объеДИненНЫй
ИНСТИТУТ
ядерных
исследований
дубна

E1-12298
B-30

a STUDY OF AZIMUTHAL CORRELATIONS

IN MULTIPARTICLE $\overline{\text { PP }}$ INTERACTIONS
AT $22.4 \mathrm{GeV} / \mathrm{c}$

Alma-Ata - Dubna - Helsinki - Moscow - Prague Collaboration

E1-12298

A STUDY OF AZIMUTHAL CORRELATIONS IN MULTIPARTICLE $\bar{P} P$ INTERACTIONS AT 22.4 GeV/c

Alma-Ata - Dubna - Helsinki - Moscow - Prague Collaboration

Submitted to Nuovo Cimento

Иалучение азимутальных корреляций в многочастичных $\overline{\mathbf{p}}$ р -вааимодействиях при 22,4 ГэВ/с
В работе изучались инклюзивнье распределения по өзимутальным углам пар пнонов в $\overline{\mathrm{p}}$ р -взаимодействиях при 22,4 ГэВ/с. Изучалась так
 Было оценено влияние рождения ρ° и Δ^{++}-резонансов. Результагы покдзьваюг, чго эхспериментальные данные не могут быть объяснены ни рождением резонансов, ни эффектом Бозе- Эйнштейн симметрии.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследовании. Дубна 1978
Batyunya B.v. et al.

E1-12298
A Study of Azimuthal Correlations
in Multiparticle pp Interactions at $22.4 \mathrm{GeV} / \mathrm{c}$
The inclusive azimuthal distributions of pion pairs are studied in $\bar{p} p$ interactions at $22.4 \mathrm{GeV} / \mathrm{c}$. The dependence of the asymmetry parameter B on $n_{c}, \Delta y^{*}, \Delta P_{\|}^{*}$ and ΔP_{\perp}-variables is studied. The influence of ρ° and Δ^{++} resonance production is estimated. The results show that neither the resonance production nor the Bose-Einstein symmetry effect suffice to explain the data.

The investigation has been performed at the Laboratory of High Energies, JINR.

1. INTRODUCTION

Two-particle correlations have been recently studied in various multiparticle reactions of hadrons. Special consideration has been given to the anqular correlations both in the exclusive ${ }^{1-9 /}$ and inclusive or semi-inclusive ${ }^{10-18 /}$ framework and to invariant mass dependence of the correlation function ${ }^{\prime 19}$. Our previous results on this subject were published elsewhere ${ }^{19 a}$.'The question which still draws attention is which mechanism is responsible for the difference between the distributions of like and unlike charged pion pairs. Two explanations are usually given: the Bose-Einstein symmetry effect ${ }^{\prime 20 /}$ and the influence of resonances. The global effect of resonances on the opening angle asymmetry has been found/21/ to be more pronounced than the Bose-Einstein effect but, e.g., the authors of paper ${ }^{/ 22 /}$ conclude that resonance production accounts for only 30% of the observed phenomenon. The purpose of this work is to present data on azimuthal correlations and to estimate the effect of resonance production on these correlations in $\bar{p} p$ interactions at $22.4 \mathrm{GeV} / \mathrm{c}$.

2. DATA SAMPLE

Our results are based on a sample of 25321 interactions obtained from an exposure of the 2 m HBC "Ludmila" to a $22.4 \mathrm{GeV} / \mathrm{C}$ antiproton beam at Serpukhov. Details of the experiment have
been published elsewhere $/ 23,24 /$ in connection with a study of topological cross section and single particle distributions. The reaction studied is $\bar{p}+p \rightarrow$ two charged pions + anything. The charged particles with laboratory momenta of $\leq 1.2 \mathrm{GeV} / \mathrm{c}$ were identified by ionization. To study the correlations between two charged pions, we excluded the identified protons and particles with $|x|>0.5$. The latter cut is based on results of the single distributions showing that the positive particles with $x<-0.5$ are mostly identified protons. Assuming charge invariance, all negative particles withx >0.5 are taken as antiprotons. Except a study of the multiplicity dependence of B, we used only events with charged multiplicity $n_{c} \geq 6$. There are 7000 such events in our sample.
3. AZIMUTHAL DISTRIBUTIONS

In this section we present results on the distribution of azimuthal angle $\phi_{i j}=$ $=\operatorname{arcos}\left[\left(\overline{\mathrm{P}}_{\perp_{i}} \cdot \overline{\mathrm{P}}_{+j}\right) /\left|\overline{\mathrm{P}}_{+i}\right| \cdot\left|\overline{\mathrm{P}}_{+j}\right|\right] \quad$ for both like and unifke pion pairs. These distributions $p\left(\phi_{i j}\right)$ are characterized by the asymmetry parameter

$$
B^{i j}=\left[\int_{\pi / 2}^{\pi} P\left(\phi_{i j}\right) d \phi_{i j}-\int_{0}^{\pi / 2} P\left(\phi_{i j}\right) d \phi_{i j}\right] / \int_{0}^{\pi} P\left(\phi_{i j}\right) d \phi_{i j}
$$ denoted as $\mathrm{B}^{++}, \mathrm{B}^{--}, \mathrm{B}^{+-}$for the $|+,+|,|-,-|$and

 The errors presented in the figures are statistical only.

Results on the multiplicity dependence of the asymmetry parameter B are given in Table 1 and plotted in fig. 1. The decrease of B with multiplicity is a general feature of multiparticle processes caused by kinematic constraints on transverse momenta/1'. The difference between B^{++}and B^{--}indicates experimental biases, but in our sample it is significant only for four-

$\partial_{\text {¢ }}$	
路.	
i_{m}	
\ddagger	
	$+\infty \infty \bigcirc \stackrel{\vdots}{ \pm}$

prong events. Later on we shall study the dependence of B only for like (L) and unlike (U) charged pion pairs.
$\frac{\text { Figure } 2}{\text { tiplicity }}$ show the increase of $\Delta B=B^{U}-B^{L}$ with
multiplicity. For the total sample of 7000 events

Fig.1. Asymmetry parameter B as a function of charged multiplicity for (++), (,--) and (,+-) pion pairs, respectivel

Fig. 2. $\mathrm{B}^{\mathrm{U}} \mathrm{BB}^{\mathrm{L}}$ as a function of $n_{C^{*}}$ Comparison is made with the $\bar{p} p$ experiment at $5.7 \mathrm{GeV} / \mathrm{c}$ and with
the values obtained from the like pion pair distribution by the method described in the text.
with $n_{c}>_{\mathrm{L}} 6$ we get $\mathrm{B}^{++}=0.046 \pm 0.005, \mathrm{~B}^{--}=0.046 \pm$ \pm O. $005 \mathrm{~B}^{\mathrm{L}}=0.046+0.003$ and $\mathrm{B}^{\mathrm{U}}=0.120 \pm 0.003$. To localize we pregion where this difference originates from, we present in fig. 3a the dependence of azimuthal asymmetry on rapidity difference $\Delta y^{*}=\left|y_{i}^{*}-y_{j}^{*}\right|$. The difference between unlike and like pion pairs is the largest for particles with small rapidity gap, but it persists up to $\Delta y^{*} \sim 2$ in agreement with the results obtained in other reactions and at other energies $/ 8,20,21 /$

As rapidity is a function of both longitudinal and transverse components of momentum, we have also plotted the dependence of B on longitudinal (fig. 3b) and transverse (fig. 3c) momentum differences separately. Figure 3 c shows that the effect of different behaviour of like and unlike pion pairs is pronounced for pairs with small values (less than $0.2 \mathrm{GeV} / \mathrm{c}$) of $\Delta \mathrm{P}_{\perp}=\left\|\overline{\mathrm{P}}_{\perp i}|-| \mathrm{P}_{\perp_{j}}\right\|$ and $\Delta P_{\|}^{*}=\left|P_{\|}^{*}-P_{\|}^{*}\right|$.

These results show that pion pairs exhibit different behaviour according to their charge and this difference is observed predominantly at smaller values of momentum differences. Because one of the possible explanations for this phenomenon may be the production of resonances, we divided our sample into two subsamples: with events containing a pair with effective mass in the ρ°-interval ($0.70 \mathrm{GeV}<\mathrm{M}_{\pi \pi}<0.82 \mathrm{GeV}$) and with the rest of the events. These samples contain 5030 and 1970 events, respectively. The values of B for the two subsamples are $B^{L}=0.046$ ± 0.004 and $\mathrm{B}^{\mathrm{L}}=0.048 \pm 0.007$ for like pairs and $\mathrm{B}^{\mathrm{U}}=0.124 \pm 0.003$ and $\mathrm{B}^{\mathrm{U}}=0.102 \pm 0.006$ for unlike ones. Thus, the presence of ρ° does not influence on like pairs, and it slightly raises the value of B for unlike ones. The most interesting feature is that the difference between like and unlike pion pairs is still present in events which do not contain ρ°. The maximum of this difference studied as a function of rapidity gap is now not in the ($0<\mathrm{y}^{*}<1.5$) interval as in the total sample of events. In contrast, we can also see the difference in larger values of Δy^{*} (fig. 4a) and Δp_{n}^{*} (fig. 4b). Figure 4c shows, however, a strong effect in the region where $\overline{\mathrm{p}}_{1}-\overline{\mathrm{p}}_{2} \cdot\left(\Delta \mathrm{p}_{\|}^{*}<0.2 \mathrm{GeV} / \mathrm{c}\right.$ and $\Delta \mathrm{p}_{+}<$ $0.2 \mathrm{GeV} / \mathrm{c}$) even for events without ρ°.

The influence of resonance production should manifest itself in the dependence of B on the invariant mass $M_{\pi \pi}$ of the pion pair. We have found that the difference seen in the ρ°-region between B^{L} and B^{U} is generally smaller than that seen at lower values of $M_{\pi \pi}$ (fig. 5).

Fig.5. B^{U} and B^{L} as a function of invariant mass $M_{\pi \pi}$ for $n_{c} \geqslant 6$.
we got $\mathrm{B}^{\mathrm{p} \pi^{+}}$ implying 0.196 ± 0.011 and $\mathrm{B}^{\mathrm{p} \pi}=0.179 \pm 0.010$ result was $\overline{\mathbf{p}} \mathbf{p} \rightarrow \overline{\mathbf{p}} \mathbf{p} \pi^{+} \pi^{-}$at $5.7 \mathrm{GeV} / \mathrm{c}^{/ 26 /}$.

The fact, which seems to us to be in contradiction to the idea that resonance production is the only factor responsible for the differen ce between azimuthal distributions of like and unlike pion pairs, is the increase of this difference with multiplicity (fig. 2). This phenomenon was observed in $\bar{p} p$ interactions at $5.7 \mathrm{GeV} / \mathrm{c}$ as well. ${ }^{2 \boldsymbol{2} /}$ The average number of ρ° 's per event, $\left\langle N\left(\rho^{\circ}\right)\right\rangle$, is given in ${ }^{\prime 30 /}$ for dif ferent topologies in our experiment. As the mean number of $\pi^{+} \pi^{-}$combinations per event, $\left\langle N\left(\pi^{+} \pi^{-}\right)\right\rangle$ for a given topology is experimentally known as well, we can calculate the resonant to nonresonant: pair ratio, $\left\langle N\left(\rho^{\circ}\right)\right\rangle /\left\langle N\left(\pi^{+} \pi^{-}\right)\right\rangle$, for all topologies. These numbers are given in Table 2. Whereas the average number of $\rho^{o \prime}$ s per

Table 2
ρ° Production parameters as a function of charged
multiplicity

n_{C}	$\left\langle N\left(\rho^{0}\right)\right\rangle /$ event $/ 30 /$	$\left\langle N\left(\rho^{0}\right)\right\rangle /\left\langle N\left(\pi \pi^{+} \pi\right\rangle\right\rangle$
4	0.08 ± 0.04	0.031 ± 0.015
6	0.26 ± 0.13	0.034 ± 0.017
8	0.61 ± 0.12	0.040 ± 0.008
10	0.63 ± 0.35	0.026 ± 0.014
$12+14$	1.25 ± 1.25	0.035 ± 0.035

In our experiment the inelastic cross section for the identified protons with $p_{\text {lab }}<1.2 \mathrm{GeV} /$ was found to be $7.00 \pm 0.15 \mathrm{mb}$ for events with $\mathrm{n}_{\mathrm{c}} \geq 4$. The inclusive cross section for the production of Δ^{++}with proton having $P_{1 a b}<1.2 \mathrm{GeV} / \mathrm{c}$ was found to be $2.47 \pm 0.17 \mathrm{mb}^{/ 25 /}$. This means that the Δ^{++}resonance is produced roughly. The cross section of Δ° for these events is approximately 3.5 times smaller than that of $\Delta^{++/ 25 /}$. If the difference in azimuthal angle distributions is the reflection of resonance production, we can expect that the value of B for $p \pi^{+}$combination (p stands for identified protons) is affected by the presence of Λ^{++}resonance. We have obtained $\mathrm{Bp}^{+}=0.099 \pm 0.028$ and $\mathrm{B}^{\mathrm{p}^{-}-}=0.012 \pm$ ± 0.037 in the region $1.20 \mathrm{GeV}<\mathrm{M}_{\mathrm{p} \pi}<1.28 \mathrm{GeV}$. The difference between them is smaller than that seen in adjacent regions. For all combinations
event steadily increasses with multiplicity, the ratio $\left\langle\mathrm{N}\left(\rho^{\circ}\right)\right\rangle /\left\langle\mathrm{N}\left(\pi^{+} \pi^{-}\right)\right\rangle$remains constant within errors. To establish if this fact is in accordance with the increase of B with topology, we performed a simple calculation. Taking the experimental distribution of unlike pion pairs, we calculated number of ρ°-resonance pairs from the ratio $\left\langle\mathrm{N}\left(\rho^{\circ}\right)\right\rangle /\left\langle\mathrm{N}\left(\pi^{+} \pi^{-}\right)\right\rangle$, then subtracted this number from that of total unlike pion pairs and normalized the like pion distribution to the number of the pairs left. Then we assumed that all ρ°-resonant $\pi^{+} \pi^{-}$pairs had azimuthal angle ϕ greater than $\pi / 2$, added these pairs to the normalized like pion distribution and calculated the asymmetry parameter (plotted as " ρ-induced" in fig. 2) for this distribution. This is the maximum influence which the ρ°-resonance $\pi^{+} \pi^{-}$ pairs could have on B^{L}. The difference between B^{U} thus calculated and experimental B^{L} does not, however, reproduce the increase of the experimental $B^{U}-B^{L}$ difference with multiplicity.

The interference effect using the KopylovPodgoretsky approach was studied in ${ }^{27 /}$. An excess of like pion pairs over unlike ones was observed in the region where $q_{0}<0.05 \mathrm{GeV}$ and $\mathrm{q}_{\mathrm{T}}<0.20 \mathrm{GeV} / \mathrm{c}$ $\left(\mathrm{q}_{0}=\left|\mathrm{E}_{1}-\mathrm{E}_{2}\right| ; \mathrm{q}_{\mathrm{T}}=\left|\left(\overline{\mathrm{p}}_{1}-\overrightarrow{\mathrm{p}}_{2}\right) \times \overline{\mathrm{n}}\right|\right.$, where $\mathrm{E}_{1}, \mathrm{E}_{2}$ are the energies; $\overline{\mathrm{p}}_{1}, \frac{\overline{\mathrm{p}}}{2}$ are the momenta of the two pions and $\left.\bar{n}=\left(\bar{p}_{1}+\bar{p}_{2}\right)\right\rangle\left|\left(\bar{p}_{1}+\bar{p}_{2}\right)\right|$. These variables were proposed in ${ }^{\prime 28}$. In this region the mean ratio of like to unlike pion pairs was 1.25 (normalization was carried out so that the ratio should be equal to 1 outside the region). Therefore it is interesting to look how the interference effect is connected with the difference in azimuthal distributions.

The distributions for pairs from the interference region are the same for like and unlike pion pairs and show that in this region small azimuthal angles are preferred $\left(\mathrm{B}^{\mathrm{L}}=-0.670 \pm 0.020\right.$, $B{ }^{\mathrm{U}}=-0.634 \pm 0.020$). This is a consequence of strong q_{0} and q_{T} constraints. Due to the smallness of azimuthal angles in the interference region, the relative excess of like pairs lowers
B^{L} more than B^{U} for the total distribution. However, our data are not explained by this mechanism because pairs from the interference region form only a small fraction (2\%) of the total number of pairs. Moreover, the parameters B for pairs, which are outside the interference region are $B^{L}=0.036 \pm 0.004$ and $B U_{=}=0.133 \pm 0.003$. Thus, we can conclude that the relative excess of like pion pairs in the interference region (in the sence of Kopylov's variables) can influence on the parameters B for our total sample of pairs only very slightly and that a main contribution to the difference between B^{L} and B^{U} comes from the pairs which fall outside the interference region.
4. CONCLUSIONS

The main results of our study of inclusive azimuthal correlations can be summarized as follows. The difference in the behaviour of like and unlike pion pairs comes mainly from the region where $\overline{\mathbf{p}}_{\mathrm{i}}-\overline{\mathbf{p}}_{\mathrm{j}}$ is small (the strongest effect was observed for Δp^{*} and $\Delta p+$ simultaneously in the interval ($0 .-0.2 \mathrm{GeV} / \mathrm{c}$)). We have
estimated the influence of the ρ°-resonance by including the events with $\pi^{+} \pi^{-}$pairs in the ρ°-enhancement region. In the sample of the remaining events the difference between the asymmetry parameters B is smaller but still persists. The difference ΔB for these events is 0.055 ± 0.008, and it is 0.078 ± 0.005 for the events containing $\pi^{+} \pi^{-}$pairs with the invariant mass in the ρ°-region. The peak was not observed in the region of small values of Δy^{*} and $\Delta p_{\|}^{*}$ for the dependence of ΔB on Δy^{*} and $\Delta p_{\|}^{*}$ in the sample of events without ρ° in contradiction to the total sample of events.

The above results, the increase of ΔB with multiplivity, the dependence of B on the invariant mass, $M_{\pi \pi}$, of the pion pair and the fact
that Δ^{++}production has no visible influence on B for ($\mathrm{p} \pi^{+}$) combinations have led us to the conclusion that taking into account only resonance production is insufficient to explain the observed differences in the behaviour of like and unlike pion pairs. On the other hand, we see that the interference effect has only a slight influence on these distributions and cannot explain the difference at higher values of Δp_{*}^{*} and Δy^{*}. Probably, due to this mechanism, we see the difference between like and unlike pion pairs for $\Delta p_{\|}^{*}<0.2 \mathrm{GeV} / \mathrm{c}$ and for small values of Δp_{\perp} even for events without any $\left(\pi^{+} \pi^{-}\right)$pair in the ρ^{o}-region.

The results of our study show that the data available do not allow unambiguous determination of the mechanism responsible for the observed differences in azimuthal distributions of like and unlike pion pairs.

The authors want to express their gratitude to the staff responsible for the operator of the Serpukhov accelerator and of the beam channel number 9 and to the technical staff of the Ludmila $H B C$. We also thank the technicians and assistants at all the Laboratories for their excellent work.

REFERENCES

1. Foster M.C. et al. Phys.Rev., 1972, D6, p. 3135.
2. Lyon D., Yao M.P. Phys.Rev., 1972, D6, p. 3129.
3. Schlesinger J. Phys.Rev., 1973, D8, p. 2308.
4. Pratap M., Shaw J.C. Phys.Rev., 1973, D8, P. 3938.
5. Eskreys A. et al. Nucl.Phys., 1972, B42, p. 44.
6. Jain P.L. et al. Phys.Rev., 1973, D8, p. 2309.
7. Biebl K.J. et al. Nucl.Phys., 1976, B102, p. 120 .
8. Carlsson R. et al. Nucl.Phys., 1976, B104, p. 1 .
9. de wolf E. et al. Nucl.Phys., 1978, B132, p. 383.
10. Stone S.et al. Phys.Rev., 1972, D5, p. 1621.
11. Dibon H. et al. Phys.Letters, 1973, 44B, p. 313.
12. Bromberg C.M. et al. Phys.Rev., 1974, D9, p. 1864.
13. Pratap M. et al. Phys.Rev.Letters, 1974, 33, p. 797.
14. Ranft G. et al. Nucl.Phys., 1975, B86, p. 63.
15. Eggert K. et al. Nucl.Phys., 1975, B86, p. 201 .
16. Biswas N.N.et al. Phys.Rev.Letters, 1975, 35, p. 1059.
17. Borreani G. et al. Nuovo Cimento, 1976, 36A, p. 245.
18. Quareni-vignudelli A. et al. Nuovo Cimento, 1976, 35A, p. 221.
19. Berger E.L. et al. Phys.Rev., 1977, D15, p. 206.

19a. Boos E.G. et al. Proceedings of the Third European Symposium on Antinucleon-Nucleon Interactions, Stockholm, 1976, p.459.
20. Goldhaber G. et al. Phys.Rev., 1960. 120, p. 300 .
21. Bartke J. et al. Nucl. Phys., 1977, B127, p. 269.
22. Firestone A. et al. Nucl. Phys., 1975, 101B, p. 19.
23. Abesalashvili L.N. et al. Phys.Lett., 1974, 52B, p. 236.
24. Boos E.G. et al. Nucl.Phys., 1977, B121, p. 381.
25. Boos E.G. et al. JINR, E1-11257, Dubna, 1978.
26. Atherton H.W. et al. Nucl. Phys., 1976, B103, p. 381 .
27. Filippova V.v. et al. JINR, E1-11073, Dubna, 1977.
28. Kopylov G.I. JINR, E2-8549, Dubna, 1975.
29. Chýla J. PhD thesis, Prague 1977 unpublished. 30. Ermilova D.I. et al. Nucl.Phys., 1978, B137, p. 29.

Received by Publishing Department on March 151979.

