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The § -matrix is constructed by using the functions which go over into the plane waves af ft++

instead of the plane waves.

The notion of the ‘free’ field quantum corresponds to that of the free particle only at  ¢++ o,

The formalism is constructed as follows: an ordinary free field ¢° ( x ) is supplemented with a certain
‘counter-field’ which is dampling with time, quantized according to the indefinite metric {(with an ‘opposite sign’)

and makes the reqularization of the AO functions (88 2, 3).

'
The quanta of the ‘counter-fleld’ ¢ (x) vanishat fa+ (g8 1,6 ). The counter-field does not
make any contribution to the probabilities and the cross sections of the observable effects ( § 7 ). The theory

is causal ( § 4 ), unitary ( § 5) ond relativistic invariant’ ( § 7).



Though the Pauli-Villars reqularization method has rather a formal, even an illogical character, this procedure is
widely applied in the modern field theory/l/. This is likely to be accounted for the fact that may be not incidentally,
(from the point of view of the future consistent theory)the procedure in question makes it possible to assign the mean-
ing of the finite expressions to the divergent integrals of the modern theory without arriving to a contradiction either
with the causality principle, or with the unitarity requirement. It seems attractive to give to this proce-
dure the meaning of the consistent theory, having in view that in such a theory the reqularization we are discussing

would arise qutomatically.

As is well-known, the verbal meaning of the reqularization by Pauli-Villars method consists in the formal intro-
duction at a later stage of the calculations of some counter-fields which alter the form of the propagation functions

only but remain ( what is essential ) unchanged the state vector’s describing the fields in the modern theory.

A question arises as to how, by introducing new formulations of the basic concepts of the modern field theory,
one can get automatically the reqularization under discussion? As is well-known it is easy to introduce the real
‘counter-fields’ which reqularize the propagation functions but it is still impossible to rule out the peculiar difficul-

ties which arise in so dolng./'z/

In the present paper are also introduced ‘counter-fields’ which reqularize the propagation functions. In contrast
to other attempts, the counter-fields introduced here are damping with time, and the quanta of these ‘counter-fields’
are absent in the initial and final states of the systems (at ¢+ + = ). The division of the total field into the
'field’ and ‘counter-field’ is artificial-this is only a method of exposition convenient for comparison of the developed
theory with the ordinary one. The physical content of this theory is that the quantum of the field becomes a

free particle only if 4 .

In the modern theory the process of particle production is considered [apart from the uncertainty principle A tA'E=#f )
as a momentary appearance of a free particle with a definite rest mass. In the scheme at small times of
the arising particle its proper mass is indefinite, indefinite is also its enerqy. The components distorting the usual
plane wave are dampling with time, and the state becomes that of a free particle as it is understood in the ordinary

theory.

The scheme is symmetrical with respect to the production and absorption of particles, symmetrical with respect

to the past and the future.



1. ‘Counter- Field’

As an example, sonslder first a scalar fleld. Each plane wave which in the ordinary theory describes a particle

=
with a momentum k ond an enerqy k W m?
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is added by a certain accompanying wave of a ‘counter-field’, characterized by the same value of the vector & , but

represented by a certain integral over the mass parameter m

%
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The quantum of the ordinary field is associated with the plane wave ( 1 ), while the quantum of the ‘counter-
field’ is associated with a still more complicated mathematical expression of form ( 2 ). In the following it is the
functions of type ( 2 ) that the ‘counter-field’ will be quahtized over. In other words, the corresponding creation and
annihilation operators of thé counter-field quanta are the amplitudes of the functions of type ( 2 ). The ordinary free
fleld #°(x) which is empleyed in the modern theory to construct the §-matrix is written down as

gy o — ! d¥ o Tikx 4 x (G (3)
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¢°(x) = ¢°t (x)+ ¢ (x) , (4)

where ( +) and ( —) designate positive and negative frequency functions.

In what follows we will start from an explicit form of the operator functions of the counter fields
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Here f£( ) is a certain function rapidly falling off with the ircreasing m
P 2
H ( _’_"__) is a certain complete system of orthogonal and normalized functions. Therefore,
n
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¢ is the constant adopted in the theory.
For the sake of definiteness, the Hermitian functions* are chosen further as particular functions Hn
To carry out the same consideration the Bessel’s functions or any other system of functions may be used. ‘- Thus,

functions ( 2 ) describing the quantum of the added field in the mass state n  assume an explicit form
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The integration limits are yet indefinite, but, in particular, it is possible to take J
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are taken to damp with time.  Owing to

For the future analysis it is essential that the functions ¢ 'Z
nk

the oscillatory time dependence of intergrand ( 7 ) the damping of ¢n-}

2 -2
a wide scope of functiong f(-%) . S0, choosingin(7) H =f ~ ™ /zng 1
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functions with time may be realised by

in the rest system ( k = 0 )

we get
2
+ +oo m? P2 '
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that is ¢ * is, indeed, damping with time. This damping can be made to proceed even stronger by an appropri-

0,k=0
ate choice of the function f ( = > .
{

The dampinig of function ( 7 ! ) is symmetrical in time, Thefunction ( 7' ) has a privileged time point ¢ = 0 - it

corresponds to the time of creation or annihilation of a particle.
2

N

*
To be more exact, the Hermitian polynomials with the normalizing faotor, e.g., H =1 .e
o



The counter fleld arises only in the interacting systems. The ‘really’ free field ( ¢+ + « ) coincides with

the notion of the free field adopted in the ordinary theory.

The fleld ¢° satisfies usual equations for the free field. The counter field s defined, according to ( 4)

end ( 5, as an accompanying fleld. The total field is not assumed to satisfy any equation.

2. Quantization

The functions ¢.(x} are quantized in the usual manner. The corresponding quantum brackets for the counter

field qs' are taken with an ‘apposite sign’:
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All other A © functions of the counterfield have the same structure
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Ustrig the adopted properties of the operators ¢ n( k)
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one can show that
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l. /14 /
and A=i<T¢(x)¢(y)>o.

m
Here formula ( 14) is extrapolated in usual manner for X, = ¥, . Thus, by means of the functions H_ ("z_)
. having the properties ( 6 ) it becomes possible to quantize the fleld ¢ " over the functions of type (2) or (7)

which are damping in time.

3. Singularities of the Propagation Functions

1
(o]
The propagation functions of the field ¢ + ¢ are the differencies of the propagation functions. For instance,

¢ ¢ 7e
<A = A - A (15)
res m
In the vicinity of the light cone
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According to ( 17 ), the main singularities of the A M function ( &(s) and _____) are removed by Iritro-
2 ‘s 2
ducing the counter field, irrespective of a particular form of the f -function. To be more precise, the f -func-

tion must be only the normalized function, i.e., satisfy condition (11) and even condition ( 18 )

*
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The removal of the logarithmic divergencies in A functions and of the ruptures at the points s =0 require
that the form of the f functions should be specified.

()

()
The A functions of the total field ( A . ) can be written as

() O 2 2
A~ fA (gm) p () dm . (19)
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where
2 2 2 2 mz
pm ) =586(m -M) -~ f (77—)
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Choosing f  e.q., in the form

1

2
2 1 H{t{m)
FEt) o a? R IlEm) (21)
[} 2 _ {m

we get the A” functions we considered in'/3/. These A v functions have.the singularities not on a cone but on
a hyperholoid. ‘In the functions of type (21) f ” are signvariahle what leads to the appearance of the imagi-
naries in \/72_,_und, hence, changes the Hermition properties of the fleld operators ¢’ . More complicated
situations, will be considered elsewhere. Here we restrict ourselves only to the cases of thereal f  functions,

It should be noted, that there is hardly any sense in trying to get the ‘complete’ regularization of the A function

v 2
i.e., the equalities fm" plmy dm? = o0 for any integer n. To construct a theory which
would not involve the diverging values of the observable quantities it is quite sufficient to remove the strongest
singularities from the Al functions.
c
Indeed, in the momentum representation A is written { with account of ( 11) ) as
res
m’ /m/ dm
. T Y A e (22)
! f. 4
A =J 2 2, 2, )
res (H—p " ~i o (mZp2_je¢)

Thus, in calculating the degree of the convergence of the corresponding integrals, each internal line of the
) . ,
Feynmann diagram in the theory under study hrings two degrees of the momentum ( p )} more into the domi-
nator of the integral than it occurs in the usual theory. This implies that all the diverqing integrals in any .sua)

case of the field theory ( up to the four-fermion interaction )in the given theory turn into convergent ones,

4. Causality

! Y »
The commutator of the operators ¢ '(x) and é(y) are written down in the form

) A 2 2 m' Sm/  dm (23)
A= fA((x=9),m) f (
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It can be easily seen that if m does not take on the imaginary values, to be more precise, if m is
1

positive everywhere, then A vanishes outside the light cone, i.e., in the region

!
2 ;o2 2?2
s=cl( t=t)=(r-r )Y < 01

Indeed, the integrand in ( 23) can be put as



° I m? 24
Alxey,m) = 25 () 80s") =Y 2 _ 5 00s) I(m V3) (24)
2 n 4n s,
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0, § <0,

As 9(s) isindependentof m , then, substituting { 24 ) into ( 23 ) we see that the property

of the commutator in the usual theory to vanish at ‘s < 0 holds true also in our case.

The restriction is imposed by the condition ma > 0 only, for which'the A function may be written

down 1ni the form of ( 24 ).

Thus, the condition of the locality of the operators ¢

[é6(x),¢(y)]l=0 (1)

with < 0| provides the fulfilment of the causality pririciple in the § -matrix constructed on the
basis of the field operators ¢ (85 ).

8. The § Maftrix

For the sake of simplicity, we consider two interacting scalar fields. One of them describes the field whose quan-
tum has the mass M, the field ¢ PR while the quantum of the other scalar field characterizes the
particle with zero the rest mass. The field ¢,  consists of the field ¢; and the ‘counter field’ ¢ !

M

which is defined accordingto (1), -(5), (11}
1
o

by = By * By ,

For the sake of simplicity, we take the field ¥  in the form of a usual fiéld (without the counterfield) which would

satisfy the D’Alembert equation.

The field operators qu and ¢° are Hermitian and local.

[,(x), ¢y (N1=0, [y%x), @] =0

outside the light cone.

The interaction Lagrangian is written down as follows



Lix)=g¢,(x) y’(x) (25)

+
L (x)e=1L(x) (26)

(Lix),L(y))=o0, f x~y. (27)

Like in the ordinary theory, the n-th term of the S -matrix is put as

| ) (28)
Sn(xlm xn)=iT(L(x1) ”.l-(xn))
and the whole § -matrix
s=1+>:*1'———f'r(ugl) v L(x) dx . dx . (29)

n=1 n/!

It can be easily verified that the condition of the unitarity is fulfilled. It is given ir the form of the rela-

tion (I)

+ . xl Xl +
S (x,. xn)+Sn(x1... xn)+£P(—~———-—)S*(x' v X)S (xx+‘i‘xn) =0 (n)
1<a<n-1 XH 1"'x n
X, o X*
where the symbol P( . . ) designates the sum over all the n!/ k! {n-k) ! ways of
e %

breaking up the set of points X, X, Intotwosetsof k and a— k points. Here, due to the symmetry
of Sk by arguments ( 28 ) the permutations inside each of these sets are not taken into account. {.ike in the
usual theory, the condition Il is fulfilled because the operators L are Hermitian, while the very possibility
of writing S n as the T -product ( 28 ) arises as a result of the locality of the operators L ( x)

which, in its turn, {s the consequence of the locality of operators ¢ and ¢

6. Norm, Vacuum, Damping States

In the scheme under study the amplitude of e.q., single-particle states consists of the two components
° ! ' (30)

(-4
¢ is identical with the states described by the usual field theory/l/
1

11
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_ 1 1 u
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K=y k+ M (31)

¢ - describes the state of the counter-field,  with the same momentum distribution  but in the mass state a

o
ik

I + ' 2
=fc(k)qs (k) o t@iz—-) B2y,
ILn V n e
. (32)
m/ dm _n 1 u 1

) Fi 3
Here just ds in the well-known papers of Helsenberg, the so-called /’second vacuum’ is introduced: d’o

Al]l the Hilbert space is divided thereby into two spaces. One of them (the excited states o' ) coiricides

with the Hilbert space of the modern theory of elementary particles. The second Hilbert space (the states d) )

has an auxilliary character, All the excited states 0 are damped with time ond vanishat ¢ » + e« .

The states of the first and the second vacua are normalized

v 1 i
The total vacaum Po is described by the product of the function ¢ o and @,

o - oI ® u

-

+ -+
If the propertiés of ¢~ (k)  and ¢: (k)  ore taken into account the norm of the state { 30 ) takes

on the form
° o o es() e(Rrdh - £ 97 p o (B e(i0) x
¢ ¢ (33)
- n(k:, —k;,) m? 7’ , /m/ m

m m
The functions H (T) and f (_.;. ) are chosen so that after the integration over m  there
. n

arises a strong damping of states { 32) wi%h time. Therefore,

o' o -+ fct(hre(h) dk t oo (34)

12



Thus, the normalization of the physical states at ¢+ + o  coincides with the usual one. It is possible

to arrive at the same conclusion in the more general case without restricting to the definite mass state a

.

L

A particular case ( 20 ¢, a ) with equal coefficients  a_ requires
n= on n

a more detailed consideration and some other arguments in favour of the same normalization ( 34 ). These argquments

are connected with the analysis of the expressions for the probabilities of the correspondirig transitions which, as

appears, (8§ 7 ) are realized only between the functions of the class ( 31 ).:

7. Probabilities and Cross Sections

The essentidl feature of the theory we are developing here is that the counter-fiélds do not introduce the contri-
bution to the probabilities and the cross sections of the physical processes. To be more exact, their role is to re-

qularize the A " functions only.

Consider an example of the same two interacting scalar fields ¢  and ¥ °. The matrix element of the

scattering in the second order has the form

U €

<> ~0.. ¢ ,(x) ¥ (DA (x-x) ¢ (x)  x (35)

t

->

x/;o(x’)‘: dx, dx ® .. k..

c

where A is setby (15).:
rea

Since (’SM consists of tWo terms ¢>M = ¢; + ¢'M ( 36 ), then the matrix element .( 36) is divided

into the sum of the matrix elements

=0, f: % (x ) yolx ) A (x—x) ¢°(x ) y°(x):dx dx & .. +
M 1 1 res 1 2 M 2 2 1 2

+ @, f:¢:' (x)) x/f(xl) Ar:.(’z— x,) ®, (x,)¢°(x,)‘: dx dx & .. = (37)

= < M > + < M >
1 2

¢ ° and ¢ ° functions describe free particles, < ¢ ' describes the additional counter-field of the free

M n
particle in the mass state n . The state ® .. in(37) is written down in more detail as

", o o (38)

vee 1 -] -] L, n

n
where ‘D,’ and @ are the amplitudes of the singleparticle states of the field and the counter-field which

L n

are givenby (31) and (32)

13
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+ d —_ - nd I3
[a (B, a“‘,(k')]=—8(k-—k)8” 5 (43)
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In contrast to usual theory here an orposite sign is chosen in the quantization of the counter-field.

Let

-
v— + > k+(m+ M)
S v (v (k) = ) (44)
v=r2 ¢ B 2% af

o

where M  is the particle mass.

The correspéndinq commutator is written down as

- - -+ > lk’...x
Ly 0, v 1 =X 5 5 fab avre ™7,
a
+ (2"\3 n n'’
. -V Mt o, B > .
x 2V (kmV (km)la (k) as (k"] +
. a B Vn ta

' T
m? m m - [y dm dm’
e e 1 e \["’ o dm
TR R

According to ( 42)
] v > -» » 1
01 =-  fdk exp | ilk(y-x) ~ y & " mzy +

' (27)3 t

>, -V - +p | »
+\)k2+.m2 X, ISV (km v " ( &k m)
a

o
4
g 2 p ' (45)
f 20 R g s g Py g (M 9m dm
? 2 ¢ I A ¢ ?
Accordingto (6) and ( 44)
1 4t~ d 2 ’l: / (46)
o m »odk(y - a + m K
07 - -— e (¥ ){293'_‘) ( ”-+f’,__.) m
I ©79 L 0? 2k, ¢
v af
where ko= VvV k' om?
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or

1 +oo dm > A 1k (y—x) 2
[ —— [ [ dk (R+h) 5K~ mdo(k) e Femy m (47)
+ QoY ¢ ap 0 E
1 toe 2 +
or [ - —f dmfmoy (ml(iy 4y YY) iA (yoxm)  (48)
*o(em? e 4 e w9,
r 1 e dm P m ? /m/ + +
° {1 =- { £ o ) {iS(y—x, m)+iMA (y—x, m) }
*o(emt A (49)

the equivalence of expressions ( 48 ) and ( 49 ) is based on the fact that

+ 00 ?

m dm
f m F (—)
w e?

¢

due to the parity of the integrand.

In deriving the commutator 1in the form { 40 ) it was possible not to intreduce a somewhat unusual normaliza-

tion { 44 ), :but to represent the counter-field ¢,' ( x) as two fields

[ ' '

b= g (D4 VH oy | (30)

where the normalization for V . instead of ( 44 ) is

— - v+ > Ji
S Vv (0= 22y (s
iz M@ 18 2k, @B
while for p  of the field ,/,' is
2 2
v, vt 1 .
b3 (k)V k) = &)
2a ) ﬁ( ) 2k af -

In the theory we are developing there is no description of the events in time. The theory does not contain the

equations of motion for the so-called ‘free’ field which forms the basis for constructing the S -matrix,

In the present theory the time, in difference to space coordinates is considered to be not an operator buta C -

number

16



LPx 1 £ 0; lE t]1 = 0. (53)

This asymmetry between time and space arises due to the Dirac equation { equation of motion ) which chooses just
such- a representation of the Lorentz group/4/. In other words, owing to the equation of motion the energy is expressed
2 2

in terms of the momentum ( E "= P~ + m ) which commutates with time.
2

In our case there is no equation of motion which 'makes’ time by the parameter, i.e. by the ¢  -number. The-
refore, it is reasonable that at small ¢ . particles produced have no definite energy, to be more exact, have no
, -y ) 2 . Ed
definite mass (since all the ambiguity in v k + m  of the function ( 2) with the fixed k  is connected

just with the ambiguity in @ ),

The character of the ambiguity ( the spread ) is defined by the functions f and H . As we have
seen, the results of the calculations are independent of the choice of the concrete functions H . either in the
initial or in the final functions of the counter-field. This circumstance corresponds to the fact that within the fra-
mework of the developed theory, there appears to be no possibility of choosing any particular H , tunctionor

their superposition.

In this theory are not formulated such notions as the energy and momentum tensors the conservation laws in the
form of divergence. These are too detailed descriptions for such a theory. But at t » + o the energy, momen-
tum can be regarded as the quantities of the ordinary theory, and the & functions appearing in the matrix

elements provide for the corresponding conservation laws,

We were not concerned with the gauge invariance problems in the electrodynamics. Generally speaking, the

<
gauge invariance is provided for the reqularization of the products of the A function as a whole, but not of
[+
the A functions, taken separately, what occurs in the given theory. To tell the bruth, here an arbitrary func-
m?2
tion f(- ”l;?) in available, the momenta of which one can still make use of. In general, there can hardly

exist a consistent theory describing only one field (for instance, electrodynamics ) isolated fram other fields.
Therefore, a more consistent scheme of the field theory seems to us that developed in Heisenberg’s papers. It is the

future investiqations, in particular — four fermion investigations, that we have developed present formalism for.

Thanks are due to A.A. Komar for numerous helpful discussions.
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