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The results of the investigation of the equations for the low-energy pion-pion scattering, offered in paper/ l/, are
presented in this report. In the equations the imaqginary parts of partial-wave amplitudes on the unphysical cut are

defined from the approximate crossing-symmetry condition, corresponding to the forward scattering.

Limitingonly by s -and p -waves this condition takes a very simple form:

ImA (-z) =~ Zb ImA(z). (1)

Here Z=2V+1=2q2/p”o+1, A=A° A=A

o o’ N t 2 o bu=8,+0 n,

?,= -4, P,=-1/18, 0,=1/6 , nj=2, n=9, n;=-5
Eq. { 1) with the unitary conditions
ImA,(z) =y Z=1 /a(z)/°

X z+1 !
and p -wave threshold condition

A,(I) =0 (3)
defines the initial system of nonlinear integral equations. Eq.(2)is valid only below the first nonelastic threshold at
z = 7 .Nevertheless, we shall use it in the whole physical fnterval I < z<e. Such a model with the elastic unita-
ity and throwing off the highest partial waves, of course, can give a good approximation just only in the low energy re-

gion. Only in this region we shall give the physical sense.

In order to get some insights on this system properties, s -wave model for the neutral pion scattering was exa-
mined/z/. The model allows the exact solution by Castillejo-Dalita-Cyson-method (CDD). The main solution proper-

ties are following:

1. For the large z the solutions decrease not slower than fn" 'z so that the equations may be written down in
Y

the non-subtracted form.
2. The scattering length can take only positive values.

3. The solutions have the arbitrariness of CDD-type, being able to have resonances only due to R -terms. The

dynamical resonances do not appear.

4. There exist 0< A< A, POTGMeEtET, which defines the strength of fnteraction, A = )\m"correspondinq to the

appearence of the bound state.

5. The phase shifts corresponding to the resonant solutions with R -terms in the limit of switching off the inte-
raction ( A » 0 ) are tending to the step functions (dotted line in Fig. 1). The solid curve corresponds to the small

A . It differs from the limiting one when /z-z',/~)‘. By this :

ImA = nFS(z-z'):n_'}.;_L 8(z-12,).

(4)

In the charged case we were not able to find the exact solution. However, it can be shown that the enumerated

properties of the neutral model find their reflections also in the charged case.

/3,4/

The solutions can be determined by various methods to have the arbitrariness of CDD-type. They allows

three various asymptotic behaviour:



0) d,/[nz b) e‘/z C) ('/22 (5)

Surely, the equations without the subtraction are valid for this type of solutions:

A 1 ImA(zY) g1 s 1 ImA(2Y 4ot
(2) ”{*—J——_zl-—z zl v 3 ,krlj’__.__..____z,+z z (6)

8 -waves scattering length positiveness

a,> 0 a,> 0 (7)
is an algebraic consequence of { 6 ) and { 3 ).

The method of the approximate constraction of the resonance /8/ solutions for small A (A = %(Ao(o)_Az(o))

can be obtained using the analogy with the properties of neutral model solutions/4/.

It turns out that one can obtain the resonance solutions different by their structure. We where not able to obtain the
solutlpn with resonance only in one partial wave. In any resonant solution the resonance in Ao is necessary. There-
fore, physically interesting two-resonant solution contains resonances in A o and 4, (sol.l). The triresonant solu-
tonsin A, , A, and Az {sol. 2), as well as such with a great number of resonances are possible. We shall limit
ourselves solutions by I and II.. Solution 1 depends on three drbltrary parameters A and on two l;esoncnce positions
z,=2v,+ 1 and z, = 2v,+ I Solution I contains five arbitrary parameters: A , 2, , 2; and also the resonance
and zero positions z, and x>z

2
solutions are described by simple equations

/3,4/

,in A, -wave. Solution II turns into solution I, when x_ - z,. For small A these

4
/45,

The various iterarive procedures can be used for to obtain the solutions at non-small A . They have been
obtained on the base of modified N/D method with the help of numerical calculaticns by electronic computer of the

Institute for Mathematics of Academy of Sciences, Siberian Branch, USSR

The nun.erical calculations, made for the fixed value o p -resonance enerqy z = 13,5 (HP = 730,,,) resulted

the next important facts:

1 . There exist the upper limiting value A= Aa? 0,4(depending on 20 ) corresponding to the bound state appear-

ing in Ao.When A Ay o 8o

74,5/ for A'

2. The deviations from & -approximation formulas of papers and A, can be described with the help

of A -renormalization. The A, -wave changes more essentialy; its scattering length can be approximated by equation

= __SA (8)
° 1~ A/AMax
3. The resonance in A, remains narrow up to A =A,, . The full p -meson width 2y can not exceed

40 MeV. 2y -dependence on a, for different z, for solution I is plotted in Fig. 2. The corresponding curves for

the solution Il lie below the curves of Fig. 2. It is seen {rom this fiqure that for a, < 25; 2y < 30 Mev.
In the next Fig. the calculated cross-sections O = é( 20 4~ + O, % o ) (Fig. 3a),
(Fig. 3b), and L
A=02; z, = 13,5; z,= 13,5 ; the dotted ones - to sol. Il for A = @,2 ; z = 100 ; z,= 11,8: x = 25
z,= 13,5 .

o
ntg 0
+ (Fig. 3c) are given for some parameters values. The solid curves correspond to =ol, 1 for

Experimental data from papers/7’8/ and papex/g/, are glven In Fig. 3a and 3b. It is seen from these Figs., that,
generally speaking, the calculated curves do not contradict to the experimental data.

However due to experimental errors it is untimelinessly to speak about the agreement degree.



Now we shall explain the parameters choice. As it was stated p -resonance position in all the solutions is
fixed at the point z = 13,8¢ Mp = 730Mev). A -parameter is chosen equal to 0,2 for getting not too narrow  p -
resonance and a reasonable a, scattering length, At A = 0,2 a =20 for solution 1 and ao=l,810r sol, II.
In Fig. 3a the full resonance width equals 30 MeV for sol. 1 and 20 MeV for sol. Il. In sol. 1 4, -resonance posi-
tion consides with that of p -resonance. It makes the resonance wider only by 10%. There are no any data on the
presence of low-energy A o -Tesonance. Taking this resonance away {putting z,>25)our curves change a little.
They may change more if shifting this resonance into z,< 12 -region. In sol. Il we introduced A, -resonance at

z, = 11,8( M = 690 Mev ). This was done according to the following reasons. The analysis of pion angle distribu-

tions in reactions w4 psp + 75+ n%n the nelghbourhood of resonance shows/g'lo'“/

, that the intenference term
of A, and A, -waves, has the negative sign below the resonance, and the positive one above {t. As in our solu-
tions always a, >0 , we can explain this sign only by putting A2 resonance, located below p -resonance.
The vague indications to the resonance existence in A , Wave, at chosen energy, were obtained in pape\'/lz/. As it

is seen in Fiq. 3q, this resonance introduction makes the agreement with experiment in 600-700 MeV region better .

/16/

Recently Grashin and Shatemov studying the process n +n-+n +n +p have obtained rather reliable evi-

dance for A , -Tesonance existence at 500-600 MeV.

It follows from the Figurgs, the main difference between our curves and the experimental data takes place in the
close neiqhhourhood of the resonance. The experimental resonance peak, as a rule, lies not only below the theoretical
one but also has the greater area. It must be said that the experimental resonances have the width of the order of ex-
perimental resolution. For example, the angular distributions correspond to the more narrow resonances. Besides, the
cross-sections obtalned by direct use of Chew-Low formula, in some cases differ by 50-100% from the ones,obtained
by more accurate extrapolation method (see Fig. 3b). Therefore we hope that the further increase of experiment accu-
racy will make the agriment with the suggested theory better. The solution discussed, formaly have the power asympto-
tes of ( 5b )-type. However it can be proved/4/ that for each of the examined solutions we have the solution with (5a)
legarithm asymptotic, very close to it in the low-energy region. This close solution can be obtained by CDD- zero

shifting from the Infinite to a finite but high-energy point.

In order the solving to be more easy we have chosen the power asymptotics. However it has no direct physical
sence, as we deal with low energy model. It follows that, if to wish, we may consider our solutions to the logarithmic

asymptotic, what is in quality correspondance with the diffraction peak in the high-energy region.
The remarkable property of the obtained solutions is p -resonance narrowness { 2y < 40 MeV ).

This solution property is the result of the bound state absence in A o-Wave, and also the result of threshold con-

dition fer p -wave ( 3 ), written down for the non-subtracted equations (6 ) :

, - (9)
1 ImA (2" 41_ 1 dz’ ¢ 1 9mA —v ImA - 5 Ima
P e s gy g imay ina - lma,

Here the eq. { 9 ) is the ‘correlation condition’ between various waves in our theory. It can be seen directly from (9),
that the large A, -wave is necessaty for p -resonance existence. In the end, the correlation condition ( 9) is the
reflection of the dissapearence of KeA, as z - = . This property can be based on the correspondance with the
diffraction scattering picture. Therefore, any modification of the low-enerqy equations, satisfying the mentioned cor-
respondance criterion, will give the correlation condition different from ( 9 ) only by some high-energy contributions.

[n the cese the contributions being small, p -meson width upper limit will change a little.



For instance, if to accutate eq. ( 6 ) by taking the crossing-symmetry conditions for ImA, not only {magi-
nary parts of forward (backward) scattering amplitude, but also thelr first derlvatives with respect to angle, we shall
obtain the eq. ( 2.10) of paper/ls/. It 1s not difficult to see, that the correlation condition for these equations

leads to the changinyof 2y notmore than 6%

Now we shall discuss a question on the accusacy cf our equations { 6 ). In these equations deriving, they were
spoken to have been obtained from the usual dispersion relations for the forward (backward) scattering, and one of
_the essentlal approximations to be In approximation of real part of the scattering amplitude by some number of par-

tigl waves. This approximation was criticized as the most narrow point of our scheme.

It car be shown, our equations can be obtalned by some other way which do not contain the direct approximation
of ReA, . Putting aside the elastic unitary approximation for the partial waves ( 2 ), note, that the only step
necessaty for turning the dispersion relation for partial wave A, Into equation, consists In the determination of
fts imaginary part on the unphysical cut. This Imaginary part in our method is defined ty using the crossing-symmetry
for the forward (backward) scattering. So, in this method the approximations in the real part of amplitude are caused

only by approximations in the {maginary part on the unphysical cut.

In the most simple approximation ( 6 ), this fact {s masked by ReA, having the same crossing-symmetry as
Im A, . But in the next approximation, where ImA' on the left-hand cut, Is defined ty taking the first deri-
vatives (in the crossing-symmetry condlitions), the picture Is changing. Here ImA, have a local crossing-symmetry

/13/)

of the type (1) (see formula { 2.9 ) of the paper . But at the same time Re A, has no simple crossing-symmetry.

So, the applicability range of our equations Is not limited by any reasons connected with the small L.ehmann ellip-
sis. This fact can be established also in the differential method frame. The expressiors for partial waves in terms of
the amplitudes and their derivatives values at cos & =% I can be obtained/l3/ in this method by Integraticn by
parts of the usual deffnition of partial wave. The restriction by the first few terms is caused by a smallness of the
resfdual tern {following from the smallness of the higher partial waves ), but not due to the reasons of convergency

of the series in g whole.

Nete In conclusfon that the method used does not allow to obtain the higher partial waves; the spectral functicrs
to be introduced tc calculate them consistently, Therefore, the next step to accurate out scheme Is to take Into ae-

court the spectral functions. It can allow to estimate the degree of accuracy of our equaticns as well,
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