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Extrapolation of Deep Inelastic Lepton-Nucleon Cross
Sections to SPS Energies

Klein M,, Nowak W.,-D,

Double differential deep-inelastic lepton scattering cross
sections and counting rates are extrapolated from existing dala to
kinematical regions which will be explored in the Dubna-CERN-
Munich-Saclay muon experiments. Uncertainties of this extrapolation
procedure are discussed and found to be limited by a factor of
about two,

The investigation has been performed at the Laboratory
of High Energies, JINR.
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1, INTRODUCTION

One of the large spectrometers currently constructed
at the CERN SPS, called NA4, is designed to measure
inclusive deep inelastic muon scattering in an entirely
new kinematic region /!/. Exposing different targets to
a high intensity muon beam of about 280 GeV maximum
energy, four-momentum transfers q? of hundreds of
(GeV/c)? are reached which will probe the nucleon struc-
ture at a new level. During the physical preparation and
the analysis of the NA4 experiments it is required to
estimate the double differential lepton-nucleon cross sec-
tion do/dadb, and counting rates, respectively. Thus
we have written a program, FRAME,to calculate do on
the basis of available experimental results.

The extrapolation of the cross section to the new ki-
nematic region is influenced by scaling violations and
other uncertainties which are discussed in Sec. 2. Due
to statistics the NA4 kinematic range effectively decrea-
ses to an extent depending on the beam intensity, target
material and length. Some typical examples are given in
Sec. 3. Section 4 contains the user’ s guide for FRAME.
A brief summary is given in Sec. 5.

2. UNCERTAINTIES OF EXTRAPOLATIONS
TO THE NEW KINEMATIC REGION

Exact scaling would allow one to predict do/dq?dy (fig. 1
and tagl. 1) already from the first MIT SLAC experi-
ments/ covering a very restricted (qz,v) region. La-

3




Fig. 1 —~--

P Px

¢ (k-K); V=E-E

wha(p+q)t =,

ter experiments, however, discovered scaling viola -
tions/3-6/ which make the extrapolation of low ¢¢ mea-
surements to some extent uncertain. In order to estimate
this uncertainty we study the pattern of scaling viola-
tions.

Scale breaking effects have been found to be consis-
tent with asymptotically free gauge theories’’/. Consi-
dering the moments of structure functions, the canonical
scaling behaviour is modified by some powers of log COM
e.g.,

1 —
[axx™ oW, (x,q%) = a(n)(log(? /,2)"™ (1)
0 2 q 200

with some functions a(n),b(n) and mass scale p ® For
our purposes, this specific behaviour suggests to plot
the kinematic regions covered experimentally as func-
tions of log(q® ) and x (fig. 2). The following abbrevia-
tions are used: ,S’75: SLAC experiment studying the turn-
on of scaling "8 ; S69,74: SLAC electroproduction 23/
F76: Fermilab 147 GeV ;b’%* and the pFe scaling
test experiment ®/; F77: Fermilab 147 GeV ;p/8/In the
logarithmic scale the extension of the q2 range by NA4
appears to be lessened. Thus the presently discovered
pattern of scaling violations will not be responsible for
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an important uncertainty of the extrapolated cross sec-
tions *.

Uncertainties arise also because in practice fits for
vWy are used which, at best, are valid in the region
shown in fig. 2. The resulting superposition of both ef-
fects might be deduced from fig. 3 where different para-
metrizations of vW, (Sec. 4, eqs. 4-7) are plotted as
functions of X at a typical large value of q® for NA4.
With the exception of very small x the uncertainty will
not exceed a factor of about two. For x<07 differen-
ces arise dominantly from the different scaling beha-
viour (compare F76, F77, e.g., with the scale invariant
quark parton model fit (BP)'®’ ). In the region above
x~0.7 vW, is very small and it becomes difficult to
decide whether scaling violations or features of the fit
are responsible for the main uncertainty of the extrapo-
lation. ‘

Additional uncertainties arise from an inperfect de-
termination of the other structure function W, ,i.e., the
ratio R(4® .v) =0y /oy (fab. 1). The data agree with
a rather small R (0<R £05) being only weakly depen-

denton_q° and » . If R is assumed to be constant a mean

value R of about 0.2 is favoured \/yhich seems to be
independent of the target material 3/ The uncertainty
arising from changes of R can be visualized plotting the
ratio

do(@®,v;R) _ Y*/(1+R)+2(1-y)
do(®.viR ) y7/U+R)+2(1-y)

2)

This ratio is a function of y=v/E and R only. It can be
seen from fig. 4 that the uncertainty increases for y»1 |

*There are new data available from tgo Fermilab
muon experiments reaching a maximum q

and being consistent witi the elder results on scaling
violations /11/,

of 150 (GeV/c)®
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Fig. 3. Different fits of vWy vs. x at a= 200(GeV/c)".

but is limited to ~20%. This expresses the well-known
fact that the measurement of R requires to exp!o're the
high y region where the cross section is sensitive to

changes of R .

3. THE INFLUENCE OF COUNTING RATES
ON THE EXTENSION OF RANGE

Counting rates expected can be calculated 1f the b.egm
intensity is known as a function of energy (for intensities
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il T Fig. 4. Ratio do(R)/do(R)
vs. y=v/E for R =02 (eq.2).

Qs 0s

0 02 04 ') a8 1

Y

see 17 ). Far from discussing the whole problem of rates
for NA4 experiments, we give some typical examples

in order to visualize the influence of rates on do , in
particular on the maximum q°® reachable.

Figures 5 and 6 show (G*,v) curves for counting
rates per day at E = 280 GeV for 50 m carbon and hydro-
gen targets, respectively. A 20x20 binning in (x ,¥y) has
been applied which corresponds to the expected expe-
rimental resolution of a few per cent’ ™. The carbon
target option as the most effective one (fig. 5) allows
to reach a region of x upto ~0.8 ‘and a ¢° maximum
of about 400 (GeV/c)2 within a 109 statistical accuracy
(for 10 days running time). One should note that in the

large q° region the equirate lines are weakly dependent
onyv. As a consequence, a restriction of y =v /E to
0.8-0.9 does not affect remarkably the maximum of q?
practically reachable. We have also included in fig. 6,
for hydrogen, the corresponding equirate lines at lower

*We have tested that the resulting curves are almost
independent of the chosen binning, whether (x,y) or
(@®v), and of the numbers of bins as long as these are
around 15.
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Fig. 5. Events rates per day expected for NA4 using
a 50 m carbon target at E =280 GeV.

energy (dashed curves for E = 200 GeV). It becomes
apparent that the main advantage of increasing the energy
from 200 to 280 GeV is an extension of the v range only,
at least with respect to the counting rates. Due to the
beam spectrum, the maximum a® reached at a reaso-
nable statistical accuracy is larger at the lower than at
the higher energy.
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Fig. 6. Event rates per day expected for NA4 using
a 50 m hydrogen target at E = 280 GeV (solid curves) and
at E= 200 GeV (dashed curves).

4. USER‘S GUIDE TO FRAME

FRAME allows to calculate do/dadb or rates
simultaneously for 6 different sets of (a,b), namely
(@), (W), (¢®W?)(E",0),(,y) and(e?x), and al-
together for 9 different modes to plot the results, e.g.,
the (¢®») plot in bins of (x ,y ). In tab. 1 all coded for-
mulae are listed the choice of which is controlled by the
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Table 1

Compilation of Formulae Coded in FRAME

Plot.:le:dtint
] ﬁ' Cross section *::::; :)sr an Boundaries
B
do/dq%dv= 5 « @ra®. Wy /q*ED) Qv @® = s=2ME
1 0/dq"dv= % « @ra”.v Wy /q : max 2
[q2 IR v 2B,y Ymay =B @S2y
ey 1+R 14R v
%
M<W<(M%s)
2 da/dq2dw-j!..2 W
M <M s-W2(y<1)
2 2
W< (M
3 | dosdfaw?.l.s e w2 MW (M7 s)
M a2 <M2es-W (y<1)
ey (4 1, . . ep -
4 do/dE d"‘(ﬁhonﬁ:" W, E’ 6 EfinSE'<E whfare
E i, sets an (arbitrary)
R upper limit for@. up to
xf1s -2 (2“"2%‘*‘&‘ now E; determined by
1+R 2EE‘cos’? Ymax=0.95 chosen in
2 FRAME,
2 20 2
a CO0S N [¢] _M —1_ _L
(da/dQ)MO"-____.E:é_ sin LS
4E25in4-—
2
dg -0+ €0 JEE-) s X, e 0<x,e<1
5 [ dE"dQ ' f nh ecorresp.
to
2, 2
e m1/(1 4 2087200 y-l_l‘.+
4EE " —q?
Ve |
Py
2. a2 2
6 do/dxdy = <TE (L2 X,y O0<x ,y<1
IRy s@y)® 14R
+2(1~y))v W,
71 do/dg%d X,y see IPAR=1
8] do/dq2aw? x,y see IPAR«3
9| do/dd’dx~ L. % o x ssx




pgrameter IPAR. The fourth column of tab. 1 gives the
kinematic limits of the variables used.

'The structure function W, is expressed by W, accord-
ing to

W, =W, 1+v2/q%/ 1 4R), (3)

w_here R is assumed to be independent of q® and v as
discussed above. We used the following three parametri-

zations for vW, according to the experiments mentioned.
i) 87578/ ‘

1 7

W, =(1-W, (q® -x7)

vW, =(1-W, (q ))n§3an (1-x7) 4)
where Wy is a small correction to 1(~1/q4) related to

the proton form factors (”’closure approximation”), and
ag =1.,0621 a2 =-22594 ,a;=1054 , a5 =—15.8277 , a,=6.793¢;

ii) F76
5
vW, =(1+2.100°/3 In1/6x) S )"
2 q n x)n_3 bn(l X) (5)
with

a=0.072, by =0.746, by= 0540, b =-0.997, ¢°

in(GeV/c} ;
iii) F777%

, |51
vWy =exp(alng¥31n1/6x) = ¢ (1~x)" (6
n=3 )

with
a=0.145, c3 =2.799, ¢, =—4.048, c,=1615, q°

in (GeV/c)®.

Note that a scale breaking parametrization as in
eqs. 5,6 leads to parameters a which seem to depend on
the target used, i.e., a=0.072 + 0.038 for D (eq. 5),
a=/05.}451 0.024 for Hz (eq. 6), and a =0.099+ 0.018 for
Fe'”. In estimating do, formula (6) can be preferred

because the experiment has the largest overlapping
with NA4 (see fig. 2).
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Table 2
Data cards of FRAME

FELD w2 NCA NCB JSN
ENER (E ,XNP), , (E,XNP), ...
up to 16 beam energies E in GeV and
corresponding beam intensities XNP

PARA IPAR
ROIN RHO R
w2 denotes the parametrization of W, used

i.e., IW2=1 (eq. 4); IW2=2 (eq. 5); IW2=3
(eq. 6); IW2 4 (eq. 7); IW5=5 all paramet-

rizations.

NCA

NCB number of bins

JSN JSN =1 cross sections; JSN=2 counting
rates

XNP number of incident particles per day, for
convenience to divide by 1010

RHO target thickness times length in g/cm?

R op /o, (see Sec. 2).

iv) BP'Y

As a first choice for a scale invariant vWyo  we in-
cluded a formula obtained by Barger and Phillips in
a valence quark parton model.

. 7
W o= xl/2[0.272(1-8%)3 . 0.228(1-x2)° +0.345(1-%) 1+
2
9 )
£0.193(1-%) .

Using FFREAD'/IO/ the program reads 4 data cards free
of ordering and format which are listed and explained in
tab. 2. According to the chosen block structure of FRAME
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one can easily add other expressions for vWy (to be
inserted into FUNCTION W2NU) or/and do (to be inser-
ted into FUNCTION D2SIG).

5. SUMMARY

Using available deep inelastic data we have discussed
the expected double differential cross sections for the
muon experiment NA4. We have written and used a cor-
responding program which calculates do/dadb for
many sets of (2,b) and modes to plot the results. Uncer-
tainties were discussed of extrapolating previous results
to the new kinematic region and were found to be limi-
ted by a factor of about two. Examples for carbon and
hydrogen targets were given to visualize the influence of
counting rates on the extension of the kinematic range.
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