ОБ bЕАИНЕННЫЙ ИНСТИТУТ
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

AY5HA
$4183 / 2-77$
N.S.Amaglobeli, Yu.A.Budagov, B.G.Chiladze,
J.Dubinsky, V.P.Dzhelepov, V.B.Flyagin, Yu.N.Kharzheev, A.S.Kurilin, Yu.F.Lomakin, G.Martinska, L.G.Moroz, V.S.Rumyantsev,
R.G. Salukvadze, L.S̆́ndor, Sh.S.Shoshiashvili, S̆.Valkár, V.B.Vinogradov, A.G.Volodko

THE EVIDENCE FOR SCALING IN THE MEAN
IN THE REACTIONS $\pi^{-} p \rightarrow\left\{\begin{array}{l}\nu \\ \pi^{\circ}\end{array}\right\}+X$
AT 5 GEV/C

E1-10776

N.S.Amaglobeli, ${ }^{\prime}$ Yu.A.Budagov, B.G.Chiladze, ${ }^{\prime}$ J.Dubinsky, ${ }^{2}$ V.P.Dzhelepov, V.B.Flyagin, Yu.N.Kharzheev, A.S.Kurilin, Yu.F.Lomakin, G.Martinska, ${ }^{4}$ L.G.Moroz, ${ }^{3}$ V.S.Rumyantsev, ${ }^{3}$
R.G. Salukvadze, ${ }^{\text { }}$ L.Šándor, ${ }^{2}$ Sh.S.Shoshiashvili, ${ }^{1}$ S̆.Valkár, V.B.Vinogradov, A.G.Volodko

THE EVIDENCE FOR SCALING IN THE MEAN

IN THE REACTIONS $\pi^{-} p \rightarrow\left\{\begin{array}{l}\nu \\ \pi^{\circ}\end{array}\right\}+X$

AT 5 GEV/C

Submitted to $Я \Phi$

lTbilisi State University, Tbilisi, USSR.
2 Institute of Experimental Physics, Košice, C̆SSR.
3 Institute of Physics, Minsk, USSR.
4 Safarik University, Košice, ČSSR.
Наблюдение скейлина в срепнем в реакциях $\pi^{-} \mathrm{p} \rightarrow \boldsymbol{1}_{\pi^{\prime}}^{\gamma} 1+\mathrm{X}$
при 5 ГэВ/с

Неинвариантные распределения продольных (p_{g}) и поперечных (р импульсов в реакциях $\pi^{-} \mathrm{p} \rightarrow \gamma+\mathrm{X}$ и $\pi^{-} \mathrm{p} \rightarrow \pi^{\circ}+\mathrm{X}$ при 5 ГэВ/с ирелсгавлены в переменных скейлинга в среднем $\xi=\mathbf{p}_{\| \mid} /\left\langle\mathbf{p}_{\|}\right\rangle$и $\eta=\mathbf{p}_{\downarrow} /<\mathbf{p}_{\downarrow}$. Нсследуется зависимость формы этих распределений ог множествеиности вгоричных заряженных часгиц, а гакже от начальной энергии. На основе сравнения с даниыми для π^{+}- и π^{-}-мезонов при 13-300 ГэВ/с показано, что форма распределений ($/ \sigma$) $\mathrm{d} \sigma / \mathrm{d} \xi$ и ($/ / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \eta$ по не зависит or энергии. С помощью интегральных уравнений, связываюших спектры продольных и поперечных импульсов π°-мезонов с соответствуюиими спектрами y-квантов, поквзано, что распределения ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \xi_{y}$ и ($1 / \sigma$) $\mathrm{d} / \mathrm{d} / \eta_{y}$ также не зависят от энергии. Анализ этих распределений в событиях эаданной топологии показал, что их форма не зависит ог множественности вторичных заряженных частиц. Делается вывод о том, ито хярактеристики исследуемых распределений согласуется с предсказаниями гипо тезы скейлинга в среднем

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.
Препринт Объединенного шиствтута пдериых псследованпй. Дубна 1977

Amaglobeli N.S. et al
E1 • 10776
The Evidence for Scaling in the Mean in the Reactions $\pi^{-} p \rightarrow\left|{ }_{\pi^{\circ}}^{\gamma}\right|+X$ at $5 \mathrm{GeV} / \mathrm{c}$

The noninvariant distributions of longitudinal and transverse momenta have been studied in the reactions $\pi^{-} \mathbf{p} \rightarrow y+X$ and $\pi^{-} p \rightarrow \pi^{\circ}+X$ at $5 \mathrm{GeV} / \mathrm{c}$. It has been shown that in the variables $p_{\mathrm{L}} /\left\langle\mathbf{p}_{\mathrm{L}}\right\rangle$ and $\mathrm{p}_{\mathrm{T}} /\left\langle\mathbf{p}_{\mathrm{T}}\right\rangle$ the shape of these distributions does not depend upon the initial energy and the multiplicity of secondary charged particles.

The analysis performed shows the extension of the validity region of scaling in the mean both for the energy range ($5-300 \mathrm{GeV}$) and for the type of particles.

The investigation has been performed at the
Laboratory of Nuclear Problems, JINR
Preprint of the Joint Institute for Nuclear Research. Dubna 1977
I. According to the predictions of the scaling in the mean hypothesis/lone-particle inclusive distributions of longitudinal and transverse momenta in multi-particle production reactions should obey the following relations:

$$
\begin{align*}
& \frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \xi}=\phi_{\mathrm{L}}\left(\xi=\frac{\mathrm{p}_{\mathrm{L}}}{\left\langle\mathrm{p}_{\mathrm{L}}\right\rangle}\right), \tag{1}\\
& \frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \eta}=\phi_{\mathrm{T}}\left(\eta=\frac{\mathrm{p}_{\mathrm{T}}}{\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle}\right), \tag{2}
\end{align*}
$$

where the functions ϕ_{L} and ϕ_{T} are independent of the initial energy, the multiplicity of secondary particles, and also the type of colliding particles. Here and below p_{L} and p_{T} are longitudinal and transverse components of the momentum in c.m.s.

The check up of relations (1) and (2) in the reactions $p p \rightarrow \pi^{-}$at $13-300 \mathrm{GeV} / \mathrm{c}^{/ 1 /}$, $\pi^{-} p \rightarrow \pi^{ \pm}$at $40 \mathrm{GeV} / \mathrm{c} / 2 /$, $\mathrm{pp} \rightarrow \mathrm{K}_{\mathrm{s}_{+}}^{\circ}$ and $\mathrm{pp} \rightarrow \Lambda$ at $19 \mathrm{GeV} / \mathrm{c}^{/ 3 /}$ as well as $\mathrm{pp} \rightarrow \mathrm{m}^{ \pm}$at $28.5 \mathrm{GeV} / \mathrm{c} / 4 /$ confirmed their validity for the spectra of not leading particles. The
consequences of the scaling in the mean hypothesis as well as the questions of the relation of this hypothesis with the earlier scaling, relations ${ }^{/ 5 /}$ have been considered in refs. ${ }^{6 /}$.

In the present paper we consider the question of displaying of scaling in the mean in the reactions

$$
\begin{equation*}
\pi^{-} \mathrm{p} \rightarrow \gamma+\mathrm{X} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi^{-} p \rightarrow \pi^{\circ}+\mathrm{X} \tag{4}
\end{equation*}
$$

at $5 \mathrm{GeV} / \mathrm{c}$. The experimental data are based on statistics including 7940 gamma-quanta detected with a JINR one-meter propane bubble chamber ${ }^{/ 7 /}$. The processing of gammaquanta events and the analysis of invariant differential cross sections of reaction (3) have been described earlier $/ 8 /$.

The basic results of the experimental investigation of reaction (4) by the reconstruction of neutral pion kinematic characteristics from the corresponding characteristics of gamma-quanta pairs have been published previously ${ }^{\prime 9}$ /
II. First of all, it is necessary to note that if not identical particles collide, the spectra $d \sigma / d_{L}$ are asymmetric with respect to the point $p_{L}=0$. Taking into consideration this circumstance the distributions ($1 / \sigma$) d $\sigma / \mathrm{d}_{\boldsymbol{\gamma}} \gamma$ will be considered separately for the backward and forward hemispheres. The study of the dependence of relations (1) and (2) upon the multiplicity of secondary particles
requires a preliminary determination of the scales, i.e., the average values of longitudinal and transverse momenta in the events of the given topology. The whole set of values of $\langle | p_{L}| \rangle$ and $\left\langle p_{T}\right\rangle$ required for further investigations of reaction (3) is presented in Table 1.

Table 1

Prong multiplicity		0	2	4	111
$\langle \| P_{L}\| \rangle, \mathrm{GeV} / \mathrm{C}$	$P_{L}<0$	$0.162_{ \pm} 0.013$	$0.117_{ \pm} 0.005$	$0.112_{ \pm} 0.007$	0.120 ± 0.004
	$P_{L}>0$	$0.254_{ \pm} 0.013$	$0.149_{ \pm} 0.005$	$0.103_{ \pm} 0.005$	0.147 ± 0.004
		$0.192_{ \pm} 0.006$	$0.178_{ \pm} 0.003$	$0.152_{ \pm} 0.004$	$0.172_{ \pm} 0.002$

Begin with the analysis of longitudinal momenta of gamma-quanta. Figures 1 and 2 show the experimental distributions(1/o)d $\sigma / \mathrm{d} \xi_{\gamma}$ for events of the given topology in reaction (3). Both the Figures show a dense grouping of points with respect to some common curve. This regularity indicates the independence of the shape of the distributions studied upon the multiplicity of charged particles.

Now consider the dependence of $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \xi_{\gamma}$ - distributions upon energy. In view of the absence of the corresponding data at other energies, the problem cannot be solved by

- direct comparison of distributions. In this situation a fact that gamma-quanta from reaction (3) are the products of π°-meson

Fig.2. Plot of $\left(<\left|\mathrm{p}_{\mathrm{L}}\right|>/ \sigma\right) \mathrm{d} \sigma / \mathrm{dp}_{\mathrm{L}}$ versus $p_{L} /\langle | p_{\mathrm{L}} \mid>$ at $\mathrm{p}_{\mathrm{L}}>0$ for events of the given topology in the reaction $\pi^{-} p \rightarrow \gamma+X$ at $5 \mathrm{GeV} / \mathrm{c}$.

decay* from reaction (4) can be used. The spectrum of longitudinal moments of gammaquanta $\mathrm{d} \sigma / \mathrm{dp}_{\mathrm{L}}$ is related by the integral equation/10/ to a similar spectrum of $\pi^{\circ}-$ mesons. This equation, as is shown below, makes it possible to draw a certain conclusion on the dependence of the $(1 / \sigma) d \sigma / d \xi_{\gamma}$ distribution upon energy basing on the studies of the energy dependence of the ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \xi \xi^{\circ}$ distribution. There are no data on $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \xi^{\circ}{ }^{\circ}$ distributions at higher energies yet. However, there is considerable information on the $d \sigma / d_{\mathrm{L}}$ spectra whose behaviour reveals a number of features: first, as has been shown in refs./11-15/, the spectra of longitudinal moments of neutral pions $\mathrm{d} \sigma / \mathrm{dp}_{\mathrm{L}}$ in $\pi p-, \mathrm{Kp-}$ and pp -interactions are similar to the spectra of not leading π^{+}-and π^{-}-mesons; second, to a good accuracy all these spectra are described by the dependence $\mathrm{A} \exp \left(-\mathrm{B}\left|\mathrm{p}_{\mathrm{L}}\right|-\mathrm{Cp}_{\mathrm{p}}^{2}\right)$. These facts are a sufficient argument to use the corresponding distributions of charged pions instead of the absent ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \xi_{\pi^{\circ}}$ distributions. The data shown in Fig. 3 evidence in favour of the reasonabality of such a replacement. As is seen from the Figure, the distribution $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \xi_{\pi^{\circ}}$ in reaction (4) at $5 \mathrm{GeV} / \mathrm{c}$ within errors agrees with the curve describing the corresponding distribution of negative pions in pp-interactions at $13-300 \mathrm{GeV} / \mathrm{c}$.

[^0]

Fig. 3. P1ot of $\left.\langle | p_{L} \mid>/ \sigma\right) d \sigma / d p_{L}$ versus $p_{L} /\langle | p_{L} \mid>$ at $p_{L}>0$ in the reaction $\pi^{-} p \rightarrow \pi^{\circ}+X$ at $5 \mathrm{GeV} \%$. The curve represents the results of fitting the pp data/l/.

Reduce, according to the above said plan, the integral equation taken from ref. $/ 10 /$ to the form relating the distributions of longitudinal momentum of gamma-quanta and neutral pions in the representation of scaling in the mean variables

$$
\begin{equation*}
\frac{1}{\sigma}-\frac{\mathrm{d} \sigma}{\mathrm{~d} \xi_{y}}=<\left|\mathrm{p}_{\mathrm{L}}\right|>\int \frac{\phi_{\mathrm{L}}^{\pi}\left(\xi_{\pi^{\circ}}\right) \mathrm{d} \xi_{\pi^{\circ}}}{\langle | \mathrm{q}_{\mathrm{L}} \mid>\sqrt{\xi_{\pi^{\circ}}^{2}+\mathrm{m}^{2} /<\left|\mathrm{q}_{\mathrm{L}}\right|>^{2}}} \tag{5}
\end{equation*}
$$

where $\phi_{L}^{\pi}\left(\xi_{\pi^{\circ}}\right)=(1 / \sigma) d \sigma / d \xi \pi^{\circ}, \quad p_{L}\left(q_{L}\right) \quad$ is the longitudinal component of the gamma-quantum momentum (a π°-meson), mis π°-meson mass. The integration limits depend on ξ_{y} and are as follows:

$$
\mathrm{f}\left(\xi_{\gamma}\right) /<\left|\mathrm{a}_{\mathrm{L}}\right|>, \infty \text { for } \xi_{\gamma}>0
$$

and

$$
-\infty, f\left(\xi_{\gamma}\right) /<\left|\mathrm{q}_{\mathrm{L}}\right|>\text { for } \xi_{\gamma}<0, \mathrm{f}\left(\xi_{\gamma}\right)=\xi_{\gamma}<\left|\mathrm{p}_{\mathrm{L}}\right|>-\mathrm{m}^{2} /\left(4 \xi_{\gamma}<\left|\mathrm{p}_{\mathrm{L}}\right|>\right)
$$

In eq. (5) the only parameter depending on energy is $<\left|p_{L}\right|>$ (here $<\left|q_{L}\right|>$ can be expressed by $\langle | p_{\mathrm{L}}| \rangle$ according to the relation $\langle | \mathrm{q}_{\mathrm{L}} \mid>=2\langle | \mathrm{q}_{\mathrm{L}} \mid>$). The calculation of the right-hand side of eq. (5) with the function ϕ_{L}^{π} obtained in ref. $/ 1 /$ for the distribution ${ }^{L}(1 / \sigma) d \sigma / d \xi_{\pi}-$ has shown that increasing $\langle | p_{L} \mid>$ from 0.150 up to $0.300 \mathrm{GeV} / \mathrm{c}$ leads to the variation of the distribution $(1 / \sigma) d \sigma / d \xi_{y}$ that does not exceed 7%. If one neglects the weak dependence upon $\langle | p_{L} \mid>$, it will follow from eq. (5), that if one of the distributions does not depend upon energy, the second one behaves similarly.

To determine quantitative characteristics of the $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \xi \pi^{\circ}$ distribution, the experimental data shown in Figs. 1 and 2 were fitted by the right-hand side of eq. (5) with the function

$$
\begin{equation*}
\phi_{L}^{\pi}\left(\xi_{\pi^{\circ}}\right)=\mathbf{a}_{1} \exp \left(-\mathbf{a}_{2}\left|\xi_{\pi^{\circ}}\right|-\mathbf{a}_{3} \xi_{\pi^{\circ}}^{2}\right) \tag{6}
\end{equation*}
$$

where a_{i} are free parameters. This parametrization is of the same form as for the similar distribution of charged pions in refs./1,2/.

The values of the parameters aiobtained by the fit are presented in Table 2 . For the sake of comparison Table 2 includes also the parameters of $(1 / \sigma) d \sigma / d \xi$ distributions
for not leading π^{+}- and π^{-}-mesons from refs. ${ }^{1,2 /}$ as well as the values of χ^{2} obtained by fitting our data with the help of these parameters.

Table 2

The data presented in Table 2 permit one to make the following conclusions: 1) The parameters of the distributions ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \xi \pi^{\circ}$ for the backward and forward hemispheres π° coincide with each other within error limits. This fact indicates that the use of scaling in the mean variables leads to symmetrization of the longitudinal momenta spectrum; 2) The parameters of the distributions ($1 / \sigma.) \mathrm{d} \sigma / \mathrm{d} \xi_{\pi^{\circ}}$ within two-fold and threefold errors coincide with the parameters of the distributions $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \xi$ for π^{+}- and π^{-}-mesons at higher energies. This coincidence due to the above-said considerations evidences in favour of the energy-indepen-
dence of the distribution (1/ $\mathrm{d} \boldsymbol{\mathrm { d }} / \mathrm{d} \xi_{\pi^{\circ}}$ and consequently of the independence of the distributions $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \xi_{\gamma}$ upon energy.
III. Now we proceed to the analysis of transverse momenta spectrum of gamma-quanta. Figure 4 shows the experimental distributions $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \eta_{\gamma} \quad$ for reaction (3). It is seen that in the whole range of variation $\eta_{\gamma}=\mathbf{p}_{\mathrm{T}} /\left\langle\mathbf{p}_{\mathrm{T}}\right\rangle$, the data for various topologies within errors coincide. This shows the independence of the shape of distributions under study upon the multiplicity of charged particles.

Fig. 4. Plot of $\left(\left\langle p_{\mathrm{T}}\right\rangle / \sigma\right) \mathrm{d} \sigma / \mathrm{d} \mathrm{p}_{\mathrm{T}} \quad$ versus $\mathrm{p}_{\mathrm{T}} /\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ for events of the given topology in the reaction $\pi^{-} p \rightarrow \gamma+X$ at $5 \mathrm{GeV} / \mathrm{c}$.

Consider the dependence of these distributions upon energy. The absence of the corresponding information at other energies makes us use the same way of consideration as for the distributions of longitudinal momenta. Proceeding from the integral equation ${ }^{/ 10 /}$ relating the spectra of transverse momenta of gamma-quanta and π°-mesons it is possible to obtain an integral equation for the corresponding distributions in the representation of scaling in the mean variables. The quantities $\left\langle\mathbf{p}_{T}\right\rangle_{y}$ and $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle_{\pi^{\circ}}$ are included in this equation as parameters. The weak dependence of $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ upon energy leads to the fact that the energy-independent distribution ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \eta \eta^{\circ}$ will produce the energyindependent distribution ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \eta$. To estimate energy dependence of the distribution $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \eta \eta_{\pi^{\circ}} \quad$ on the basis of the same facts as for longitudinal momentum distributions it is possible to use the corresponding distributions of charged pions.

Figure 5 shows the experimental distribution ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \eta \pi^{\circ}$ for reaction (4) as compared with the curve describing the analogous distributions of negative pions in pp-interactions at $13-300 \mathrm{GeV} / \mathrm{c}$. The coincidence of experimental data with the curve ($x^{2} /$ the number of points $=2.8 / 14$) shows the independence of the distribution $(1 / \sigma) \mathrm{d} \sigma / \mathrm{d} \eta_{\pi^{\circ}}$ upon energy and hence the independence upon energy of the distributions ($1 / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \eta_{\gamma}$.
IV. In conclusion let us summarize the basic results of this investigation.

1. The regularity which agrees with the predictions of the scaling in the mean

Fig. 5. Plot of ($\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle / \sigma$) $\mathrm{d} \sigma / \mathrm{d} \mathrm{p}_{\mathrm{T}}$ versuspp$/\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ in the reaction $\pi^{-} p \rightarrow \pi^{\circ}+X$ at $5 \mathrm{GeV} / \mathrm{c}$. The curve represents the result of fitting the pp data/l/.
hypothesis observed in the spectra of longitudinal and transverse momenta of π°-mesons and gamma-quanta.
2. The analysis performed shows the extension of the validity region of scaling in the mean both for the energy range $(5-300 \mathrm{GeV})$ and for the type of particles.

REFERENCES

1. Dao F.T. et a1. Phys.Rev.Lett., 33 (1974) 389.
2. N.Angelov et al. Yad.Fiz., 23, 583 (1976).
3. Hagman V.M. et al. Physica Scripta, 14, 24 (1976).
4. A.T.Laasanen et al. Phys.Rev.Lett., 38, 1 (1977).
5. R.P.Feynman. Phys.Rev.Lett., 23, 1415 (1969).
Z. Koba, H. B.Nielsen, P.O1esen. Nuc1. Phys., B4O, 317 (1972).
6. D. B. Lichtenberg. Phys.Rev.Lett., 33, (1974) 1520.
B.E.Y.Svensson, L. Sollin. Phys.Rev.Lett., 34, 1199 (1975).
Ernst W., I.Schmitt. Lett. Nuovo Cim., 16, 39 (1976).
Yaes R.J. Phys.Rev.Lett., 1976, 36, 821.
7. A.V. Bogomolov et al. Prib. i Tek. Exper., 1, 64 (1964).
8. \bar{N}. S.Amaglobe1i et al. JINR, P1-8699, Dubna, 1975, Yad.Fiz., 22, 1269 (1975), JINR, E1-9854, Dubna, $1 \overline{97} 6$.
9. A.T.Abrosimov et al. JINR, P1-10505, Dubna, 1977.
10. G.I.Kopylov. Nuc1.Phys., B52,126 (1973). 11. Biswas N.N. et al. Phys.Rev., 10D, 3579 (1974) .
11. J.R.E11iot et al. XVIII Int. Conf. on High Energy Physics, Tbilisi, USSR, 1976, JINR, D1,2-10400, Dubna, 1976.
12. A.C. Borg et al. Nuc1.Phys., E106, 430 (1976).
13. R. Barluto et al. Yad.Fiz., 24, 580 (1976).
14. M. Boratov et a1. Nuc1.Phys., B111, 529 (1976) .

Received by Publishing Department on June 23, 1977.

[^0]: *Under estimates a fraction of gamma-quanta from other sources $\left(\eta \rightarrow \gamma \gamma, \Sigma^{\circ} \rightarrow \Lambda^{\circ} \gamma, \ldots\right)$ does not exceed 1%.

