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The S -matrix is constructed by using the functions which go over irito the plane waves at t ... + 

instead of the plane waves. 

The notion of the 'free' field quantum corresponds to that of the free particle only at t-+ + oo • 

The formalism is constructed as follows: an ordinary free field ¢ 0 
( x) is supplemented with a certain 

'counter-field' which is dampling with time, quantized according to the indefinite metric (with an 'opposite sign') 

and makes the regularization of the !'!,() functions ( ll ll 2, 3 ). 

The quanta of the 'counter-field' ¢ ( x) vanish at t ... :!:: oo ( 1111 1,6 ). The counter-field does not 

make any contribution to the probabilities and the cross sections of the observable effects ( 117 ). The theory 

is causal ( § 4 ), unitary ( § 5 ) and relativistiC invariant' ( § 7 ). 



Though the Pauli-Villars regularization method has rather a formal, even an illogical character, this procedure is 

widely applied in the modem field theor/11• This is likely to be accounted for the fact that may be not incidentally, 

(from the point of view of the future consistent theoryJthe procedure in question makes it possible to assign the mean­

ing of the firiite expressions to the divergent integrals of the modern theory without arriving to a contradiCtion either 

with the causality principle, or with the unitarily requirement. It seems attractive to give to this proce-

dure the meanirig of the consistent theory, having iri view that in such a theory the regularization we are discussing 

would arise automatically. 

As is well-known, the verbal meaning of the regularization by Pauli-Villars method consists in the formal intro­

duction at a later stage of the calculations of some counter-fields which alter the form of the propagation functions 

only but remain ( what is essential ) unchanged the state vector's describing the fields in the modern theory. 

A question arises as to how, by introducing new formulations of the bask concepts of the modern field theory, 

one can get automatiCally the regularization under discussion? As is well-known it is easy to introduce the real 

'counter-fields' which regularize the propagation functions but it is still impossible to rule out the peculiar difficul­

ties which arise iri so doing/21 

In the present paper are also introduced 1 counter-fields' which regularize the propagation functions. In contrast 

to other attempts, the counter-fields introduced here are damping with time, and the quanta of these 'counter-fields' 

are absent in the initial and final states of the systems (at t .... :: "" ). The division of the total field into the 

'field' and 'counter-field' is artificial-this is only a method of exposition convenient for comparison of the developed 

theory with the ordinary one. The physical content of this theory is that the quantum of the field 

fre.e particle on! y if t -+ ± "" . 

becomes a 

In the modern theory the process of particle production is considered /apart from the uncertainty principle & t& ·E,.1f ,1 

as a momentary appearance of a free particle with a definite rest mass. In the scheme at small times of 

the arising particle its proper mass is indefinite, indefinite is also its energy. ·The components distorting the usual 

plane wave are dampling with time, and the state becomes that of a free particle as it is understood in the ordinary 

theory. 

The scheme is symmetrical with respect to the production and absorption of particles, symmetrical with respect 

to the past and the future. 
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1. •counter- Field' 

As an example, consider first a scalar field. Each plane wave which in the ordinary theory describes a par tide .. J .. 2 1 
with a momentum i and an enerqy i + m~ 

.. 2 2 ~ 
+ I {1r-; - ( lr + M ) ,] 

e ( 1 ) 

( 2 J1 2 + M~ 
1 ~ 

is added by a certain accompanying wave of a 'counter-field', characterized by the same value of the vector i , but 

represented by a certain integral over the mass parameter m 

_ e ± il% e :t i ( '12 +IJI 2) ~ 
f ----,---~ 

( l .,rk. 2+ IJI 2 ) 't. 

IJI 
41( ~-)~ 

i ' t ( 2 ) 

The quantum of the ordinary field is associated with the plane wave ( 1 ), while the quantum of the 'counter­

field' is associated with a still more complicated mathematiCal expression of form ( 2 ). ln the following it is the 

functions of type ( 2 ) that the 'counter-field' will be quantized over. ln other words, the corresponding creation and 

annihilation operators of the counter-field quanta are the amplitudes of the functions of type ( 2 ). :The ordinary free 

field ¢ 0 
( x) whiCh is empl~yed in the modem theory to construct the $-matrix is written down as 

q,o± (X) "' 
l 

(277)
312 

dl 
f-

v'21":, 
.. 

+ ih ,1. ± ( k) e- "~' 

q,o ( X) ., ¢ o + ( r) + r/>o- ( :r) 

where ( + ) and ( -) designate positive and negative frequency ·functions. 

In what follows we will start from an explidt form of the operator functions of the counter fields 

( 3) 

( 4) 

l 
¢I + ( :r ) - 8/ 2 I f 

dl 
.;2T 

i k " e dm 

f 

. ¢ + ( k ) I(~~-) · /lra.t H (~ 4 
) 

n ~2 f n f ' 
(2 lr) n 

e 
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. • I 

~ 

.. 
1 dk 

(.r)=-.-- I J-- ­
( 2 rr) 8/2 n ,J2i;;: 

-ik.r dm 
e 

2 
m 

Here f ( - - ) is a certain function rapidly falling off with the increasing m 
e2 

H (~____) 
n e 

is a certain complete system of orthogonal and normalized functions. Therefore, 

e is the constant adopted in the theory. 

For the sake of definiti:mess, the Hermitian functions* are chosen further as particular functions 

( 5) 

( 6) 

H 
n 

To carry out the same consideration the Bessel's functions or any other system of functions may be used. · Thus, 

functions ( 2 ) describing the quantum of the added field in the mass state n assume an explicit form 

b 
J-+ 2 2 t ..... -I lr + D1 

I 
= "' e'«" f e f (~) /LmL II (-IlL) dll' 

~ + ... 
( 2 v k2 mTf'h e 2 e n e e ( 7) 

nk + 
a 

+ "" . 
The integration limits are yet indefinite, but, in particular, tt is possible to take f 

For the future analysis if is essential that the functions ~~~ are taken to damp with time. Owing to 
nk 

the oscUlatory time dependence of intergrand ( 7 ) the damping of ~:!: functions with time may be realised by 
~~ 2 ... n;2 

a wicie scope of function s f( -p-2) • So, choosing in ( 7 ) 

we get 

+ +oo 
¢ ~ f 

n,1 =0 

2 
m 

e _,,,- 2[2 dm -e--

11 "'H = e ""' 1 2f I- 1 in the rest system ( k = 0 
n o , - , 

( 71) 
.. e 

I 

that is ~ + is, indeed, damping with time. :This damping can be made to proceed even stronger by an appropri-
O,k=O 

ate choke of the function f(~ 
e 

The damping of function ( 7 1 ) is symmetrical in time.'ihtfunction ( 71 ) has o privileged time point 

corresponds to the time of creation or annihilation of a partiCle. 

m 

* -2P 
To be more exaot, the Hermitian polynomials with the normallzlnc !aotor, e.g., H = 1 . e 

0 
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The counter field arises only in the i.nteracting systems. The 'really' free field I t--. + 

the notion of ·the free field adopted in the ordinary theory. 

) coincides with 

The field ¢
0 

satisfies usual equations· for the free field. The counter field is defined, according to ( 4) 

r nd ( 5 ), as an accompanying field. The total field is not assumed to satisfy any equation. 

2. Qua n t I z at Ion 

The functions ¢
0

( x) are quantized in the usual manner. The corresponding quantum brackets for the counter 

fiEild ¢' are taken with an 'apposite sign': 

[ 
7 I --> I --> --> 

¢ '- ( k) i ¢ + ( k ) l = - 8 ( k - k1 ) 8 ' 
n n' nn 

1 -+ I ,/ I -+I 

[ ¢ -( k ); ¢ { k ) ] "' [ q; + ( l ) ; ¢ + ( k ) ] 
" 

0 
". " n• 

( c/J0 
( X ) 1 ¢f ( y ) ) = 0 . 

According to ( B ) 

.._ 1 ... _, et(k'y-ltx) 

[ ¢'- ( X); ¢' ( y) J =- -- I dk dk I!. !. --· 
(217)8 n n VIK""v~ 

0 0 

I J----; 1 - .. + ... I m l m 2 ; m; / m I m m 
[ ¢ ( k ); ¢ ( k) ] I(- ) f ( _ ) -n- y - n - II (- -- ) Hn ( ---

n n' V2 fl t t n r f 

l 

( 217)
3 

I dk 

[!_lr; ~~!_-
r 2 

According to ( 6 ) 

l(km y -1,., x ) 

' 2 rn rn e 
!. ----------

"2/k o k 0 -1 
l(--) !(-- ) 

e 2 e l 
m m 

( 

II ( ~ ) lin ( ~) 
n r r 

J ... 2 
kom = k2 + m 

6 

I 
dm dm 

v l 

k. 
m• 

r:::--:~ 

dtr. 

( 8) 

( 9) 

I 
dm 

f' 



where 

1 
(¢'(x)¢'+(Y) l =- ---l 

(2 ~r) 3 

-> e ll<(y-x) m' 

dk ---lt-J 
2 k f :l 

0 

- 1- - +J . ._ J dkll(k~m~ 6( a.) e ll<(y-x) rt~) _L!EL 
• n "b o:l n 

(2~rV L L L _.., 

/ m/ 

I 
+ ,._ !l (y -x} 

"" f 
0 

dm 2 

--2 = 
f 

l. 

dm 

All other ll
1 

< > functions of the counterfield have the same structure 

/ m/ dm 

f f 

Usirig the adopted properties of the operators ¢ ( k) 
n 

--+ +-+ -+ ..... -

<¢( k)¢ (k)~=o<k- k
1

), <¢ 
n n n n 

+ ... + ->. 

< ¢ ( k ) ¢ ( k ) >o .. 0, 
n n 

+ + 

< ¢0(k)¢ (k-+) > ""0 
n o 

one can show that 
1 · I 1 1(-) 

<¢( x) ..J.(y)> "'-- !l 
'I' • 0 0 

I 1l >y 0 

< 1 (¢ (x)¢ (y)) > 
0 

I ( 

<¢ (y)¢(x) >o = 

7 

I ( +) 
!l 

0 0 
X < y 

{ 9 I) 

{ 10) 

{ 11 ) 

{ 12) 

{ 13 ) 



and 
I 

!!.e= i < 1 ¢( x) ¢(y)> . 
0 

I 14 I 

Here formula ( 14 ) is extrapolated iri usual manner for X 0 = Yo m 
. Thus, by means of the functions H n <e_-) 

having the properties ( 6 ) it becomes possible to quantize the fiel d ¢ 

which are damping in time. 
over the functions of type ( 2 ) or ( 7 ) 

3. Singularities or the Propagation Functions 

0 

The propagation functions of the field ¢ + ¢ are the differencies of the propagation functions. For instance, 

< 11 11 
re tt 121 

In the vicinity of the light cone 

11 0 ( s) + 
1 1 

M 41T 41T
1 

is 

Hence 

1 

~ M /1 e = i --- en s - -, .. R IT 
2 

2 

s 'h 1 J m 8( s ) m I ml 
X -- f(-) -- --- + 

2 f 2 p f 16 IT 

1 e 

!!. 

M2 
+ i --1-en 

RIT 

M 1 

--O(s)-
16 IT 

/' M 
2 

j 
--J 

R IT 
2 

2 

M1 
- -- 8(s). 
16 s 'T 

1 
m In m X 

1 1 
_ m_:_ ) m dm I m I ( I-I -
f .1 f f 

( 15) 

( 16 ) 

( 17 ) 

e 1 
According to ( 17 ). the main singularities of the ~ M functio11 ( o ( s ) and ___ ) are removed by iritro-

- 1 - ~ 2 
clueing the counter field, irrespective of a partiCular form of the I -function. To be more precise; the I -tunc-

t!on must be only the normalized function, i.e., satisfy condition ( 11 ) 

a 1 m 2 
I ~) 

e 2 
f 
b 

' () 

m 
1--1 

f 

and even condition ( 18 ) 

dm = l. 
( 18 ) 

e 

The removal of the logarithmic divergencies in 11 functions and of the ruptures at the poirits s = 0 require 
that the fo rm of the I functions should be specified. 

() () 
The 11 functions of the total field ( 11 

where 

) can be written as , .. 
() () 1 1 2 

11- f/1 ( s,m) P ( m ) dm 
r•• 

2 
P ( m ) 

2 2 
o( m -M ) -1 

8 

1 
2 m ) <e; -

( 19 ) 

( 2 0) 



1 

Choosing I e.g.,: in the form 

1 

2 
s

1 
Re ( 21 ) 

a hyperholoid. :In the functions of type ( 21 ) 

( () 

we get the 6 J functions we considered iri
13

1. These 6 functions have the s ingularities not on a cone but on 
1 ' 

I are sicjnvariable what leads to the appearance of the !magi-

naries in v' ~and, hence, changes the Hermiticrn proper ties of the field operators ¢ 1 , ~lore complicated 

situations, will be considered elsewhere. Here we restrict curse! ves only to the cases of the real I 
functions. 

It should be noted, that there is hardly any sense in tryirig to get the 'complete' regularization of the /\ function 

i.e. , the equalities f m
2

" p ( m ~ d m 
2 

"" 0 for any integer n. To construct a theory which 

would not involve the diverging values of the observable quantities it is quite sufficient to remove the strongest 

sirigularltieis from the 6 ( J functions. 

Indeed, in the momentum represen tation 6 
r eo 

is written ( with account of ( 11 ) ) as 

1 
/ m/ dm ( m1-M1) 

m 
c I 1( --;;--r 

p e 6 J 
( M ~- P 

2 
( m ~ p 2-

reo - ; d i f ) 

( 22) 

Thus, in calculating the degree of the convergence of the corresponding integrals, each internal line of the 

Feynmann diagram iri the theory under study hrings two degrees of the momentum p 2 ) more into the domi-

nator of the integral than it occurs in the usual theory. :This impl ies that all the diverging integrals iri any . .>s ua! 

case of the field theory ( up to the four-fermion interaction /in the given theory turn into convergent ones . 

4 . C ausalit y 

The commutator of the operators ¢ 1 
( x) and 

I 

¢(y) are written down in the form 

'6 
2 

+oo 2 2 m j m j 
f 6( (x-y), m ) I (-e-

2
-)-e- dm ( 23) 

It can be easily seen that if m 
I does not take on the imaginary values, to be more precise, if Til is 

positive everywhere, then 6 vanishes outside the light cone, Le. , in the region 

I 
2 I 2 ..... -+ 2 

so:c( t- t l-( r- r) < 0 

Indeed , the integrand in ( 23 ) can be put IJS 
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ll 1 0 2 Vfi!2 'l. ~ 
tdz-y,m) "' - - I (X ) 8(s)- I(zJO(s) r.<m v ·s) 

2tt 4rrys , 

{

1, 

0 ('s) "' 0, 

·s> 0 

s .< 0 • 

As e ( s) is independent of m· , then, substituting ( 24 ) into ( 23 ) we see that 

of the commutator in the usual theory to vanish at ·s < 0 holds true also in our case. 

The restriCtion is imposed by the condition m 
2 > 0 only, lor which· the ll function 

down in the form o~ ( 24 ). 

Thus, the condition of the locality of the operators rp 

[¢(z),¢(y)] .. O 

( 24) 

the property 

may be written 

( I ) 

with s < o I provides the fulfilment of the causality principle in the S -matrix constructed on the 

basis of the filild operators ¢ ( II 5 ). 

5. The s- Matrix 

For the sake of simpliCity, we consider two interacting scalar fields. One of them describes the fiEild whose quan-

tum has the mass U , the field q, M 1 while the quantum a£ the other scalar field ljJ o characterizes the 

partiCle with zero the rest mass. :The field rpM consists of the field ¢ ; and the 'counter field' ¢ M 
whiCh is defined according to ( 1 ), · ( 5 ) 1 • ( 11 ) 

cPM = 
0 

cPM + 
I 

cPM • 

For the sake of simpliCity, we take tl).e field 1/J 
0 

in the form of a usual fhild (without the counterfield) which would 

satisfy the D' Alembert equation. 

The field operators q, and ljJ 0 are Hermitian and local. 
M 

+ 
¢ "" 

M ¢ ' M 

+ 
1/Joo: 1/J 0 

+ 0 0 [¢ (z), ¢ (y)]=O, [ljl(z), ljl(y)] .,o 
M M 

outside the light cone. 

The interaction Lagrangian is written down as follows 

lQ 



L ( " ) = A ¢M ( " ) 

+ 
L(z)=L(z) 

[L(z),L(y)]=O, if x-y. 

Like iri the ordinary theory, the n-th term of the S -matrix is put as 

n " 1 ••• in T ( L ( 1C 1 ) , • • • C. ( 1C n ) ) s ( 

and the whole S -matrix 

• n 

S = l + I -.-:.
1- - J 1 ( L ( " J ••• L ( x ) dx ... 

I n I n =I n ! 
dx 

( 25) 

( 26) 

( 27) 

( 28) 

( 29) 
n 

It can be easily verified that the condition of the unitarity is fulfilled. It is given iri the form of the rela­

tion (I). 

+ 
Sn (z 1 .. x )+S (z ... 

n n I 

where the symbol 
"1 

P(--=---
lC 

k+ I 

" k 

X 

" 

lC ... " 
1 I 

X k+l" ·" n 

+ 
)S~r(x ... x)S (z ... x) 

1 k k+ 1 n 
= 0 (II) 

designates the sum over all the n! I k! ( n- k) ! ways of 

breaking up the set of poirits x_, ... x " into two sets of k and n - k points. Here, due to the symmetry 

of S k by arguments ( 28 ) the permutations lrislde each of these sets are not taken !rite account. Like in the 

usual theory, the condition II is fulfilled because the operators L are Hermltlan, while the very possibility 

of writlrig S" as the 1 -product ( 28 ) arises as a result of the locality of the operators L ( ") 

whiCh, tn its turn, Ls the consequence of the locality of operators ¢ and t/J 

6. Norm, Vacuum, Damping States 

In the scheme under study the amplitude of e.g.,: single-particle states consists of the two components 

¢ 
1 

¢" + 
1 l,n 

0 /1 / ¢ is identical with the states described by the usual field theory 
1 

11 

( 30) 



0 ... + ... . 
I II I . II 

~ ., f c( k) ¢ (k) dk ~ ~ =~ ~ 
· 1 0 0 t 0 

- ---
-+2 2 ( 31 ) 

k 0 = V k + M 

Ill describes the state of the counter-field, with the same momentum distribution but iri the mass state n 1, n 
0 

Ill 

' ... + ... 
~ .. f cUe)¢ (k) e "' /~-) 

I, n n 
P.' 

v/IJI/ dm IIIII 

~ f .. 
~I 

0 

II (~) 
n 

~ 

~II ~ ~ 
( 32) 

1, n 0 

u 
Here Just d's in the well-known papers of Heisenberg, the so-called ' 'second vacuum' is introduced: Ill o 

All the Hilbert space hi divided thereby irito two spaces. One of them (the excited states ~ 1 
) coincides 

0 
II 

with the Hilbert space of the modem theory of elementary partiCles. 'The second Hilbert space (the states Ill 

X 

0 

has an auxilliciry character. All the excited states 111
11 

are damped with time and vanish at t .... + .. 
. 0 

The 

The states of the first and the second vacua are normalized 

total vaC<UUm 

• I I 

~ Ill .. 1' 
• 11 II 

~ ~ "' 1. 
0 0 0 0 

lllo is described by the product of the function 
I 

Ill 

Ill 
0 

+ ... + ... 

I 
~ 

0 

II 
Ill 

0 • 

0 

II 

and Ill o 

If the properties of 

on the form 

,p- ( k) and ¢- ( k) 
n 

are taken irito account the norm of the state ( 30 ) takes 

Ill Ill 
.. ... ... dm dm' ... ... 

f c. ( k ) c ( k ) dk - f -- -- f c. ( k ) c ( k ) X 

J f 

_. I 
0 

o 
dk e t(lrm -Jr,,) 

m2 - ~ -, ' 
/~) /ID/ H ~)I(_!___) V/m/ 11 (~) 

f f " P C2 f " f 

m m 
The functions "H (-,-) and f (-- ) are chosen so that after the integration over 

n t ~2 

arises a strong damping of states ( 32 ) with time. Therefore, 

~~~· Ill I I 

._. -+ .... 

-+ fc(k)c(k)dk 

12 

->+oo 

( 33) 

m there 

( 34) 



Thus, the normalization of the physiCal states at t -+ + "" coincides with the usual one • . It is possible 

to arrive at the same conclusion iri the more general case without restriCting to the definite mass state n 
00 

A partieular case ( l: ell a with equal coefficients a requires 
n=O t,n n n 

a more detailed consideration and some other arguments in favour of the same normalization ( 34 ). These arQU!Ilents 

are connected with the analysis of the expressions_ for the probabilltles of the corresponding transitions which, as 

appears, . ( § 7 ) are realized only between the functions of the class ( 31 ). : 

'7. Probabilities and Cross Sections 

The essential feature of_ the theory we are developing here is that the counter-fields do not introduce the contri­

bution to the probabilltles and the cross sections of the physical processes. :To be more exact, their" role is tore-

gularize the !:1. c J functions only. 

Consider an example of the same two interacting scalar fields ¢ 

scattering in the second order has the form 

and 1/J 
0 

• The matrix element of the 

... '( c 

< > -ell ••• k ••• f: ¢ ( lt ) 

"' 
( lt ) !:1. ( lt - z) ¢ ( lt ) X 

M 1 0 1 ... 1 2 M 2 
( 35) 

... 
r/J. ( lt ) : dz dz ell." k ••• 

0 2 1 2 

c 

where 
••• 

is set by ( 15 ). : 

Since ¢ · consists of two terms 
M 

= ¢o + 
M 

¢' 
M 

( 36 ), then the matrix element ( 36 ) is divided 

irito the sum of the matrix elements 

-= ell• ••• f: ¢ 0 
( x ) 1/J 0

( x ) !:1. c ( x- x ) ¢ 0 
( z ) .p 0 

( x ) : d z d x ell ... + 
M l l ree 1 2 M 2 2 2 

I o c I 0 
+ell* ... f:¢ (x ) 1/J (x) !:1. (z- x) ¢ (x )1/J (z ): dz d• ell ... = 

" l l ••• 1 2 " 2 2 1 2 ( 37) 

< Ml > + < M 2 > 

¢ 
0 

and "' 0 functions describe free partiCles, ' ¢ describes the additional counter-field of the free 
M II 

partide in the mass state n • 'J'he state ell ... in ( 37 ) is written down iri more detail: as 

ellll ( 38) 
0 0 '· " 

where ell; and ell~,. are the amplitudes of the singlepartide states of the field and the counter-field which 

are given by ( 31 ) and ( 32 ), · 

13 



For the sake of simplicity, the ampli tude of the field s tate 0 ° is not written down here . 

Since , according to the meaning of the S -matrix ond to the rule of cor s~ructi ng tne ma trix el Er:-.en~ s :>:e 

stales are referred to =+oo 

then in ( 38) 

II 

,and 

4> 

11 
¢ .... 

t, n 

t .... + 

¢II 

0 ( 39) 

¢11 t .... ()0 • 
( 40) 

0 

Since the vacuum ( 4> ) average · 
I 

of the normal product of the operators ¢ vani shes , out of 
0 

the whole expression ( 35 ) remains only the matrix element which has the structure of the matrix element of the 

usual theory, the ~ e function, however, being substi tuted for the regularized function< h c ) • , .. 
The previous consideration shows that the transitions 'take place hetween the states which are realized by the 

excitation of vacuum 4> 1 
• The transitions between the field and counter-field states must not occur because 

0 

of the very meaning of introducing the added field what , as we have seen is brought into effect in the developed 

fo rmalism. 

The consideration made holds for the matrix element of a ny order: in the scheme under study the rule is valid 

everywhere according to whiCh the calculations are reduced to the matrix element in the usual theory, but with the 

regularized ~ c functions. 

fl. FermI 

I ... 

FIe I d 

In the case of the Fermi field the counter-field t/J - ( x ) is writ ten down as follows 

n 

1- 2 

t/J- ( mk ) I ~) R (~) 
e 1 n r 

drr. + 
t/J 1

- ( ") "' 3/ 1 

( 2 ") 

1 .... + lkx 

I f d k e-
n 

where 

t/;+ (km) (}( k ) t/J ( mk ) 
= - -"---- - t/; 

II 2 k 2 k 
0 0 

Let 

+ + -+ II+ 
r/;- ( km) "" Ia (k)V ( km). 

r/1 lin a 

+I 

( 41 ) 

k = \ 
0 

f2+ 

( 42) 

The counter-field t/;- ( x .) i s postulated in an explicit form of expression ( 41 ), where the operators 
+ .... 

a- ( 1c ) are independent of the parameter m . It is postulated that 

II n 

14 
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+ -+ .... , .... ...., 

[a (k), a ,(k)]-=-8(k-k)8 8 
In In I I nn • 

( 43) 

In contrast to usual theory here an opposite sign is chosen in the quantization of the counter-fieild. 

Let 

"" k + ( m + M) 
(------) ( 44) 

a/3 

where M is the partiCle mass. 

The corresponding commutator is written down as 

I 
-+ -+ l(k y -kx) 

I I J die dk' e X 

" n' 

-y 
-+ M+ ( k1 

m ( k) a* + -· 
X I v ( k m) v ) [ B ( k') ] + 

a f3 Jln 
11" 

m2 m m ~~T dm dm 1 
+ I (--- ) 11 ~) II (- ) e2 n f n e e 2 r f 

According to ( 42 ) 
l . 

.Cl = - -- Jdk 
I 

exp 
...., -to ~• -• 1 I 2 

I i [k ( y-x) - v k + m y + 

JTi~ -v -+ + v -+ 2 II v ( k m) v k iii). + + .m X 
t a 11 v 

n! 2 2 - -- -- --~-

dm dm 
( 45) 

I (- m- ) I IIJI / m/ I H ~)H (_..!__) I (- - ) v 
f 2 f2 f n f 

n e f f n 

According to ( 6 ) and ( 44 ) 

1 +oo dm -· lk(Y - x ) 2 m2 k + r.<+m / m / (46) 
[ 1 = - -- J - J dk e I (-- ) (--- --) -

( 2 ")a -"" p p 2 2 k o p 
af3 

where k 
0 
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or 

1 +oo dm ... "" ll ~ 
() ----J-- J dk (k+M) lJ(k- mJ8(k) 

+ (2 rr)" f ap. o 

+oo 

lk ()•-x) 

e 
2 2 
I(~) / m/ 

f 2 · e 

+ 
or [1-- 1 J~t2(~) 1 m l uy _a_+ 

+ < 2 l" .f f 
2 e a x 

M) iA ( y-:r, m) 

or 

" -oo p. p. 

+oo 

Cl .. - _1_{ dm + ----
(2 ,," e 

-oo 

2 2 
f (__!__ ) I m/ 

f 2 -e-
+ + 

iS (y-x, m)+iM6. (y-x, m) 

the equivalence of expressions ( 48 ) and ( 49 ) Is based on the fact that 

2 
m dm 

+oo 

f m F (-____) -- .. 0 
P e 

due to the parity of the integrand. 

( 47) 

( 48) 

( 49) 

In deriving the commutator !ri the form ( 49 ) It was possible not to iritr~duce a somewhat unusual normaliza-

tion ( 44 ), · but to represent the counter-field .p' ( x) as two fields 

where the normalization for V 

while for v of the field 
2 

.p 

l: 
Y=l,2 

.p2 

(x)=!/J (x)+yM .P 
I 2 

!ristead of ( 44 ) is 

v- -+ v+ v (k) v 
... A 

k + m 
( 1c) = 

Ia I {J 2 1c 
0 

Is 

I v ~ v + -+ 
1 

I v 
2a < 1c l ·v 2{3 < k l = ) a{3 2 k 

0 

) 

(50) 

( 51 ) 
a{3 

(52) 

In the theory we are developing there is no description of the events iri time. The theory does not conta!ri the 

equations of motion for the so-called 'free' field which forms the basis for constructing the S -matrix. 

In the present theory the time, in difference to space coordinates Is considered to be not an operator but a C -

number 
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[ y, ; I= 0; E 0 . (53) 

This asymmetry between time and space arises due to the Dirac equation ( equation of motion ) which chooses just 

such· a ~epresentation of the Lorentz group141. In other words, owing to the equation of motion the energy is expressecl 

in terms of the momentum ( E 
2 

= 1' 
2 

+ m ) which commutates with time. 
2 

In our case there is no equation of motion which 'makes ' time by the parameter, i.e. hy the c -number. The-

refore, it is reasonable that at small , particles produced have no definite energy, to be more exact, have no 

definite mass (since all the ambiguity in v;·k2 -~ of the function ( 2) with the fixed k is connected 

just with the ambiguity in IJl ). 

The character of the ambiguity ( the spread ) is defined by the functions I qnd H . As we have 
n 

seen , the results of the calculations are independent of the c hoice of the concrete functions 11 either in the 
n 

initial or in the final functions of the counter-field. This circumstance corresponds to the fact that within the fra-

m ework of the developed theory, there appears to be no possibility of choosing any particular H n 

their superposition . 

function or 

In this theory are not fo rmulated such notions as the energy and momentum tensors the conservation lal'{s in the 

form of divergence. These are too detailed descriptions fo r such a theory. But at t .. + "" the energy, momen-

tum can be regarded as the quantities of the ordinary theory, and the o 
elements provide for the corresponding conservation laws. 

functions appearing in the matrix 

We were not concerned with the gauge invariance proble:ns in the electrodynamics. Generally speaking, the 

gauge invariance is provided for the regularization of the products of the !'! c function as a whole, but not of 

the !'! functions, taken separately, what occurs in the given theory. To tell the bruth, here an arbitrary func-
m 2 

ticin I (--) in available, the momenta of which one can still make use of. In general, there can hardly r 2 

exist a consistent theory describing only one field (for instance, electrodynamics ) isolated from other fields. 

Therefore, a more consistent scheme of the field theory seems to us that developed in Heisenberg' s papers. It is the 

future investigations , in particular- four fermion.investigations, that we have developed present formalism for. 

Thanks are due to A.A. Komar for numerous helpful discussions. 
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