ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

5660/2-78

anne 11 mill manner

25/4A-78 E1 - 11924

A.Abdivaliev, C.Besliu, F.Cotorobai, A.P.Gasparian, S.Gruia, A.P.Ierusalimov, D.K.Kopylova, V.I.Moroz, A.V.Nikitin, Yu.A.Troyan

OBSERVATION OF ANOMALY IN THE $(\pi^+\pi^-)$ EFFECTIVE MASS SPECTRUM WITH $M_{\pi}^+\pi^- = 0.40$ GeV/c² AND $\Gamma < 0.03$ GeV/c² IN THE REACTION np $\rightarrow d\pi^+\pi^-$ AT A NEUTRON INCIDENT MOMENTUM OF P_n = 1.73 GeV/c **1978**

E1 - 11924

A.Abdivaliev. C.Besliu, F.Cotorobai, A.P.Gasparian. S.Gruia. A.P.Ierusalimov. D.K.Kopylova. V.I.Moroz. A.V.Nikitin. Yu.A.Troyan

OBSERVATION OF ANOMALY IN THE $(\pi^+\pi^-)$ EFFECTIVE MASS SPECTRUM WITH $M_{\pi}^+\pi^- = 0.40$ GeV/c² AND $\Gamma < 0.03$ GeV/c² IN THE REACTION np $\rightarrow d\pi^+\pi^-$ AT A NEUTRON INCIDENT MOMENTUM OF P_n = 1.73 GeV/c

Submitted to AP

Bucharest University, Romania.

Абдивалиев А. и др.

E1-11924

Наблюдение аномалии в спектре эффективных масс ($\pi^+\pi^-$) мезонов с М $_{\pi^+\pi^-}$ = 0,40 ГэВ/с ² и Г<0,03 ГэВ/с² в реакции пр - $d\pi^+\pi^-$ при импульсе нейтрона Р $_n$ = 1,73 ГэВ/с

Представлен экспериментальный материал по исследованию реакций пр $\rightarrow d\pi^+\pi^- \mu$ пр $\rightarrow np\pi^+\pi^-$ при импульсах падающего нейтрона $P_n = (1,73; 2,23)$ ГэВ/с. Получены сечения реакции пр $\rightarrow d\pi^+\pi^-$ в интервале импульсов $P_n = (1+5)$ ГэВ/с. Наблюдена новая аномалия в спектре эффективных масс $M_{\pi^+\pi^-}$ реакции пр $\rightarrow d\pi^+\pi^-$ при $P_n = 1,73$ ГэВ/с. Пик находится при $M_{\pi^+\pi^-} = 0,40$ ГэВ/с² и имеет полную ширину Г меньше 0,03 ГэВ/с². Дая обзор экспериментальных данных по аномалии в районе масс 0,33 ГэВ/с². Лля понимания природы особенностей в спектре масс $M_{\pi^+\pi^-}$ нужна теоретическая интерпретация.

Работа выполнена в Лаборатории высоких энергий, ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Abdivaliev A. et al.

E1 - 11924

Observation of Anomaly in the $(\pi^+\pi^-)$ Effective Mass Spectrum with $M_{\pi^+\pi^-} = 0.40 \text{ GeV/c}^2$ and $\Gamma < 0.03 \text{ GeV/c}^2$ in the Reaction $np \rightarrow d\pi^+\pi^$ at a Neutron Incident Momentum of $P_n = 1.73 \text{ GeV/c}$

Experimental data are presented on a study of the reactions $np \rightarrow d\pi^+\pi^-$ and $np \rightarrow np\pi^+\pi^-$ at incident neutron momenta $P_n = (1.73; 2.23)$ GeV/c. The cross sections of the reaction $np \rightarrow d\pi^+\pi^-$ have been obtained in a range of momenta $P_n = (1 \div 5)$ GeV/c. A new anomaly has been observed in the $M_{\pi^+\pi^-}$ effective mass spectra of the reaction $np \rightarrow d\pi^+\pi^-$ at $P_n = 1.73$ GeV/c. The peak position is at 0.40 GeV/c² and its full width is 0.03 GeV/c².

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

INTRODUCTION

A series of experiments $^{/2-6/}$ have been recently carried out to study the so-called ABC-anomaly $^{/1/}$. The ABC effect was clearly observed in the missing mass spectra (mm)° for the reactions

$$np \rightarrow d + (mm)^{\circ / 2}$$
, (1)

$$d\mathbf{p} \rightarrow {}^{3} \mathrm{He} + (\mathrm{mm})^{\circ/3/}, \qquad (2)$$

$$dd \rightarrow {}^{4}He + (mm)^{\circ / 4/}.$$
(3)

In the reactions, where the missing mass is positive,

 $pp \rightarrow d + (mm)^{+}, \qquad (4)$

 $d\mathbf{p} \rightarrow \mathbf{t} + (\mathbf{m}\mathbf{m})^{\dagger} \tag{5}$

no anomaly was observed. This fact was a foundation for a formal attribution of isospin I=0 to the anomaly. The experiments $^{2-4/}$ were performed at incident momenta per nucleon $P_0 = (1\div 2)$ GeV/c. The peak position shifts to the right from 0.30 GeV/c² to 0.36 GeV/c² with increasing momentum P₀. The production cross section of the ABC-ano-

maly rapidly decreases with growing P_0 . So, for $P_0 = 2$ GeV/c the peak practically disappears. The full width of the anomaly, Γ , is about 60 MeV/c². To illustrate the significance of the effect, figure 1 presents experimental data on the reaction (3) for a deutron incident momentum of $P_d = 2.5$ GeV/c

at a detection angle of α -particles θ_{4He} = = 0.3°. One can see a sharp peak corresponding to the ABC-anomaly.

(6)

The reaction $np \rightarrow d\pi^+ \pi^{-1}$

has been studied in the continuous neutron spectrum P $_n$ = (1 ÷ 4) GeV/c using the bubble chamber technique $^{/5/}$.

Different theoretical models^{/7,8/} have been proposed to explain the ABC-anomaly. In particular, for the reaction (6) the contributions of the following diagrams are significant:

This means that there are two important points in ABC-anomaly formation: πN scattering, in which the first isobar (Δ) dominates at small energy, and the deutron production formfactor.

It is interesting to note that an insignificant anomaly was observed at 0.45 GeV/c² (DEF) in studies of the reaction (2) in one of the missing mass spectra ^{/4°/} at P_d = = 3.49 GeV/c and a registration angle of θ_{3He} = 2.8°. In other reactions this peak was not observed.

Previously⁶/ we presented some experimental data on the reaction (6) obtained in a neutron beam. In the $M_{\pi}+_{\pi}-$ effective mass spectrum at $P_n = 1.73$ GeV/c we observed a new anomaly with a mass of 0.40 GeV/c² and a width of $\Gamma < 0.03$ GeV/c². This paper is a continuation of this study.

4

EXPERIMENTAL DATA

The JINR one-meter hydrogen bubble chamber was exposed to a quasimonochromatic neutron beam /9/ obtained from the deutron stripping on an Al target. The momentum neutron spread $\Delta p/p$ did not exceed 3%. The angular spread of the beam was ~0.3 mrad. In this paper we present the experimental data at four neutron momenta: $P_n = (1.73; 2.23; 3.83;$ 5.10) GeV/c.

About 70 000 3-prong events were treated. The fraction of unmeasurable events did not exceed 3%. The reaction $np \rightarrow d\pi^+\pi^-$ was selected by the χ^2 -method followed by visual particle identification. At $P_n = 1.73$ and 2.23 GeV/c the numbers of events from the reaction (6) were 1447 and 697, respectively. The contamination from the other channels was not larger than a few per cent. At $\boldsymbol{P}_n\!=\!$ = 3.83 and 5.10 GeV/c the separation of the reaction becomes difficult due to a large contamination. The use of the method of separation from different hypotheses $^{/10/}$ according to their relative probability makes it possible to estimate the cross section of the reaction (6) at $P_n = 3.83$ and 5.10 GeV/c. The cross section σ_d of the process at all energies was determined by the formula

N_a

$$\sigma_{\rm d} = \frac{\alpha}{N_3} \sigma_3, \tag{7}$$

where N_d is the number of events attributed to the reaction (6); N_3 is the total number of 3-prong events; σ_3 is the topological cross section of 3-prong events /11/.

Figure 2 shows the reaction cross section versus the neutron momentum P_n . The cross sections, we have determined, are given in

Fig. 2. The cross section of the $np \rightarrow d\pi^+\pi^-$ reaction versus neutron momentum.

the <u>table</u>. The cross sections, taken from paper $^{/5/}$, are denoted by triangles. It is seen that the cross section has its maximum in the vicinity of $P_n = 2$ GeV/c, and then it sharply falls to a few tens of microbarns.

Table				
P _n (GeV/c)	1.73	2.23	3.83	5.10
σ_{d} (mb)	0.270±0.015	0.330±0.020	0.050±0.020	0.030±0.020

6

Fig. 3. The $M_{\pi^{+}\pi^{-}}$ effective mass in the reaction $np \rightarrow d\pi^{+}\pi^{-}$. a) $P_n = 2.23 \text{ GeV/c}$; b) $P_n = 1.73 \text{ GeV/c}$. The solid line corresponds to the phase space curve.

In fig. 3 we present the $M_{\pi^+\pi^-}$ effective mass distributions. Here and later on the solid line corresponds to the phase space normalized to the total number of events. The lower histograms correspond to the data at $P_n = 1.73$ GeV/c, the upper ones at 2.23 GeV/c. The $M_{\pi^+\pi^-}$ experimental resolution is ~10 MeV/c². The upper histogram is satisfactorily described by the phase space curve while two anomalies are clearly seen in the distribution at $P_n = 1.73$ GeV/c. The maxima of the peaks are positioned at $M_{\pi^{+}\pi^{-}}$ \approx 0.33 and 0.40 GeV/c². The full width of the second anomaly is $\Gamma < 0.03$ GeV/c². If the first peak corresponds to the ABC-anomaly, the second one is a new anomaly. If the phase space curve is normalized to the height of the maximum between the two peaks in the $M_{\pi^{+}\pi^{-}}$ distribution at P_{n} =1.73 GeV/c, the excess over such a background is ~ 6 standard deviations. The cross section of the second anomaly is ~ 20 microbarns.

In fig. 4 one can see the θ^* distribution in the c.m.s. of the reaction for deutrons and π^{\pm} -mesons. Due to the isotopic symmetry of the reaction (6), the angular distributions of π^+ -mesons are added to the mirror reflected distributions for π^- - mesons. It should be noted that all the distributions for isotopically conjugated values are in good agreement. From fig. 4 it is seen that the angular distributions of deutrons and π^{\pm} -mesons are close to isotropic ones.

Figure 5 gives the distributions over $\cos\phi^*$ between π^+ and π^- -mesons in the c.m.s. of the reaction. It is seen that the number of events decreases at $P_n = 1.73$ GeV/c near $\phi^* \,\widetilde{\,\,}\, 0^\circ$. It has been found that the number of events for $1 < \cos \phi^* < 0.2$, $0.2 < \cos \phi^* < -0.2$ and $-0.2 < \cos \phi^* < -1$ practically coincides with the number of events in the first peak, between the peaks and in the second peak (fig. 3b). Figure 6 presents the momentum distributions of deuterons in the c.m.s. Here one can also see two enhancements at $P_n = 1.73 \text{ GeV/c}$ which are in agreement with the data of fig. 3b. In fig. 7 we present the π^{\pm} momentum distributions in the c.m.s.

8

Fig. 4. The angular distributions in the c.m.s. of the reaction $np \rightarrow d\pi^+\pi^$ for deutrons and π^{\pm} mesons. a), b) $P_n =$ = 2.23 GeV/c and c),d) $P_n = 1.73$ GeV/c.

Fig. 5. Distributions over $\cos \phi^*$ between π^+ and $\pi^$ mesons in the c.m.s. of the reaction np $\rightarrow d\pi^+\pi^-$. a) $P_n = 2.23$ GeV/c; b) $P_n = 1.73$ GeV/c.

Fig. 6. Deutron momentum distributions in the c.m.s. of the reaction $np \rightarrow d\pi^+\pi^-$. a) $P_n = 2.23 \text{ GeV/c:}$ b) $P_n = 1.73 \text{ GeV/c.}$ The solid line corresponds to the phase space curve.

Figure 8 shows the $M_{d\pi}^{\pm}$ effective mass distributions. One can observe an excess over the phase curve. Such an effect is

Fig. 7. π^{\pm} momentum distributions in the c.m.s. of the reaction $np \rightarrow d\pi^{+}\pi^{-}$. a) $P_n = 2.23 \text{ GeV/c}$; b) $P_n = 1.73 \text{ GeV/c}$. The solid line corresponds to the phase space curve.

often interpreted as a d* anomaly. The mean value of $M_{d\pi}^{\pm}$ is shifted to the right from 2.11 GeV/c² at $P_n = 1.73$ GeV/c to 2.19 GeV/c² at $P_n = 2.23$ GeV/c. 12

Fig. 8. The $M_{d\pi}^{\pm}$ effective mass in the reaction $np \rightarrow d\pi^{+}\pi^{-}$. a) $P_n = 2.23 \text{ GeV/c}$; b) $P_n = 1.73 \text{ GeV/c}$. The solid line corresponds to the phase space curve.

It is of interest to compare the experimental distributions for the reaction $np \rightarrow d\pi^+ \pi^-$ with the data for the reaction

$$np \rightarrow np \pi^+ \pi^-, \tag{8}$$

where the secondary neutron and proton are not bound together to deutron. We present some experimental data at $P_n=1.73$ and

2.23 GeV/c. Reaction (8) was selected by the χ^2 method with a subsequent visual identification of secondary particles. The contamination from the other channels was not larger than 5%. The numbers of events are 834 and 3585, and the cross sections of the reaction (8) are (0.55 ± 0.05) mb and (4.05 \pm 0.25) mb at $P_n = 1.73$ GeV/c and 2.23 GeV/c, respectively.

> d) 300 200 Number of events 100 100 0.25 0.40 0.55 0.70 0.85 М (л+ л-) GeV/c²

Fig. 9. The $M_{\pi^+\pi^-}$ effective mass in the reaction $np \rightarrow np \pi^+ \pi^-$. a) $P_n = 2.23 \text{ GeV/c};$ b) $P_n = 1.73$ GeV/c. The solid line corresponds to the phase space curve.

In fig. 9 we present the $M_{\pi^+\pi^-}$ effective mass distributions from the reaction $np \rightarrow np\pi^+\pi$. One can see that there are no significant peaks in these effective mass distributions. The M $_{\mathrm{pn}\pi^{\pm}}$ effective mass distributions are given in fig. 10. The mean value of M $_{\rm pn\pi^{\pm}}$ is shifted to the right from 2.12 GeV/c 2 at $\rm P_n$ = 1.73 GeV/c to 2.25 GeV/c² at $P_n = 2.23$ GeV/c.

curve.

CONCLUSION

The peak with a mass of 0.40 GeV/c² is not observed in the reactions $np \rightarrow d + (mm)^{\circ/2/}$ at $P_n = 1.88$ GeV/c and $np \rightarrow d\pi^+\pi^{-7.5/}$ at $P_n < 1.83$ GeV/c. For the first reaction the missing mass spectrum is preliminary and can be changed by (10-20)%. Moreover, the experimental resolution mass $(mm)^\circ$ was insufficient to observe the two anomalies. In the second reaction the absence of the anomaly can be explained by a wide momentum spectrum of incident neutrons, i.e., the position of the ABC-anomaly is shifted with changing momentum P_n .

Thus, a new anomaly is observed in the $M_{\pi^{+}\pi^{-}}$ effective mass spectrum for the reaction $np \rightarrow d\pi^{+}\pi^{-}$ at $P_n = 1.73$ GeV/c. The peak position is at 0.40 GeV/c², and its full width is $\Gamma < 0.03$ GeV/c².For understanding the nature of the anomaly, a theoretical interpretatuon is needed.

REFERENCES

- 1. Abashian A., Booth N.E., Crowe K.M. Phys.Rev.Lett., 1960, 5, p.258, 1961, 7, p.35. Abashian A. et al. Phys.Rev., 1963, 132, p.2296.
- Bizard G. et al. Caen-Saclay Collaboration, Proc. 5th Int. Conf. on High Energy Phys. and Nuclear Structure, Uppsala, Sweden, 1973.
- Banaigs J. et al. Nucl. Phys., 1973, B67, 1.

- Banaigs J. et al. Nucl. Phys., 1976, Blo5, p.52.
- Bar-Nir I. et al. Nucl. Phys., 1973, B54, p.17.
- Abdivaliev A. et al. JINR, 1-10034, Dubna, 1976.
- 7. Barry G.W. Nucl. Phys., 1975, B85, p.239.
- Bar-Nir I. et al. Nucl.Phys., 1975, B87, p.109.
- 9. Gasparian A.P. et al. JINR, 1-9111, Dubna, 1975.
- 10. Moroz V.I. et al. Yad.Fiz., 1967, 6,
 p.90.
- 11. Abdivaliev A. et al. JINR, 1-8565, Dubna, 1975, Nucl.Phys., 1975, B99, p.445.

Received by Publishing Department on October 3 1978.