ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

G. Domokos

G. Domokoe *

E-961

SIMPLE APPROACH TO THE DETERMINATION
 OF REGGE-POLES

[^0]In a recent work $/$ // we have established the following properties of the Regge-pole, determining the high-energy diffraction seattering:

71/G.Domokos. ОИЯИ Preprint, D-900 (1962).

1. $L(t)$ analytic in the cut t-plane, the cut running from $t=4$ to infinity.
2. $d L / d t>0 . \quad$ 3. $L(0)=1$.

We add to these the following properties.
4. $\operatorname{Im} L=O\left((t-4)^{R \bullet L(4)+3 / 2}\right)$ for $t \rightarrow 4+0$.
(This follows at once from unitarity and from properties $1 . \perp 3$.).
5. The branch point at $t=4$ connects just two sheets of a Riemann surface (because it corresponds to a two-particle-singularity).
6. $I .(t) \leq 2$ if $\quad 0<t<4$ because experimentally no $I=0, J=2$ bound state is observed ${ }^{2 /}$.
${ }^{7 / 2 /}$ This remark is due to I.Ja.Pomeranchuk (Private communication).
7. There are no bound states with imaginary mass ("Ghost")
a) It follows from the properties $2 .-6$. that

$$
\operatorname{RoL}(4)=2 .
$$

In order to satisfy l. we represent L as a power series (approximately, as a polynomial) in the variable ${ }^{13 /}$

$$
\begin{equation*}
\eta=-t[2+\sqrt{4-t}]^{-2} \tag{1}
\end{equation*}
$$

$\sqrt{3 / \text { C.Lovelace. Diffraction Scattering and Mandelstam Representation, preprint, } 1961 . ~}$
b) For $t=4+0$, the coefficients of $i(t-4)^{\text {t/ }} \ldots i(t-4)^{s / 2}$ must vanish. (Cf. property 4) and condition a)).

*) $L(t)>0$ at least in the interval, where the "elastic" approximation is to be valid" i.e. $|t| \leq 16$ (Cf. property)

This can be achieved by prescribing the value of L at infinity. In our opinion it is natural to choose $\boldsymbol{L}(\infty)=\boldsymbol{L}(-\infty)=0 . \quad$ (\boldsymbol{L}. must be continuous at infinity).

The requirements α) to c) give six conditions for the coefficients of η^{n} in the power series of \boldsymbol{L}. Therefore we put

$$
\begin{equation*}
L(t)=1+\sum_{n=1}^{5} C_{n} \eta^{n} \tag{2}
\end{equation*}
$$

and find a system of five linear equations for the coefficients C_{n}.
The solution obtained satisfies- of course- the requirements imposed, for $|t|<16 . L$ actually passed through zero at about $t=-32$, but this point is already outside of the domain of validity of our approximation.

[^1]Calculating the angular distribution of πN diffraction scattering with the help of formula (2) and eq. (5) of ref. one obtaines a satisfactory agreement with experimental data at 5 and 7 GeV pion energy in the lab. sys. ${ }^{/ 4 /}$.

[^2]Let us remark that requirement c) seems to play an essential role. If one drops it and approximates L by a polynomial of the fourth degree, then the solution gives $L(\infty)=L(-\infty)=-6$ and a^{\prime} ghost' already at $t=-9$. Obviously $0 \leq \boldsymbol{L}(\infty)<1$ and one can hope that by varying its value the ghost can be eliminated at all, and a good agreement with experimental data will be obtained.

There is serious hope that the procedure sketched above can be extended to a general method of obtaining Reggetrajectorles.

The outhor takes pleasure in expressing his sincere thanks to prof. J.Ja.Pomeranchuk and D.V.Shirkov for fruitful discussions on the subject.

Received by the Publishing Department

 on March 13, 1962.
[^0]: "On leave from the Central Research Institute for Physics of the Hungarian Academy of Sciences.

[^1]: *It is, of course, possible that the residue vanishes where $L(t)=0$; at present, however, we have no indication for such a behaviour.

[^2]: 4/E.Fenyves, private communication.

