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Abstract

ey

o Lorentz-invaricnt formulation of quantum electrodynamics {s given, which does not involve potentials

“ul electromagnetic fi:ld strengths only.






[F,(x), Ry(n] =
(5)

(6, 0 8 -5 9 9 -5, 0 4 +&5, 8 3 ].HA(x~y)
Wax, dyy M ax, dyn  “Nox, oy, oz, 9,

Ly(x), (y)d=0; [¢(x), ¥(y)}=-iS(x—y)

The equation (1) can be derived by varying the lagrangian —:% f ,d‘x FuV (x )IL l,(x)provided equation (2) is

satisfied. The commutation relaticn ( 5) can be obtained according to the Peierls procedure/ 10/ .

Fourier-expansion for F w (x) and the commutation relations in p -Tepresentation are given in Ap-
pendix.
3. Let us take an interaction lagrangidan in the form
- 1 (7)
LI (x)=de:¢(x)y,¥(x) aug FI»'-V(X):
~ 1
The operator ]  can be understood as an integral operator of the convolution with any Green function of D’Alem-
bert equation
-1
1 f(x) = [dy G(x~y) {(y)

(8)
1 G(x~y)=8(x~vy).

It is not necessary to remove an arbitraririess i a choice of Green function G. As we shall see below any choice will

lead to the same results. -

) -1 ~y
et us note also that from equation { 1 ) it follows vanishing of ] a’_‘ 7 FW . but not of au 7 FW'
Ve shall take the convention to apply firstly the operator ':]—:1 .

Asto S — matrix we shall require only, that it must satisfy conditions of Lorentz-invariance, unitarity and

causality in the Stueckelberg-Bogolubov’s spirltf/ 1/ . Let us take it in the form

§ = T* .zp[’ifdxly(x)] (9)
where notation T*  imply only that in normal form of S -matrix the followirig contractions for quantities
% = By (x) must be taken
¥ I J
J 'F J “'h w(by, ~ 9 9 hy-i)a(x-

(10)

and the usual contraction must be taken for spiror field. Propagators ( 10) correspond to electrodynamics m the Lan-
dau-Khalatnikov's gaug.e. The term with derivatives i ( 10 ) is not essential because of the current conservation and

of vanishirg of the equal-time current’s commutator. Thus, all the coeffictent functions turns out to be the same as in






—1 . .
(8,00 F_(x),£, ()=i(5 ,a -5, q,) -expligx)
# v hp vAip Tvp V(2 32qo

( which is the consequence of Egs. (A2) and (AS) of Appendix ) we obtain

- ) .
( %"a#D Pl (%) ;:1‘(;‘)\4(‘1) o) =

1 - i
—q—o (OyAq 4= Oyaa)) —\7'87"—22”8—31& .

2q,
Therefore ir the Feynman graph the factor _qi (SV)\ q,~ BW ,) corresponds to an external
photon, which is connected with a current jv and which spin state is characterized by A . This solves the

problem of the matrix elements calculation of the normal product ( 11 ). - The summation of the squared matrix ele-
ment over photon spin states gives

2
“—-LQ—(5w1f14“av4qvlq4_avkqvq4). (16)

95
Taking into account the conservation of current and vanishing of the equal-time commutator of currents we see
that only first term gives contribution. Therefore we obtain the Feynman’ rule for summation over photon spin states.
-
If photon state vectors are constructed by application of creation operators € +(p, s) (see Appendix) then the

S- matrix element for n-photon processes will be written down in the following visual form

< £} S]i>~
(17)

i >
~ U... Vo poe Yoo u F#,4(qlsl) ..... F#n4(qnsn).

5. Thus, the formulation of quantum electrodynamics has been given in which one needs not make any reterence

to a vector potential. We have used experimentally measurable and uniquelly defined by Maxwell equations field’s
strenqgth’s E and H onlya

/Y 1n

This theory is based on our previous paper 1/ decomposition of a potential into gauge-independent

and gauqge-dependent parts has been given

-1 ~1 —1 ~1
Ay (A= 0,0,00. A)+0,0,1 4,=3,00 Fu+dd, ] 4,

The gauge-dependent part of Ay can be removed by the transformation Yy > exp (!'l:ln 13,,14,,) Yafter

which an interaction lagrangian takes form ( 7).

Having been defined nonuniquely { up to 4-gradient) the potential A# is nonmeasurable, QOur definition
of an gauge independent part is also arbitrary ir some degree. {Any Green function of the D’Alembert equation can be
-1
taken as the kernel of an integral operator [] ). Such an arbitrariness is also leaved in the given formulaticn






t
( f;w(P);f)\p(Q)] =

B 3 . < . PR (A.5)
= PPN, PPy in T PuPA By Pupyd At o0~ a) 0(p) (%) \ 2,
+
Lnother commutators vanish, When applying creation and annihilation operators f‘w( f;v) and llV( [;u«)
we imo'y that a photon spin state is characterized by indices (y, v)
Ve can pass also to the expansion
2
L2 N A.
£,() =2 €(3,8) Fiu (F,9) (A8)
where S is spin index, Fuv(F;: s) are ¢ -number solutions of Maxwell equations ( photon wave
.‘unctions/M/ )y amd (P, s) are annihilation cperators with commutation relations

le(p,s),€'(q,s)1=5,,.,8(0~7).

Fourfer expansion ( A.1 ) will be written down in these terms as

Fu (=5 [ _dF |

- €(p:s)F (F.8)exp(ipx) +€'(B,s) F s i
s=1 \(2n)%2p, . e Gl

In conclusion we aive an useful formula for the sum over spin states (in an unnormalized form )

2 N + L. )
Yy = - -9 b
& Foa(ps) Fy (pss) Sun Py Pp O APuPy™ O Py PAt O PPy
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