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Abstract 

':'he Lorentz-invaricnt fo rmulation of quantum electrodynamiCs is given, whiCh does not involve potentials 

:~ut e! P.ct romagnetic f; dd strengths only. 
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Till now nobody succeded in writing down equations of quantum electrodynamics in terms of electromagnetic 

field strengths only, tn contrast with classical Maxwell electrodynamiCs. Quantum equations of motion contain usually 

4-vector-potential All 

This caused diffieulties. So, it is well known that the 1/.axwell equations for All can not be quantized. In 

fact they determined All on principle up to the 4-gradient of an arbitrary function. :This means All have the 

component, for which the equation of motion does not exist111. Therefore it is not possible to write down the commuta· 

ticin relation for . ~n conventional approach one restriCts the gauge in some degree and obtains, therefore, · 

the equation of motion whiCh defined All more strictly. Because of this they permit· quantization. The disadvan-

tages of such formulations are well-known. :The Coulomb gauge formulation (Dirac) is most consistent and clear one. 

However i( does not expliCitly covariant and in contrast to Maxwell theory one needs to consider interaction due to 

transversal quanta and Coulomb interaction separately. In a Fermi's formulation one had to introduce nonphysiCal in

definite metrie (even this can not be done in an expliCitly covariant form). Therefore many authors are seeking to over

come the quantization difficulty of a theory, whiCh explores Maxwell equations; by means of giving commutation rela-

ion not for All but for gauge independent quantities onl/2-81, e.g. for field strengths. In such theories, however 

either the vector-potential excluded not entirely and it is difficult to operate wi th it or explicit Lorentz-in variance is 

absent. 

Some authors are inclined to consider these diffieulties as an indication that vector potential in quantum theory 

has an independent signifiCance in contrast to the classiCal theory (191 see also181). · 

In this paper it is shown that quantum electrodynamiCs can be built from the very outset iri terms of electromag· 

etic field strengths only in an expliCitly covariant manner. This formulation is based on our previous pape/11. The 

interaction of a charged field with photons possesses seeming nonlocality and can be written down in many equiva

lent forms. :The consideration is carried out in interaction piCture. It's aim is to demonstrate the possibility of car

rying out all the calculations without any references to the vector-potential. In this respect there are no differences 

between classiCal and quantum theories. 

2. In an interaction piCture free field operators obey Maxwell and Dirac c:rucrtions 

( 1 ) 

II 
I 'FILII ~ '(:, l ll11Ap FAp I ( 2) 

( 3) 

( Yua11 + m) .p ~ o ( 4) 

,.,here F 1-111 is the electromagnetic field strength operator and t/J 

compatible with the well-known commutation relations*. 

is spinor field operator. These equations are 

* We lut.ve al.H.ady n..a1e tbo k.n.o..wn la.c.t_ _that.._fa.LPOtentlals ther!. ls not_poeslble to write down the . oommutatlog .r.ela.t.Jone 

whtoh would be compatible wfth Maxwell equatJona. 
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[ FjLJ.I (X), F>..p ( y) ] = 

(5) 

[ 8 a a _ , o a a - a , a -L + o .. ~_a_ ..L 1. :it::. r x _ ,r > 
vp - - - ILP- - v"-- ,..,,a a 

axiL ay>.. ax.v ay>._ ax.ll ayp Xv Yp 

! 1/J(x), !f!(y) lr=O; ! 1/J(x), 'f(y) l=·dS(x.- ,y) 
( 6) 

The equation ( 1 ) can be derived by varying the lagrangian _, Y.. fd 4x Fllv ( x) ~Jx.Jprovided equation ( 2 ) is 

satisfied. The commutation relation ( 5 ) can be obtained according to the Peierls procedure/ lO/ 

Fourier-expansion for Fllv ( x) and the commutation relations in p -representation are given in Ap-

pendix. 

3. Let us take an interaction lagrangian in the form 

- -t 
L

1 
(x) = ie: 1/J(x) Yv!f!(x) all~ FILJ.I(x): 

( 7) 

The operator 

bert equation 

-1 
:::J can be understood as an integral operator of the convolution with any Green function of D' Alem-

-I 
:::J f(x)- Jdy G(x- ,y) f(y) 

( 8) 
=:J G(x-y)=o(x- ,y) .. 

It is not necessary to remove an arbitrariness in a choiee of Green function G. As we shall see below any choke will 

lead to the same results. : 

-I -'1 
Let us note also that from equation ( 1 ) it follows vanishing of 

_ ,1 
:::J a,.,. CJ F llv . but not of all D FI'J.I. 

We s hall take the convention to apply firstly the operator :::J . 

As to S - matriX we shall require only, that it must satisfy conditions of Lorentz-invariance, unitarity and 

causality in the Stueckelberg-Bogolubov's spirlt:11 ll. l.,et us take it in the form 

S -= · T * up [ if dx Lz (X) ] ( 9) 

where notation T* imply only that in normal form of S -matrix the following contractions for quantities 
-1 

all =:J Fllv (x) must be taken 

a -t a _ ,1 a a - 1 • e 
-- ~,.Filv(x.)- :::JY F>..p(y)=(ovp_ , __ :::J )(-t)tl(x-:r) 
ax.ll arx ax J.l ax.p 

( 10) 

and the usual contraction must be taken for spinor field. Propagators ( 10 ) correspond to electrodynamiCs in the Lan

dau-Khalatnikov' s gaug~. :The term with derivatives in ( 10) is not essenticil because of the current conservation and 

of vanishing of the equal-time current's commutator. :Thus, all the coeffiCient functions turns out to be the same as in 
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· conventicinc:d electrodynamics. rt is worthwhile to note that contraction ( 10 ) can be considered as a result of the 

acticin of differential and integral operators on contraction "F
11
v(x) defined by Horl

121. · 

Fp.v(z)F>..p(Y)=(8vp-a- __ a_- a11P_a __ a_ - Bv>..-a- _ a_+ a fLA _a __ a_ )(-i) t/(x-y) 
ax 11 ay >.. axy ay>.. ax 11 ay, axy ayp 

Instead of postulating contraction ( 10 ) if miciht be more consistent to build S .-matrix for nonlocallagran-

gicin ( 7 ) by Kirgnit:Z methoi151 involving f Q ordering. 

4. rhe only nonusual constituent in the normal form of s -matrix are 

-I 

FI1Iv I rx9 ·········· _a_o ax;" 

N -products 

( 11 ) 

It can be shown that the calculaticin of matrix elements of such N -products don't lead to difficulties. for 

this sake first of all we define the proton s tate a s a result of acticin on vacuum of the negative frequency part of 

field strength tensor . :The one-partiCle state with definite momentum will have the form* 

( 12 ) 

With ortonormali:iabillty condition 

A photon state will be defined if the strength of its electriC field ( Em = iF m _,) or magnetic fiEild 
v ll ... ..... _. 

H,= iF , 4 or F11v ± F11v (i.e. E ± iH) ** is given. If we consider the first possibflfty (the other 

possibilltlEis can -be considered similarly) then a normalized state vector will have the form 

( 13 ) 

The normaltzaticin conditlcin for a state vector is 

( 14) 

The convolution of indiCes m and n ( sum over spin states ) give 2 8 ( p - qj , where factor 2 corres-

ponds to a number of independent spin states. 

By means of the relation 

* Operators -111v{ V and their properties are defined In an Appendix. 

** Last quantities tranetonn by lrreduolble representations ( 0,1 ) and ( 1, 0 ) of the homogene o u s Lorentz gro up . 

s 



-
1 

+ .... -a q) expCio,x) [aD F (x),£h.p (q)]= 1 (av>..qp vp >.. y (2rr) 32q
0 

J.l 11"' 

( which is the conseqtlence of Eqs. (A2) and (AS) of Appendix ) we obtain 

-J • ..... 
( %' a11 D F11v(x) -=L L>, 4 ( q) ll'0 J 

qo 

_L (a v>..q 4 - av4q >..) -~I~ . 
q 

0 
'1./ ( 211) 2q0 

( 15) 

Therefore iri the Feynman graph the factor 

photon , whiCh is connected with a current 

_ 1 (a \ q ._a • q,) corresponds to an external 
q VI\ 4 v. 1\ 

0 
j v and whiCh spiri state is characterized by >.. • This solves the 

problem of the matrix elements calculation of the normal product ( 11 ). :The summation of the squared matrix ele

ment over photon spiri states gives 

2 
- _ 1_ ( avv1q 4- aV4 qv1q 4- av~qVq4) . qi 

( 16 ) 

Taking into account the conservation of current and vanishing of the equal-time commutator of currents we see 

that only first term gives contribution. Therefore we obtairi the Feynman' rule for summation over photon spin s tates. 

If photon state vectors are constructed by application of creation operators c +( p~ s) (see Appendix) then the 

S- matrix element for n-photon processes will be written down in the following visual form 

< 1\S \ i >-
( 17 ) 

- ... ... 
U ... ylli" yll n"' U Fllt"'(q1sl) .... . FllniqnsJ. 

5. Thus, the formulation of quantum electrodynamiCs has been given in which one needs not make any, reterence 

to a vector potential. We have used experimentally measurable and uniquellydefined by Maxwell equations field ' s 

... 
strength' s E and II only_ 

This theory is based on our previous pape/11. ~n / l / decomposition of a potential into gauge-independent 

and gauge-dependent parts has been given 

-1 -1 -1 -1 

All= ( AJ.l- all av D .. Av) +a llavo Av= av 0 FVJ.l+ a lla"' 0 Av 

The gauge-dependent part of A ll can be removed by the transformation t/J ... exp (i0-~vAv) lj.safter 

whiCh an interaction lagrangian takes form ( 7 ). 

Having been defined nonuniquely ( up to 4-gradient) the poteo.ticil All is nonmeasurable. Our definition 

of an gauge independent part is also arbitrary in some degree. (Any Green function of the 0' Alembert equation can be 
-I 

taken as the kernel of an integral operator D ). Such an arbitrariness is also leaved in the given fonnulation 
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of quantum electrodynamics. However it: does not concern the photon operator ( Fllv ) an~ means a freedom iri the 

choke of one of many equivalent forms for writlrig down S -matrix iri terms of uniquely defiried photon operator. 

AppenJix 

3- and 4- d!rilens!onal Fourier expansions for strength operators Fllv (x) may be written iri the form 

Operators l llv and 

4 4 lpx + -+ ... fpx 

F (x) = f dp !tiiV(p) e + l,,yCp) e 
i!V y(2rr) "2p r r 

0 

d~ 
F;,v (x) = f --3 
r y( 2rr) 

lpx + -lpx 

{ 1/lV(p) f + 1/lV (p) e 

satisfy Maxwell equations 

v 
P" I = I) , p I = 0 

r /lV /l i!V 

and are connected by relations 

Following commutation relations take place for them 

-> +-> 
(f/!V (p) , it..p(q)) = 

I. 

= [ p p, 0 - p p 0 ,- p p, 0 + p p 8,) 0 (p - q ) 
ll 1\ vp ll r-- VI\ v 1\ llP v p 1-"' 

r~ = PI D 

+ 
I (p), I, (q)] = 
/lV "P 

7 
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(A . 3) 

(A. 4) 



[ + -> 
I JlV( p) ' E >..p( q) l 

= I P / >.. ovp- P
11 

P p (j v>.- Pv P>., o/lP + Pv P Po 1,>.,! o ( p- q) 0( p0 ) o (p
2

) ~ 

Another commutators vanish . When applying creation and annihilation operators ~:vr t1;v) 
we imply that a photon spin state is characterized by indices ( 11, v) 

VJe can pass also to the expansion 

2 
1 11 v(P) = 1 C (p, s) FIIV (/, s) 

r s= 1 r 

(A. 5) 

and £
11
v( I 

11
,) 

( A.6) 

where s is spiri iridex, F JLY ( p-+, s) are c -number sol~tions of Maxwell equations ( photon wave 

functlon/141 ) and c ( p, s) are annihilation operators with commutation relations 

( A.7) 
[ ~ (p,s), <t+(ci:s') l ~ o , o(p- q), •• 

Fourier expansion ( A.l ) will be written down in these terms as 

2 d~ I -> -> ' + -> F -> ' l F Y ( x) = 2 .f P C (p , s) F11v (p , s)exp(tpx) + ¢ (p,s) 
11

rJp,s)oxp (-tpx) 
J.L s=J y (2TT) 3 2p 

0 

(A. 8) 

In conclusion we give an useful formula for the sum over spin states (in an unnormalized form ) 

~ -+ + -+ 
s";,l F 

11
J p , s) F>../ p,s) = oJ.L>.. PyPp- o YA PJ.L Pp- o J.LpPvP>.. + o vpPJ~P>.. 

( A.9 
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