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Abstract 

It is shown, usirig the strip approximation, that there are two possible a!%¥1Jlptotic fonns of the scattering ampli

tude. lfhe first type of solutions can not give a constant total cross section, the second type asymptotic behaviour 
· Ill L(t) . 

exactly the same as given by Regge : A• ( ., t ) • I ( t ) • , if. • ... oo 
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• 
I. I n t r o d u c t I o n 

A great effort fias recently been done to determine the scattering amplitude at very high energies. According to 

Regge/l/ t~e asymptotic form of the imaginary part of the scattering amplitude for nonrelativistic quantum mechanics, 

for a given class of potentials has the form: 

L;( s) 
At ( t, s ) = I I. ( s ) t 

I 
if t .. ..,·; 

where s is the total energy squared in the c.!Tl·S· system, t is the momentum transfer. 

(U) 

Chew and Frautsch/
21

, using the unitarity condition in the third chanel obtained an expression for Mandelstam's 

spectral function iri the strip approximation (here under 'strip' we un~erstand the interval 4 < t <. 16 ): 

l 
p(s, t) =---

16 1T 2 

where 2 2 2 I =· s - • ( •1 + ~ J + ( ~ - ~ ) , 

and t =· 4 + 
0 

The upper limit of the integrations is given by the following inequality: 

where S]. + "2 

•>~+~+2~~ 
t- 4 

is always less than s 

I 
2 "1~ 2 2 

+ " ( ~ + ~ + ---"'------1) - ( "l - &.. ) 
t- 4 :.:: 

( 1.2 ) 

( 1.3 ) 

Amati and other/
31

, using this fact, obtained an iterative solution of equation ( 1.2 ), using the dispersion rela

tion for A ( s, t ) : • 
A ( s, t) 

s .,., 

l . 

1T 

J p ( •• t') 

t' -t 
d t'. ( 1.4) 

At finite values of t tne left hand cut does not appear, 1.£ a _. .., . They succeeded in geting the first approxi-

maticin analytically and it was in good agreement with experimental data in the BeV region. 

Independently of them Domoko/41 obtained a similar amplitude by an other method. 

However, all this papers give the amplitude in a limited region. 

In an other paper Domokos151 assumed, that the imaginary part of the amplitude in the crossed chanel has a form 

given by Regg/
11

. He found it satisfies equation ( 1.2 ) and he was able to obtain an equcrticin for the exponent L (t). 

There arises a very interesting question, which are the possible asymptotic behaviours of amplitudes satisfying 

( 1.2 ) and ( 1.4 ). 



2. Integral Equation for the Amplitude 

We try to give an other form te ~aticin ( l.l ). Therefere we iivi•e the ref{en •f intetr.Wcin irite tlvee p..ts 

(as may be seen on Fit. :1) •. A is chesen se •s to s.Usfy the ine4111mitles: 

A >>:I, A«& ( 2.b ) 

The ex,ressiens for a and b ::m the figures qn• their •symptetic forms ce: 

ha · J ha2 a(t-4) . 
a ... ). +:a+-:--;;; -V. ().+:a+;------)-( \ _ 8 ) 2 .. = all ( )., t) <<. a 

t-• t-4, A ~' . ( 1.2) 

s • I a. 2. ' J • .... 
b"" 4 +:• +:t=4-·v( 4 +:•+~J-2 -·< 4 -:• > .. • (1 +1_4 - 'I+t_ 4)

2
-J.J =•11(4, tJ. 

We denote the integrals for the appropriate regions by II 1 .12 I ·lg respectively. 

In the integrals li and 12 wehave •lw•ys 8z <'A << a 

the expression of I will be sirilply I•·( a- •I ) 2. 

(see Fig. 1 ) an• therefere •symptetic•lY 

In the integral lg BJ < a « a .nd se the ilsymptetic ferm ef I will lte: 1 .. -( 8 _ ~ ~!.. 

Se after lriaertirig asymptotic: expreasiens1 the integrms li , -1~ aft• 13 t•ke en tke follewirit ferlll: 

where 

.. 

Here 

• ., 8]. • 
11 •· f7' A• ( ~· t) FI (-, t), 

4 1 • • 
I 

b dBJ. 
12 rj -I A: ( BJ.• t) F2 ( ~, t), 

b 
'a.~~ 

>. az 
A

8 
( • 2 , t) F• ( ~ , t) , 

2 
.2 

A (a..., t) I ). • :.: 
1 J d Bz -_-_-_-_--:---=--

.F1(•, t)•~6rr2 •-J. 4. yt(t-_to) 

( •-1 J2(t-4) 
1 1 4 • 

1 ,2 ( •• t) "16;!' ·-·1 4 

4 • az 
t • 4 + . • 
0 (•..-·1 J2 

A8 ( ~· t) 

d~ •./t(t-·tr) 

For sake of slrilplicit~ we omit: the contribution of the inteQral: 

d~· • t --..,- A• 
8 

( 8]., t) F1 (T, t J- 0 (I) 
4 -L } 

( 2.3 p· 

--

from iriteQMl rt . We hope the spectral function goes to irifiriity u: • .. eo , and iri this case this integral 

;lV.s only a small contribution. 
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We know the spectral function p ( s> t) is real, so we may write: 

t p ( s; t) + [ 11 +:1~ +·13 -~<l*l + "! + 13 ] . 
Usirig the well known connection between p ( s, t) and AJ s, t) we obtain the integral equation: 

where 

. oo ds1 
A

8 
( s, t ) - [~ A8 ( III• t ) F ( ~ , t ) •· 

00 d~ 
•· A: ( s, t) -[at A:(~, t) F*~, t), 

'\. 
1 1 '1 

F(.z,t)•·i~•---) F
1
*(.z,t) +:i8(a · )8(:---·z)F*( .t)+ 

• h(~t) 11(4, 0 h(>.., t) . ~ •• 

1 
+ i 8 (.- h (4,t) ) '2.* ( •• t }. 

We look for the solution of equation ( 2.4) satisfying dispersion relation ( 1.4 ). 

3. The Method of Solvilll or the Integral Equation 

( 2.4) 

The form of the solutions of equation ( 2;4 ) may be obtained by Mellin transformation. :I'he transforms of the func

tions of equaticin ( 2.4) are the following: 

00 
L-1 + 00 L-1 

~+ ( L) •·f As ( .. t) s da, <II J L) •· f A * ( s, t) 8 ds, 
+. s 

>. X 

~ L-1 
<II:(LJ-·J 

L-1 
( 3.) ) 

_.J-

~_,(L) •·{.A
8

(s, t)8 ds , A*(s,t)s ds, 

0 
8 

0 

00 L-1 
V ( L ) •-f F ( .z, t) • dz , 

+ ~ L-1 
V ( L ) •. f F* ( .z, t) z dz , 

0 
0 

respectively. 

The following equalities are satisfied: 

( 3.J ) 
+ 

<II• ( L*) •·<II ( L ), 
,.. 

V* ( L* ) .... V ( L ) . 
+ + 

The iriverstcin formulas of transformations ( 3. ~ ) are: 

ioo + -0'\ <II+( L ) ioo +'0'' <II_,(L) . 0 

A
8 

( s, t);. f L 
dL + f L 

-ioo +:u'
1 

8 -ioo +'0'1 .. -! . 0 ,.,..:,.,_ 

dL, 

( 3.3) 

;,... + u'1 
+ ioo + .u' (II+· (L) 

«»+ ( L) 0 

A* (s,t)•·.f ;; dL:,.. .f. •L s -Joo + u'1 •Joo +:uJ 
dL , 

ioo + r' V(L) 
ioo + r' 

F ( .z, t) •· f .t 
dL, ,. ( .z, t) •. f 

-ioo'+r' 

+ 
V(L) 

.L 
dl. 

- ioo +:r' 



the functions ~+.(L), 4>_,( L) and V ( L ) are defined in a domain bounded by the straight line8 Rei, equal 
to u1 I •0' 

0 
and r respectively. 

v ( L ) is defined from _ 00 to , , because as it may be seen from ( 2.4 ), F ( z, t) =· 0 for small values 
of z 

If A8 ( s,t) has no essential singularity at infinity, there exists such u•
1 

(: r, fer whiCh ~.( L J and 

4>+ ( L ) have no f:!ingularity for L values L <'u' (for suffiCiently high values of ,\ ). 
+: 1 

Then if follows from equation ( 2.4 )161: 

II>+:(L)(l-·V(L)) -~:·rL)(1- vt'(ft)) •· C(L) 

~ _,( L ) - ~~ ( L ) • 
,. 

-C( L) 
( 3.4) 

where C ( L) is an arbitrary function holomorphic in the strip u'
1 

< ReL < r'
0 

4. The First Type of Solutions of Equation ( 3.4 ) 

First we examine the analytic properties of ~-< L ). ( 3.4 ) shows, that in our approximation for small ener-
gies ( s <',\ ) Mandelstam's spectral function equals to zero in the interval 1/ 

4 < t < 16 . 

The singularities of 4>_ ( L ) are given by the elastic part ( in the s chanel ) of the spectral function. 
But we know the analytic properties of A8 ( s, t) as a function of s 

.... 

Oehme
17

1 has shown, that A8 ( s,t) has two branching points in 8 •·0 and 8 =4 , and the types ofthe 

singularities are ~l s and v s -4- 21• Expanding into asymptotic series easy to show that the singularities of 

~-( L ) are at the poirits L .... o, ±;1;'2,! 1 , 3/ 

In the equation ( 3.4) V ( L) and v+"( L) still have dependence on high energetic values of A* ( 8,t) 
B 

( see formulas (2.3 ), ( 2.4) and ( 3.11 ) ). But it is easy to show that for suffiCiently large ,\ values the third 

term of expression ( 2.4 ) has the following form: 

j 
i r ( L ) ~+ ( L ) +-· -2" 

+ 16 IT 

t-·4 
~ du 

0 J: t ( t- 4 -·4 u >' 
A/u L-1 L-2 1 ( 4.1!) 
f.dz(z -z )8(z-~ x 

0 h(4, t) 

t-4 -L d 1-,- u u 
where r ( L ) *' 16 17

2 £ yt (t-4-4u) . 
41 

(.; -1f 
X A* ( z u, t ), 

B 

+ .\ L-1 
1/ This Is the effect of omitting the finite contribution from frlt Is obvious that ~_(L)-cJ:>_(L)= J 8 ds(A

8
(s,t)-

le holomorphlo everywhere, only II 4 
-·A*8 (s, t)) A8 (8,t)-·A*

8
(s,t)=0. 

2/'Exactly speaking Oehme has shown this form to be correct for the partial waves. We assume this properties to hold for the 
whole function A8 ( 8

1 
t ). 

8/ A simple example: A8 (8,t) •· t ( t) . The slngularltts of 4>_.(L) are at the same places where the singularities 

of ~'(L)"'l f(~sL-1 d s \j s(fre~lut ~'(L) =·~- f'(l-l.)f'(~) l(t) have poles at L = 1,2, .... 
. 8(s-4) C ~ 1"'(3/2-L) 

4/t(L J . Is the Mellln-transforms of where C Is a constant. 

J t., [ rt-4) s-4 1: 

6 

~"~-~~ 
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• 
ReL equal 

values 

.( L J and 

3.4) 

( s,t) 

the third 

.r 

I 
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From equation ( 3.4 ) we obtain a new one: 

where v• ( L J .. 

C ( L) + lft( L) ( 1 _, v•+( L ) ) . 

cf>+ ( L) "'·l-,2ir ( L) «~>!( L) _, V' ( L) 

V(L)-ir(L)~:,+ (L). 
+ 

( 4.2) 

Differenticiting the denominator of eq. ( 4.2 ) with respect to A we can prove that it is independent of A 

(for suffiCiently high values of A )5/. 

Usi~i1i property V' ( L ) may be written in the following form: 

( 4.3) 2." t-4 ~u v• ( L J ' ---r;-f au~ f a L -1 L- 2 1 ( z -1 J2 ""-- · ··--:=:=:=:=:= z ( z _,z ) E> ( ._, __ ) A* ( u, t ). 
16,2 0 "t(t-4-4 u) 0 h(4,t) z 

After substituting v .,. ( z_, 11
2 

and expanding according to v and ~ we see that V' (L) has -
z 

singularities at points Lq, where ell_( L) has them, and in points Ly• =Lil>+:n integer) too. 

So the sirigularith~s of V' ( L) are at the points L=0,±'¥2 ,± 1, .•. 

Where does Ill+ ( L ) have sirigularities?first, , Ill+ ( L j may have a singularity at the points where V' ( L ) 

and v>+r L ) have them, iri any case at points, where and dL =·0 f d W 11 h lm L=O dt are satis ie •. e ca t ese singu-

• laritles 'fixed singularities! 

According to equation ( 4.2 ) Ill+ ( L ) 

sirigularitles that they may be 'fixed' only. 

may have a singularity if 11>+ {!.1 has one. We show for this type of 
+ 

First, we assume Lz , the point of singularity to be complex. Then from equations ( 3.2 ) and ( 3.3 ) it fol

lows:. 
-L;c -L* 

A 
8 

( s, t ) ,. ·I ( log s, t ) s + g• ( log s, t ) s x + ••• 

L
11 

and L* must be boundary values of an analytiC function on the real axis according to the dispersion rela-
x ticin ( 1.4 ). :These analytiC functions may have only cuts, from t =·4 to t =·DO but no other singularities. Now, 

iUs easy to see that L*" 

tlon As ( 8 , t) and so L (t) 

is the boundary value of the same function on the second Riemann sheet. :But the func

has only t~o Riemann sheets171 (in our case there is an elastic approximation in the 

t chanel), so lm L satisfies the very simple singular integral equat.i.on of first order: 

" 
P oo lm L ( x') 
~ J----- d x' ·=· 0, if "> 4. 

( 4.5) 

1i 4 x'-x 
Wtth. the help of the general solution of this integral equation we get the following form for L (t) (boundary condi-

tiQn L ( t) is firiite if t .. DO ): 

~ 
L(t) = c1 +---

yt-4 

( 4.6) 

ell (L) 
+ II/ This Is necessary, because as we !!hall see, the zeros of this denominator give very Important sinllularftle!! of 

and the place of these slngularltle!! may not depend on A 



But if ~1=-0 A (s, t) • has an essential singularity at the poirit t.. 4 . Of course CJ. real. 

At last we examirie the case of L ( t ) without any cut, that is to say L ( t) is an entire function. However, 

an entire function whi~ has no singularity at frifiriity, is a constant. 

All the solutions found as far are of the form: 

-L A
8 

( s, t) .... f (log s, t) a +: .. ,_. , 
( 4.1) 

where L is a real constant and f ( x, t) has no essentlcil singularity at infinity. !J'he solutions of the type 

( 4.1 ) we call solutions of first type. 

,... 
These solutions can not give a.constant total cross section· at high energlEis, only the form A8 ( s,t) =·f(t). s 

of this type have this behaviour. This function, however, doesn't satisfy ( l.J / 91. 

5. The Second Type or Solutions or EQuation ( 3.4 > 

We get the most interesting solutions, l.f there are poirits where the denominator of equation ( 4.4 ) vanishes. 

Than 41+(L) has a pole, and 41+fL) has some firiite value. Jri these poirits the following equation is satis
+ 

fied: 

( 5.~ ) 1 -·2 i r( L ) 41+ ( L ) - V' ( L ) =·0 • 
+ -· 

Of course, the roots of ( 5.~ ) are always complex :tmd they depend on t 
6/ 

Sr~· 

As we mentioned equation ( 5.l ) does not depend on A 

sam~ order of magnitude in >. 

• This means, that 41+ ( L ) and V'( L) must have • 
+ 

If equation ( 5.} ) have a root, then in the expression there appears a term of type: (tog 8 l s-L1 

is the multipliCity of the root L
1 

, and L · is the smallest root of equation ( 5.) ). Then 41+(!, ) 
1 + 

following terms: 

+ 
<I> ( L1 ) increases as: 
+ 

41: ( L1 ) 

+ oo L-1 r_-L*1 
41+ ( L) =· f ds. a [(log a) a +: .. ,) =· 

A 

r L-L *I 
( lo~ >. ) >. 

L -L• 
1 

r 
- 0 ( ( lo~ A) ) +: .. ,_. 

r-1 L-L• 
( loS >.) A 1, 2 I 

( L -L\ )2 
+ 

As we mentioned in the expansion of A
8 

( .s, t ) 
k 

for 8 <.>. there appear only terms of type s 

where r 

have the 

( 5:2) 

, where k 

is an entire or a half of an entire number. This means that the terms of V' ( L) have the following structure at 

Ll >.Ll- k; 

V' ( L1 ) •· I ( ck. r.
1

-•k· 
k. t J 

J 

+ terms in dependent of A 

+ ... = L1 " C 
>. ~ k· L- k,. lc. t 

t 

+: 

6/ L Ia complex, because In this point. 41+ ( l,) has a sln11ularlty and 41+ ( L ) has none, but If l, real 
+ + t, 

41 ( t ) •·41 * ( L ), If In the expression a· L L may be complex anywhere, then It muet depend on t , because 

tor t< 4 + and r are real. 
• AJs,t) ~.J(t) 

8 



• o:t real. 

· However, 

( 4.1) 

type 

•-f(t).s 

is satls-

5.)) 

must have 

r 

have the 

2) 

where l: 

at 

real 

because 

~- --

1--3. 

I 

I 
~----~,~~J-~-L~~~LJ-L~~~~~~~~~~-L~~------

I 

If a. 
I 

b. 

F i A· 1. 

The region of integration in formula ( 1.2) and the division of this region in formula ( 2.3 ). 

The region of integration in the integral 1
1 

we denote by 1 in the integral 1
2 

by 2 and 
in the inte~al 1

3 
by 3 • 

The sum ot series of this type can not generally give asymptotkaly a function like (log A) r , only iri the 
case when r = -·o and all the k. satisfy k

1
• > 'L 

I .,.- , that is to sciy the poles of V' ( L ) are on the right from 

Iri this way at last we obtained that two sorts of asymptotic behaviours may exist iri the strip approximation: 

either 
-L As ( s, t) - I (log s, t ) s 

where L is real constant (if equation ( 5. ~ ) has. no root), or A ( s, t ) _ 1 ( t ) .-L ( t) 
• 

The properties of the exponent L ( t ) we shall examirie iri a forthcoming paper. 

It is a pleasure for the author to acknowledge the discussions he had with Dr. V.~. ;Barashenkov, S. Chilli and 

G. j)omokos. 
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