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In the present note a model of the non-linear scalar field theory is treated. From the very beginning this model

allows an existence of some kinds of particles, while the vacuum turns out, therefore, to be degenerate.

The vacuum degeneration leads to an appearance of additional vacuum excitations which are represented by par-
ticles with very small masses, whereas the presence of potential barriers in the functional space leads tc the possi-

bility of the radioactive decay of elementary particles.

If this process is considered as a weak interaction, then in our model it is a direct consequence of strong interac-
tion of particles ( cf./ L2/ ). This is an attractive feature of this model.

However, we are faced here with some difficulties which are characteristic of the non-linear theories: the renor-
malization of the energy levels does not reduce now to a simple renormalization of the zero field theory; it is neces-

f./3/)'

sary to renormalize each level separately (¢

2. The Problem

The scalar field in our model is described by the Hamiltonian

H=[{%a%x)+ %’V¢(x)’+ V(d(x))d
w(x) and ¢(x) obeying the quantum condition

. (2)
[a(x), ¢(x’)] = ihd(x -x’)
We shall consider, in contrast to the linear field theory, that the potential energy of the field at the point
x-V(é(x)) islimited and has the maxima and the minima (see Fig. 1).

Small oscillations about the equillibrium positions should be regarded as such field states ral,?b!', "ec’...,

which correspond to the particles with different masses: the particles ral, "', 'c'..

The particles of the same type strongly interact. Indeed, for the non-interacting particles, instead of potential
wells there would be parabolic pbtential curves shown in Figure by the dashed line. It is seen from this Figure that
if the field is excited in one of these wells, then it can penetrate through the potential barrier separating them.
This penetration would mean the vanishing of the particles of one type and the appearance of other ones. i.e., the

radioactive decay of an elementary particle.

Particularly, according to Fig. 1, a particle *a ! with a greater mass (m .= 1’(:9,‘! ) can decay into par-
ticles ! b'having smaller masses  (m, = boy ¢ a) . From this figure one can also see the vacuum degene-
c

ration which arises when zero energies of the two wells a and b are equal.



3. Approximate Solution with the Aild of the Spatial Lattice

To find the eigenfunctions and eigenvalues of Hamiltonian ( 1 ), we introduce, instead of a continuocus space,

a lattice with cells A’ in volume, and instead of the operators # (x) and ¢ (x) , new operators
—-3/2 .
- 3 ~3/3 (3)
na A fﬂ(x)d x, G,=A f¢(x)d3x
A N

s
where the integrals are extended throughout the cell volume A near the x=s ( s is a cell number ).

Then, instead of (1) and { 2), we get

(4)
H=§{x/2nj+ ZCAQ’ (<1>.-<1>,+,)’+_<:_’_2(cb,_cb,_,)’+V(cb,)l
4A

and

[H,'(I)‘.] =ihé ,, (5)

Note, that the terms with (®,-®,,,) appex after "¢ was substituted by the finite difference. Fur

ther, the function V(®) coincides with V( ¢) if the absolute scale of the fleld ¢o ( which is necessa-
~3/a

tily present in the non-linear theory) is substituted by the new scale ®= A by

In the following we restrict ourselves to small momenta of particles. In this case, one can take, as a zero ap-
preximation, the fleld oscillations in separate cells of the space, and consider the propagation of oscillations as

perturbation. The whole problem becomes very much alike that describing the motion of excitons in a crystal.

In accordance with what has been said, the Hamiltonian of zero approximation becomes

H=S %0 s v(a,)) e

1"
and the perturbation energy is W= W' + W , where
‘ 1 c 2 < ®. H 2 S
V=—A—7‘; s’ W=—§Zz,'(®’(b’+1+®'q>"“) (1)

Consider first the vacuum states. If the oscillations of the field in the well a are described by the wave
function uo(fb) , and in the well b -by the function v, (®) , then in view of the degeneration of
this level the ‘true’ wave functions are

+
v =\71_1__5(u0+avo) s ‘I’=\/1+1B2(uo+ﬁvo) (8)
+a




+
We shall assume that out of these two functions itis ¥ which corresponds to a lower level, rather than

u, and v, . Therefore, the wave function of the vacuum of the whole field becomes

+
Y 0= nv (o) (9)
s 8
where the product is taken over all the cells of the lattice.
As far as the vacuum is degenerated , there are also other states which will produce the vacuum zone. In particu-

lar, the one-particle states in this zone will have the wave function

10
‘l’o=fcm‘1’ c = £ (109

hé¢
Here N+ o is the number of cells, &  is the quasi-momentum (the particle momentum is P = -Ai )
and
o4 -
Vo =TT ¥ (0 V(D) (11)
Now we calculate the energy of these states . We have
(12)

1 + i
E, = <\P0/H/‘Ilo>=<\Po/Iio/‘vo>+ <V /W /V,) +<¥%/W J¥o>=(etcy) N

where the constant ¢, is

2 2 2 2 . 2 2
= _C 1 - > a
<, Pfl—;;’—)[<uol¢ |uo>+a<v0](® D) | V> + o]

(13)

Here ®, isthe average field in the state v, (the well b ); the average field in the well a is taken to

be zero.

The constant ¢, with A =0 . Therefore, it must enter the renormalization E,

In a similar manner, for the one-particle vacuum excitation, we get

c 2
1 1 ! [
El=<V¥//H/W.>=E+c + P (14)
2m
2
where the new constant cé has the form which is similar to ( 13 ), namely, c; = %r f(a, B; <I>b )
and cly» oo at A -0 . The effective masses of the particle m * are determined by
2 2 2 . (15)
miey (1+a)(1+f7) B
a®p? ®2c?

When dzb-» o m* -0 .Itfollows from (14), that the excited level should be renonralized so that



2
! x 2
Eg=E +m c’+ P

2m* (16)

In other words, the constant A infinite at c'o must be substituted by m*c? . This additional renormaliza-

/3.

tion is the peculiarity of the non-linear theoty, as has been already mentioned in

Consider now the state of the field when there is one-particle excitation in the well a , described by the

wave function u, (®) and by the energy ¢, = ¢ ot haw,

The wave function of such a state is

1
v N
where
'+
‘Pm.=ﬂ y ((b,)u'(d)m) (18)
L ]

The energy corresponding to this state s

2
E,=E, + c,‘+hw°+-’:_

a 2m, (19)

where the constant ¢,, is given by

2 2
C,=c,* .Z_: (_11.*;) [(14a%) <u |® lu,>—(uo|(b’|u°>—-a’<vo[A¢!’|vo>--_l_‘:_’:z_’®b] (20)

and the mass of the particle is m,:
m =(1+a?hoo (21)
a c2

(since <u,/®/u,> =~/ 5!1_ ). At A >0, c,,b»~= , and we are to renormalize E,,
Wo .
again, so that

p?

2m, (22)

2
E,=E,+ m_ c'+

Analogously the wave function and energy of the two-particle state in the well b  can be considered. For

this case

1(lm + nn)
Vo= 2 cpp¥omn Cmn” —eﬁ
e (23)

v

bmn

"
= ¥Y5(@,) v (®,) v, (D,)



Just in a similar manner we get the renommalized expression for the enerqy

2 2
E”=Eo+2mbc2+_P_l__+£2_ (24)

2m, 2m,

provided
2
_,1+a hv, 25

m, = (—__a 3 ) <7 ( )
Here v, is the proper frequency of thewell b and P, = %é . Pz = 1‘7;1_ (let us remind that all

these formulae are correct only for small P, and P, ).

4. Radioactive Decay of Particles

Let us assume that the mass of the particles is m,>2m, . Then the particle a is likely to decay by the

mode a-+b+ b . Letatthe moment ¢=0 there be one particle a with the momentum £

>

‘I’b (&) o which
11
and 7 (cf. (23)), is determined by the matrix element

The corresponding wave function will be ‘I’.' (£) (cf. (17)). The transition rate to the state
describes two particles b with the momenta ¢

(26)
<"I’b”(7bé)/V/‘I’_'(§)>,= 13 33 A c<m/V/rs>

2 m s m rs
N

where the difference V is regarded as a perturbation V=V (®)~V _(®). Here V (®) isa potential obtained

from V(®) ifthewells a and b aeremoved from each other at an infinitely great distance (@, o)

Note, that the asymptotics of the functions w, and v, assumes the form

u (D) ~ e 2® v,(<b)~e““®b‘q” (27)
where a= .%‘_ VV,~ E .Here V,  is the barrier height, and  E is the renormalized
ener gy E=m%?+ _,P_z_ s P = EA{ ; the matrix elements (m/V/z s > different from zero are
2mx
obtained if m=r =g : <m/V/mm> = <u, /V/v,v,>

. Then the simover m in (26 ) provides
the law of the momentum conservation E=(+1.

Therefore,

<Y, /V/Y¥, > = 711_172<u,/V/v,v,> (26")
and in virtue of ( 27)
<u,/V/vIVI>‘=‘ e_‘®b<;’/V/;,;,> (28)

where #, and ¥ , a@e defined by the formulae

- O
u(®)=q e P, v, (®)=v(0)e "




Thus, at ¢b -+ o , as it should be expected, there is a small probability of particle decay which is proportio-

nal to

® - ’ (29)
Puwe ™ Y<q /V/v¥,>/
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Fig.l The potential barrier in the functional space.




