams of pair interactions in the
three particle amplitude, i,q - triangular diagrams corres-
ponding to singular amplitudes in the isobar model.

It is clear, however, that taking into account the amplitu-
des with a different analytical structure can never lead to
double-counting. Rejecting the triangular praps 1i,g is equ-
ivalent to rejecting scme definite items in the Tgg amplitu-
de in unitarity condition (2) and thus, strictly speaking,
breaks the unitarity condition.

The analytical properties of the amplitude which corres-
ponds to the triangular graph lg, have been considered in
detail by several authors (see, e.g., ref.xsﬁf 1.

The direct calculation of the amplitude, corresponding
to diagram lg, shows that if its singularity is placed close
to the physical region, the amplitude is proportional to the
scattering amplitude of particles 2 and 3 with Mgy close to
the singularity position. Hence, when it is known "a priori”
that the latter amplitude is negligible, it is peossible to
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reject the triangular graph when constructing the isobar mo-
del. When there is no such information and the kinematics of
the reaction allows the logarithmic singularity to come close
to the physical region, then it seems to be necessary to take
into account the corresponding contribution to the full am-
plitude.

The isolation of this contribution from the available ex-
perimental data could provide us with useful information
about the 2+ 3 - 2+ 3 scattering amplitude. Bearing in mind,
that the logarithmic singularity may occur close to the phy~
sical region only at the values of Remojy = mytMgli.e., near
the elastic threshold), cne may apparently hope to determine
the S-wave scattering length of particles 2 and 3.

Now consider some conditions which seem to be necessary
for successful determination of the 77 -scattering amplitu-
de through the isolation of the contribution of the logarith-
mic singularity in the amplitude of the reaction K p.An'n".

First of all, it is clear that the considered contribu-
tion should not be deliberately small. It requires first
that the logarithmic singularity approach sufficiently close
to the physical region and, second, that the resonance pro-
Guctioen amplitude (Fig. la) would not be too small.

The latter requirement is caused by the proportionality
of the amplitude of the triangular graph to the resonance
production amplitude.

In other words, it is desirable that the produced reso-
nance would be sufficiently narrow and the amplitude of the
production and the subsequent decay of the resonance give the
dominating ceontribution to the cross section of the reaction
atrb- 1~ 213, the cross section being saturated by not too
many partial waves. It is appropriate to call these condi-
tions dynamic conditions.

In order to determine the contribution of the logarithmic
singularity to the amplitude of reaction 1 correctly, it is
necessary to understand clearly which kind of cbservable ef-
fects may be connected with such a singularity.

C.schmid in ref.’!%’ has claimed that the observable ef-
fect of the triangular singularity is, in general, extremely
small and completely disappears in the differential cross sec-—
tion do'dmé% of the reaction a+hb » 1+ 2+ 3,

Schrid’'s arguments are as following. The absorptive part
of the amplitude of diagram 1g may be found with the help of
the Cutkosky rule, which follows from the unitarity condition.
Taking into account only the S-wave scattering of particles
2 and 3, one may write: ' ’



AL =qgayy - fl dz ?ﬁdqs g’ : 3
iry 0 m2 —M, +iM T
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where q is a momentum of particles 2,3 in their c.m.s., aggq
is the elastic scattering amplitude of these particles:

By, = (e®® _1)/2iq.

Al to an accuracy of the factor 4.3p3 is equal to the S-wave
part of the Breit-Wigner amplitude Ap in the expension:
G o ()
Ap- > = EAR_‘PF(GOSQ)
"~ m —M‘2+1M I =0
2 R R

ts)
Ay =qaglAp

Up to this point Schmid’s arguments 10/ are doubtless.

However, his subsequent conclusions are inaccurate which has
been pointed out by valuev /117,

Schmid supposed that the singular part of the triangular
graph amplitude may be presented in the form:

210
A -=2iA, -2iqaAy - (e —1)A“”
Then the total amplitude of reaction I would take the form:

(s) o
A A A -A AT T Al
2 R

- 1

P {cos @)

and

A Als) 2i6

ls)
1 K A

Hence, according to Schmid, the effect of a triangular graph
consists only in changing the phase of the S-wave part of
A amplitude. In the differential cross section do dm? 23
which is proportional to the form

iRV 4 sy 2 = . (f 2
LA R T S VYT N
dm 5., f=1 R fF o R

any observable effect disappears completely. The inaccuracy
of this conclusion is that the singular part of the triangu-
lar graph cannot be written in the form A =2iA,.



In the correct form A, contains one additional item (be-
sides 2iA; ) which has a logarithmic singularity close to the
peint m23=(W—ﬂn1)2. This singularity cancels out the same
singularity of A; and the total amplitude A, is regular at

the mentioned point. It is impossible, of course, to neglect
such a singular item in the total amplitude A, and hence we
chtain
216 (s)
A= (e ~1)(AC AL ),
where &5 stands for the menticned singular item which has
been rejected by Schmid. Then

ts) , . 2 .2
R-A2J ]Le —1)AZ: (4)

(A FAD ] %;jA(;)iz—?, Re [(e#°-1)a
and the differential cross section do dmsacontains the ob-
servable effect of the triangular singularity, the value of
the effect being proportional to the 2-3 particle scattering
amplitude. The effect is caused by the second item in (4).
Consider now in detail the kinematic conditions which are
necessary for the most evident appearance of the effect of
the logarithmic singularity. The simplest way for it is to
study the Dalitz diagrams.

The physical region for the variables slzrnf% and,%g:-mgg
(the value of W¥ being fixed) is shown in Fig. 2a by a clo-
sed curve. Every possible kinematic configuration in the re-
action a+ b ~ 1.2 .3 corresponds to a single point in the
Dalitz plot.

The production amplitude with a resonance in the 1,2 par-
ticle system is large in the band, corresponding to the re-
sonance with MI%’.—FRMRi 54 g_MifI“ M_.In order to determine the
region in the Dalitz plot where the effect of the logarith-
mic singularity can be considerable, it is necessary to drop
the perpendiculars on the absciss axis from the points where
the lines 312=1W§-rhMR and 812==M§+rrhh1R cross the physical
region boundary. One may hope, that in the shaded band in
F'ig. Za, the effect from the triangular graph singularity
is considerable.

Hence, the most advantagecus kinematic conditions for iso-
lation of the triangular singularity contribution occur when
this band of the singularity covers the highest possikble area
on the Dalitz-plot. Such a configuration of variables corres—
ponds to Fig. 2a, where the line 512“M§+F§MRtOUCheS the
physical region boundary, i.e., the whole resonant band comes



into the physical region and the value 312==M§*’E2MRi5 the
largest possible value of this variable. In this case the
total energy of three final particles in their c¢.m.s. is equal
to Wo=vSig+mg =v M2R+1" gty Bearing in mind that usually
['g<<Mp we obtain Wg=Mp+m  + I'p/2

As W grows up, the band of logarithmic singularity influ-
ence becomes narrower, and its center tends to the lower va-

Sya=(my+m,)? Sz3m(my+my)?

a) b)

Fig. 2. Dalitz plot of the reacticn ai+ b 1+2+3. The in-
terval of values MiﬁFRMR:slz<M§4IkMR corresponds to the
region of resonance production with the mass My and the width
I'y in the system of particles 1,2; influence of logarith-~

mic singularity may be important in the shaded regicn.

lues of Sa3 (as it is seen from Fig. 2Zb}. Then the kinema-
tic conditions for the isolation of the singular item in the
three-particle production amplitude becomes somewhat worse.

Generally speaking, it is possible to try to distinguish
triangular singularity contribution at the values of the to-
tal energy W< W, . In the latter case, however, it is diffi-
cult to make any definite prediction akout the band of influ-
ence of the singularity; one may only think that the band
width would be of the same order of magnitude as for W=W; ,
but the effect would appear less evident.

Finally, for the correct interpretation of the results,
obtained by d&istinguishing the legarithmic singularity cont-—
ribution in the amplitude of reaction 1 it is necessary to
take into account the following. The considered contribution
is proporticnal to the elastic scattering amplitude of par-
ticles 2,3, averaged over the band of influence of the singu-

9



larity. Hence, in order to obtain more definite results,
this band must be narrower which, in turn, requires the
increase of the initial bheam energy.

It is easy to see that the latter reguirement contradicts
the two former ones (kinematic and dynamic). Thus, the opti-
mal conditions for the isolation of the logarithmic singu-
larity contribution and the determination of the scattering
amplitude of particles 2,3 must be selected on the grounds
of some compromise decision.

One of the reactions where it is possible to expect essen-—
tial contribution of the logarlthmlc singularity is the reac-
tion ¥ p- §K1385)._4Aﬂ 77  well-studied experimentally near
the $(1385) production threshold.

Indeed, at the initial K energy of 400-500 MeV the total
cross section of the reaction K p-As »~ is sufficiently
large, ¢ ~ i-2 mb, and the produced resonance 2(1385) is
sufficiently narrow. According to the analysis of ref. !
in the region of the K momentum 365415 MeV/c the cross sec~
tion K'p-As"2" is saturated by a small number of partial
waves, the amplitude with 2 (1385) production dominates
over them.

The kinematic conditions for the isolation of the logarith-
mic singularity contribution in the reaction K™ p-ArTn~ in
the considered energy region appear somewhat less favourable.
The most favourable configuration (corresponding to Fig. 2a)
takes place at the K momentum Pg- = 455 MeV/c, and the
best conditions for the interpretation of the obtained value
of the ap—S-wave scattering amplitude occur at still larger
values of Pp—~ 500-550 MeV/ec.

Nevertheless, taking into account the rich statistics of
the data, obtained in ref.”’l/ it seemed reasonable to carry
out the corresponding analysis of these data to isclate the
logarithmic singularity contribution and to determine the
7 S-wave scattering amplitude.

We used the expression, obtained in for the triangu-
lar graph amplitude for numerical calculations. The used
expression slightly differs from the cnes listed in refs!
Generally speaking, the singular part of the amplitude of
graph lg is defined only within some smooth function of W
and mZ, . In order to estimate the influence of such an un-
certainty on the estimation of the »# -scattering amplitude,
some special subtractive procedures have been used when per-
forming the analysis. These procedures are considered in de-
tail below.

f12/

2.3,9.
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II. MODEL OF THE PARTIAL-WAVE ANALYSIS

The authors of ref./L/ have drawn the conclusion that the

reaction K p-An"w~ is well described by a model in which
enly six partial waves are taken into account, namely,- if

we use their notations — the waves DSO3( Y*), DS13(¥Y*),
PPOt{Y*), PPO3(Y*), PSOl{ o}, and DPO3{ o). So initially
we decided to use the same six waves but with an addition

of a triangular graph to the amplitudes DSO3(¥*), PPOL(Y*)
and PPO3( Y*) . The results of our analysis differ essentially
from those of ref.’! where the value 0.8240.10 has been ob-
tained for

o[ A (1520) » 3 (1385) 5= |
al A(1520) = An T =1

(5)

Our estimation of R for the momentum K~ 395 MeV/c is equal
to about 0.40. Naturally, such a great difference has made
us put a question about the correctness of the model with
the mentioned six waves. We have decided to repeat the ana-
lysis of ref, ' in full taking intc account where it is
necessary the contribution of the triangular graph.

Table 1 presents all partial waves which have been used
in the analysis. The notations are the same as in ref.’1/
i.e., each state is noted in the form LL'(D2J., herel. is
the angular mementum of the initialK™p system, L.’ is the
angular momentum of the subsystem of twe final particles re-
lative to the third one, I is the total isotopic spin,J is
the total angular momentum. The model takes into account $ ,
P and D waves in the initial state (i.e., in the system
of primary K p) and 8 , P waves in the final states. The
total angular momentum J < 3/2.

Additiconally, to the earlier accepted notations of states
we accept a new notation characterizing the reaction from
the point of view of the initial K~ p system. We note the
state by LI(EJ)}, where L , ! ,J have previous meanings.

Then the model may be shown as follows:
D03 - DS03(Y*): DP0U3(0o)+ DPO3(Ar)

D13 » DS13(Y*) + DPI13 (An)+DS13(p)

POl » PPOL(Y*).PS01(0) + PSOL{Ar)

P03 - PPO3(Y*)

t



P11 . PPli(Y*)s+ PS11(Arm)

P13 . PP13(Y*)
501 - SPO1{(A#) + SPOl(s)

511 . SP11(Ar) +8511(p)

Table I

The waves used in the partial-wave analysis

Wave Loz
type
T ™ D503
2 . BsS13
3 PPO1
4 PP11
S Pro}
6 PP11
7 Az PSOL
8 ' psll
G SPDL
10 spil
11 pPO3
i2 FD13
13 < PS01
14 spol
15 DPO3
16 P 5511
17 pS13

The number of the waves is 17 (if we use notations offl/),
each wave is characterized by the complex parameter (i.e.,
two real parameters). Due to the uncertainty in the common
phase the imaginary part of the D503 (. Y* wave parameter
is taken zero and fixed. Moreover, the term taking inteo
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account the normalization on the total cross section was
added to the minimized functional.
The main aim of ref.’!’ consisted in estimating the value

o[AQ520) . S E(385).7 1 o[DO3 - I (1385)x 7}
o[ A(1520) + Anto— " ¢[DWB sAmTa ] ’

=

The estimaticn of R can depend con the following factors:

1. The uncertainty of the model, i.e., a model with ano-
ther set of waves can be chosen. .

2. The structure of the DO3 wave. _

3. The parametrization of the factor of the centxifugal
barrier penetration.

4. The parametrization of the UL=I=0 sz -scattering phase.

5. The parametrizatiocn of the L=0,1=l, A -scattering
phase. '

We have made the analysis in which the dependence of the
estimation of R on each of these factors are checked.

THE UNCERTAINTY OF THE MODEL

It is known that the main drawback of all partial-wave
models is some arbitrariness of the choice of the states.
In order to estimate the effect of such arbitrariness on the
estimation of R we have limited curselves to the analysis
of one of the alternative models chosen from the following
considerations. Among 17 waves of the initial model (Table I)
there are four pairs of waves which intexfere strongly with
each other: they are PSOl (¢ ) and PSOl (A#z), DSi3 (p ) and
DP13 (Ar), SP11 {Am) and SSLi { p), SPOl {¢) and SPOL{ Ax).
If two waves interfere greatly with each cther it means that
they are functionally near and the neglection of one of them
must not influence considerably the quality of the descrip-
tion of experimental data. So, in an alternative model we
have rejected the following four waves; PSCl (Awr), SPOL{o ),
5811 (p), and DS13 (p } and made a fit simultaneously by
the model with 17 waves (model I) and by the model without
these four waves (model II).

THE STRUCTURE QF THE DC3 WAVE

The DO3 wave in model I has the following structure:

D03 -DS08{Y*)+ DPO3(¢ )+ DPO3(Ar),

The DSO3 ( Y#) wave is the basic wave in this state and two
other waves are considerably smaller.
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Naturally, we can put a question: can we neglect one of
the tweo small waves from the point of view of statistics?
So, simultaneously with main model I we used models in which
we neglected cne-of the small waves in the DO3 state: either
DPO3 (¢ ) (model III) or DPO3 (Ar) (model TV).

THE PARARMETRIZATION OF CENTRIFUGAL BARRIERS

The dependence of the partial wave amplitudes of the mo-
del’l’ on the energy of the correspending pair of particles
(c.m.i.) contains a factor of penetration of the gentrifugal
barrier which is written in the form pzp/(1+p2r2)2, where
p is particle momentum in their c.m., £ is the angular mo-
mentum, I 1is a phenomenclogical parameter taken by analogy
with the theory of resonance scattering in nuclear physics,
where I has the meaning of the compound nuclear radius.

The authors of ref.’l’ have chosen r--1fm arbitrarily.How-
ever, it is confirmed in the literature 1% that a smaller
value r describes data better in the framework of isobar mo-
dels. Therefore, in the analysis we have takenr as a free
parameter and chosen its value taking into account the gua-
lity of the description of experimental data-

The uncertainties in the values of the mass Mg and the
width I'yof the resonance X (1385} can influence the esti-
mations cf the values R and ag

The dependence of estimations of R and ag on these values
has been checked as follows: the analysis was made in the
framework of models I, II, III with two values of these pa-
rameters taken from ref.’!’ and compilation;lqﬂ The wvalues
R ana a; obtained with these two sets of parameters coincide
within error limits.

THE PARAMETRIZATION OF THE L=I-0 & -SCATTERING PHASE

Up to now there are. great uncertainties at the low ener-
gy L=1=0 #7 =~scattering phase (see, for example, ref./lsf).
Taking into account this uncertainty we made the analysis
in the framework of models I-IV with the three different
parametrization of the phase mn : of ref.’'l’, of ref. 18/
and of ref.'17/,

THE PARAMETRIZATION OF THE L =0,I=1 7 A -SCATTERING PHASE

There are two papers on the determination of the Anr-phase-
ref. 18/ (the same phase has been used in the analysisfl/)
and ref. 1%/, The phase obtained in ref.”18/ ig positive
but that in ref./1%/ is negative. We have made the analysis
with both parametrizations.

14
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The triangular graph amplitude in the commom case can be
written with an accuracy to any analytical function of the
77 —system mass.

We have estimated the influence of the inaccuracy of theo-
retical description of the triangular graph on ap in the
following way. We wrote the expression of the triangular
graph amplitude with the subtraction constant and made the
analysis with its three values. They have been chosen as
follows:

a) The subtraction constant has been chosen so that the
value of the triangular graph under m§ﬂ=(m§;)max turned to
zero. In other words

" 2 2

A”T[W,mnW]-T[W,(mn”)mad

p} The subtraction constant has been assumed to be equal
to zero.

¢) The subtraction constant has been assumed to be equal
to the value of the triangular graph with W:ﬂm\(1520) and
m? (m 2 with the same W.

nr 7 Tmax

III. RESULTS OF THE ANALYSIS

Model I with the parametrizations of =7 -—and nA-scatte~
ring phase taken in ref.”l”Y and with r=l1fm has been chosen
as the main model. To estimate the values of other varied
parameters in the framework of this model we have chosen
initially 4 intervals by the momentum of the primary K me-
son from 370 MeV/c to 410 MeV/c, containing 7404 events (the
total number of events in the experiment’ ~ is about 9200).
Totally we have chosen about 80 random initial approximaticns
in this four intervals and the minimization has been made for
each of them. As a result, we have found a considerable num-
ber of minima of the likelihcod functional. This situation
is characteristic of the maximization prcblems of such kinds
and the question always arises about the choice of the unique
solution on the basis of only statistical criteria.

In our case the solution corresponding to the deepest mi-
nimum has been chosen as a unigue solution. Such a choice
has been as a result of the following considerations: first,
the value of the likelihood functional in the highest mini-
mum has been many orders smaller than in the neighbouring
minima and, second, the corresponding sclution had a continu-
ity property in the passage from one energy interval to other
one. Here we have used considerations developed by Tyapkiﬁ”?f
The solution obtained in the framewcrk of main model I was

15



chosen as the basic one in the feollowing analysis of models
I-IV with using different parametrizations m7— and wA-scat-
tering phases, the centrifugal barrier and simulating the
uncertainty of the triangular graph.

Figure 3 shows the contribution of each state to the cross
secticn of K p-AsT#" at the momentum interval of primary
K~ -mesons {360-420 MeV/c) obtained in the framework of mo-
del I.

It is seen that the wave D03, i.e., the wave with the
quantum numbers of the rescnance A {15320 is dominant.

Consider now the influence of different uncertainties on
the estimation of parameters for models I-TV.

' I b L| Genimb)
a5t 5 so1 {mb) ms* O s (mb) QS: G eos (mb) + 0,1'5: "
oo} or0f 0,4% APL | oo
qas':{ gost ‘l‘ 02t + oos{t T
 rua (mb} | Cipss(mb) oy (mb} | G pa(mb}
003t aist a0t i
[ [ 02: 1
002} ot 4 2o 41 i
[ [ + LT
[ ol
001} 4 oost of + 4 T
' f
l.TL 14 ‘I‘ ) 1
365 15 365 #15 365 415 365 415
Px(Mev/c)
Fig. 3. Contributions of different states to the cross sec-
tion of the K" p-Ar's  reaction.

The optimal value r in the parametrization of the penetra-
tion factor <f the centrifugal barrier is chosen by compa-
ring the summed values of the functicnal ¢ in 5 energy in-
tervals (370 MeV/c.p < 420 MeV/c), the total number of
events being 8020) in the models I-IV with parametrizaticn
of 7~ and @A -scattering phases as in ref. 1 and with three
values T =o; 0.5 and 1 fm.
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Then we have made calculations with the gA -scattering
phase the same as in ref, 1" and with the wr -scattering
phase the same as in ref. ¥’ and ref.17’. These calculations
were made only in the framework of model I. The value r = 0O
was the best one in these two cases. Besides, the calcula-
tions have been made in the framework of model I and when pa-
rametrization of ref. ! for the mw -scattering phase was
taken and parametrization of vref. 197 for =A -scattering was
taken. The value I = 0.5 fm was the best one.

In dccordance with these results we chose t = G for all
the models when uéing the #A -scattering phase from ref. 18
and T = 0.5 £fm for the models applving the #A -scattering
phase of ref. 97,

All the considered models with these values were permis-
sible from point of view of statistical criteria.

Takble II presents the values R obtained with different
models. The value R and its error are calculated as follows:

R.S s 1 aAmz. vy

C(AR )T T (AR, i (AR,

Here R; .AR; are the values of the ratio R and its error in
the corresponding energy interval. Summation is made over
all energy intervals.

The values &, and Ad; obtained in different models and
calculated by the formulas as R and AR are presented in Tab-
le IITI. The uncertainties in the subtracting constant of the
triangular graph mentioned above, give only a change of the
value Aao but nct iio. Table III presents the values corres-
ponding to the case when the amplitude of the triangular graph
is written in the form:

A T(s.mgn)w T(s.(mz )

wr 7 max ).
In this case the error A#, is the largest one.

Figs. 4,5 show the angular and mass distributions demonst-
rating the quality of description of experimental data in the
framework of one of the models. One mass and one angular dist-
ributions are given as an example. Totally we have considered
13. different distributicons containing 330 experimental points.
Taking into account considerations of ref. #1° it is possible
to state that the distribution of the sum of x2 over all the
spectra must have in our case the distribution which is inter-
mediate between x’2(317) and x5%284). Qur values of xz are
in complete agreement with those distributions. 17



Table II

values of R obtained with different mocdels and various
,parametrization of the phases #r and nA

Parameterization of Model R

‘the phases Ji Il and .TIA

Morel J 0.339 + 0.040
Phazes I 3r-and J A, Model III 0.522 + 0.042
ref./l/

Model TV 0.272 + 0.034

Model 17 : 0.297 i 0.033
Phase Ij,ref./lﬁl‘, Model 1 0.399t  0.053
FPhase :ﬁﬂ, ,ref.lla/
Phase Ji-5i ,ref./J'?/ . Model 1 } 0.224 + 0.0438
Phase J; A ,ref./ls/
Phase i ,ref./}/ Model 1 0.295 + 0.040

Phase Ji A,ref.llg/

IV. CONCLUSION

We have made the partial-wave analysis of the K p -Ar #
reaction near the A(1520) resonance in the framework of the
iscobar model taking intc account the influence of the loga-
rithmic singularity of the triangular graph.

Our results differ considerably from those of ref.l’ with
the same set of experimental data. The main difference is
that the contribution of the PSC3 ( ¥*) amplitude to the
Kp-An #~ reaction cross section turned to be considerably
smaller than in ref. '’ : the value of the ratio

R - L1A1520) - 2(1385)n]

[[A(1520) +Arn]

18



Table III

values of 4p obtained with different mcdels and various
parametrizations of the phase 7# and rA

Parametrization of Motdel a
o
the phases i and JTA

Model T -0.005+0, 047
Phases B9 ana 7/, Model III -0.,018+0.03%
r‘ef./l/
Medel TV 0.053+0.076
Model IT 0.000+0,050
phase T3 ref,/ 18/ model I -0.005+0.045
Phase Ji A ,ref./l/
Phase T Tt ,ref./:w/ Model I 0.0L1+0.062
Phase JTA ,!‘ef./l/
Phase jJ?,ref./l/ Model I 0.009+0.057

Phase ﬂﬂ,ref./lg/

varies according to our estimaticons from (0.22*% 0.05) to
(0.52% 0.04) depending on the model version, while in ref.l’
R = 0.82%0.10. We also have determined that the main inaccu-
racy in the estimation of the value R results from the model
uncertainty (i.e., some models with different sets of waves
turn out permissible from the point of view of statistics).
In previous refs. 2225  pmodel inaccuracy has not been consi-
dered.
Our analysis permits also the estimation of partial widths

of the A(1520) resonance decays by the following channels:

A(1520) -~ Arr (all charge states) (&)

19



A1520) - X(1385) (all charge states) (7)

We took the elasticity of A (1520) egual to (0.46+0.01) 14
under the calculation of the rescnance widths by channels
(6) and (7). Our estimations show that the width of the

A (1520) decay by channel (6} varies from (1.22+0.08) Mev
to (1.52%0.06) MeV. Such a change of the decay width corres—
ponds to the deviation of the ratic of the A (1520} decay
by channel (6) from (8.2t0.5)}% to (10.2+0.4)%.

360-37UMev/c

380-390 Mevic

100

50

IIE![I’

ALt i by NSNS NN L Lyt i)

1576 1885 1576 1896 1576 1905

390-400 Mev/c 150 {» 400410 Mev/c | 410-420 Meyie

200

T 1 1 7T
TTTT

100
100

50

Ad L g g gl

1576 1916 1

ALl a4 )y 1
76 1926 1576 1937
M2-, (Gev)?

NN

wprrrrrr

Fig. 4. Distribution of events over thVA'(pn‘ ‘p.\)g
Full curves correspond to model I of this paper.

The decay width of A(1520) by channel (7) varies from
(0.2610.10) MeV to (0.65$0.08) MeV. Such a deviaticn at the
widths of the A (1520) decay is caused by the model uncer-
tainty and the uncertainties in the knowledge of #7- and
nA -scattering phases.
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The estimation of the value R is important for calcula-
ting the parameter of the mixing SU(3) singlet of FP=(3/2)"
with the isoscalar component of (3/2)7 cctet. The resonance
A {1960) is a mixing partner, for A(1520) in the framework
of SU@). i.e.:

A(1520) - cos@il.-- singl8 -, A(1690) singdil. : cos@i8 - .

Since the singlet state cannot decay into 2(1385)z we
write

tg26 ] l*(la2ﬂ) o

" (1690)

where I’ (1520) and I'(1690) are the partlal widths of A (1520}
and M\ (1690} decays into X(1385)n , respectively, and p is
the ratio of phase spaces. There is no unique opinion on how
to calculate p and this value changes from 7.1 ®%° o 9.5V
in different estimations.

Further, the full width of the A({1690) resonance is not

. known accurately either. The values from 30 to BO MeV are

given for this width in the compilation 14/, ye have taken

the value 0.41 for the ratio of the decay A{16U0) -
- £(1385)x ®3. '
Then:

(2% pin  =0.056,
g% ., ~0.500.

It corresponds to the angular range:
'13°_<10%<;35°

This is in qood agreement both with the estimations obtained.

‘from the D -wave decay analysis 13" and with the predictions
~of theories with higher symmetries:- :

BaC
The interpretation of the obtained estlmatlons ag is a

"bit ‘moré complicated. The most “of them are in agreement with

the predlctlons of the current algebra but the uncertainty
in the estimation is qulte considerable: 2, varies from
-.02t0.04 to 0.0510.08. It:is p0351b1e to state that 3, 0. 21

“at a 95% confldence level. It is possible to say also that

the 1ogar1thm1c singularity contribution to the reactions,

-con31dered occurred to be less favourable than it c0uld be

expected from the results of ref.’ A/, The main reason is that.
the amplitude with the production of the isobar 2(1385) is
con51derably smaller: than in ‘ref. A/, Further more, as has.’
been mentloned above, the most favourable klnematlcal condl—

‘721.:




tions to estimating 33 in this reaction occurrs at higher
primary energies. All this means that the estimation of 2,
obtained by us has a considerable uncertainty. It is possib-
le to await that a similar analysis in the region of K~ me-
son momenta Pu.. = S500+550 MeV/c will give more reliable esti-
mations for 23 when using detailed experimental data.

K 360-370 Mevk Joof 270-380Mevic 300:\ 380-390 Mevie
200]
100
100}
+
VI R N N ) —||\r|\1||llllll1ill N EEEWNE SR E)
- a 1A 0 T 0 3

300 390-400 Mevic 3000 400-410 Mev/c 410-4 20 Mevic

2001 50

100 100}

Fn..uzu”l...‘...... f a1y po vt lev ey

-1 0 1 -1 il 1 q 0 1
cos (A K™)

S
Fig. 5. Distribution of events over cos(A.K ) R TE

Hpp
Full curves correspond to model I of this paper% dotted
curves correspond to the model of ref. 1’ with theor para-
meters.
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