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Abstract

It is shown, usirg the strip approximation, that there are two possible asymptotic. forms of the scattering ampli-
tude. The first type of solutions can not give a constant total cross section; the second type asymptotic behaviour

exactly the same as given by Reqqe/l/: A, (s t)wf(t) IL(t), if & =+ 0 .
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I Introduction

A great effort has recently been done to determine the scattering amplitude at very high energies. According to

/1/

Regge the asymptotic form of the imaginary part of the scattering amplitude for nonrelativistic quanturh mechanics,

for a given class of potentials has the form:
‘ L,'( s) o
A(ts) =St (s)t y ot s et (L)

where s is the total energy squared in the c.m.s. system, ¢ is the momentum transfer.

72/

Chew and Frautschi’“’, usirg the unitarity condition in the third chanel obtained an expression for Mandelstam’s

spectral function in the strip approximation (here under ‘strip’ we ungerstand the interval 4< ¢ < 16):

1 AS (810 t)Ag( 89, t)
p(st) =5 [lds ds, e a-a2 ) (1.2)
LA s £ i G~ e
2 9 : ) 2
where f = g°~ l(&‘l+s2)+(sl—s2) ,
48
and t = 4 4 -—*sl-sg—,
- ° t
The upper limit of the inteqrations is given by the following inequality:
2
$ > gy e 1% 2o (1.3)

AT AL BT
where st & is always less than ¢ .

/3/

Amati and others’ >, using this fact, obtairied an iterative solution of equation ( 1.2 ), using the dispersion rela-

tion for As(s, t):

1- ’
A (8t) = f(et) L. (1.4)
S - 4 ¢t

At finite values of t the left hand cut does not appear, if § » oo . They succeeded in geting the first approxi-

mation analytically and it was in good agreement with experimental data in the BeV region,

/4/

Independently of them Domokos obtained a similar amplitude by an other method.

However, all this papers give the amplitude in a limited region.

%

In an other paper Domokos assumed, that the imaginary part of the amplitude in the crossed chanel has a form

/1/

given by Regge’ *’. He found it satisfies equation ( 1.2 ) and he was able to obtair an equation for the exponent L ().

There arises a very interesting question, which are the possible asymptotic behaviours of amplitudes satisfying
(1.2)and ( 1.4).



2. Integral Equation for the Amplitude

We try to give an other form te equation ( 1.2 ). Therefere we divide the regien of inteeqration inte three perts
(as may be seen on Fig. 1). A is chesen se as te satisfy the inequdlities:

SAD, A< a (2.1)
The oxpressisns for a and b on the figures and their asymptetic forms ere:
218 \/[ a(t-4) o
a-:\+s+—— (A+c+—) “(A- s) - — =sh(Mt)K' s
. 4 » ‘ (2.2)

8s “Ba 9 8 { N
bed+s+ T A -=/( 4:8 +.‘_4y2 - 4—:- )2 ~s(? Ay o ‘1{-—:—_?)2-1)5511(4, t).

.

We denote the integrals for the appropridte regions by ’1 Y 13 respectively.

In the integrals [y and 12 we have clwcys & <A XK & (seeFig. 1 ) and therefere asympteticaly

the expression of f  will be simply f=-(&—#y) 2

In the integral Ig 8 < a<< . . «nd se the asymptetic ferm of f will be: f=.(g_ % ,2.

Sa after insertinig asymptotic expressiens, the integrals ’1 . 12 amd ]3 take on the follewing ferm:

ada s -
Iy = f- A Lt)F (— t), )
1 4 8 '(‘1 ) 1(.1

1
(237

b dey ]
e[ A0 DR

b
1 -f2% 4 (8, 0)F (2 1),
: 2
P s,
where
("')-——2' fdey ——M8 —
1 16 7° 2-1 4 .2\/1(1_10)

‘ (s-1)%(t-4)
o : 1 1 :
Fz(.l

Al (® ¢t)
day / t(t—t)

z-1 4

4..2 .
t w4 —_———
Here ° * (lrll)z

For sake of simplicity we omit the contribution of the iriteqral:
} cl'l‘ . 8
; —n A% (n, ”Fl(Tl—' t)~ 0(1)

from iriteqral [ . We hope the spectral function goes to irifinity if a+e , and in this case this integral
.gives only a smatl contribution,



We know the spectral function p (s, t) is real, so we may write:
p(st) ,52]= [ '[14-:!2 +Hlg 4% + I +'I§ 1.
Usirig the well known connection between p (s, t) and Agst) we obtain the integral equation:

o ds

A (8 0= fa Ag(m ) PO ) =

 doy .
- A:(.,z)_{ﬂ A:(slyt)”?,t), (24)

1
) Fl‘(z, t) +i®(z——)0C

1
h F(z t)=iB(z—~ - '
where (5 t)=i6z T YY) z)g;(z,t)+

h(Mt)

: 1
+ 1.8(8—7,—(47)‘) Fé‘(z,t).

We look for the solution of equat;dn { 2.4) satisfying dispersion relation { 1.4).

3. The Method of Solving of the Integral Equation

The form of the solutions of equation { 2.4 ) may be obtairied by Mellin transformation. The transforms of the func-

tions of equation { 2.4) are the following:

L-1

00 ) + o |
O+(L) w[ A (8¢)S ds, ¢‘+:(L)-~fA;(!.¢)! ds,
A A
o (L) =1 L-1 + L1 (3.3)
e *
s - o.A.(%t)s ds , | 0_(L),.Z‘ At(st)s ds,
by -1 | + o0 L-1
V(L)=f F(zt)z  dz., vV (L)=f F*(nt)z dz,
0

o

respectively.

The following equalities are satisfied:

. (3.2)
O (Le) =8 (L) O (Le)mo (L) V(L) = V(L)
The iriverston formulas of transformations ( 3.%) ares
i +.0! o (L) oo +0! P
1 + _(L)
A (s t)= [ = ——F—dL«+ ° ="' ar,
-foo +30"1 8 "'”.*'3”'0 ;%L
(3.3)
. iwtoy @ (L) imtot O (L)
A® t)=- dL * _ i dL ,
.‘(" ) -io‘!_+ o & -io{lr:ag o
+
o i 47’ v(L)
1 +r" V(L) dL, F‘(’,t)- !- - dl

F(zt)= [ L

-0 +7°

-foo'4r’ e



the functions G (L),D_ (L) oand V (L) are defined in a domain bounded by the straight lines Rel. equal

to % . -ao and r respectively.

veLr) is defined ftom _,, to r , becguse as it may be seen from ( 2.4 ), F ( z ¢ ) =-0 for small values
of z

If A‘( 8,t) has no essentidl sinqularity at Infinity, there exists such o’ ¢ r, for which q;‘_.( L) and

0:'( L) haye no sirgularity for r, values <'a’1 (for sufficiently high values of A )

Then if follows from equation ( 2.4 )/6/ :

O (L)A=V(L)) =@ (L)(1-V*'(L))=C(L)

. - (3.4)
® (L) -0. (L)= ~C(L)

where C (L) is an arbitrary function holomorphic in the strip g'l < RelL < r

4. The First Type of Solutions of Equation ( 3.4)

First we examirne the analytic properties of ®_ (L) (3.4) shows, that in our approximation for small ener-
gles (s<'A) Mandelstam’s spectral function equals to zero in the interval 4 <¢ < 16 l/

The sirgularities of ®_ (L ) are given by the elastic part ( in the s chanel ) of the spectral function.
But we know the analytic properties of Ag(s t) as a function of s

Oehme/ 4 has shown, that Ag (8,t) has two branchirig poinits in s =.0 and 4 =4 , and the types of the

sinqularities are /s and \/ s —4 2/ . Expanding into asymptotic seriés easy to show that the singularities of
®_ (L ) are at the poirits =0, +1/2, 31, 3/.

In the equation (3.4) V(L) and V*( L) stll have dependence on high energetic¢ values of A*s (st)
( see formulas (2.3), (2.4) and (3.1') ). Butitis easy to show that for sufficiently large A values the third
term of expression ( 2.4 ) has the following form:

ir(L)® (L)+ i t;; du )‘;" L-1 L-2 , (41
+ -dz (2 -2z Orz -
62 o Vit(t-4 ~4u) o ki 17(‘4?’ .
t-4 _ -1
L 1_47 uLdu . x A* (LLZ )zu,t),
T L]
whete L) = .

A
17 This 1is the effect of omitting the finite contribution from [l.It is obvious that 0_(L)—-®t(l.)= f SL -1 ds(A (s, b)-
is holomorphio everywhere, only it
=A% (s, t)) s(st)—A* (s,t)=0.
2/ Exactly spenklug Oehme has shown this form to be correot for the partial waves. We assume this properties to hold for the
whole function A (8 t)

f(t)
8/ A simple example A (8, t) = - The singularities of 0 (L) are at the same places where the singularities
of oYL)- IJ:), 4) V. S( g ZIM ®'(L) = 4 - [‘(1 -L)I'(1%) (1) have poles at f . 1,2,....
(8- Cc

4/¢(L} .1s the Mellin-transforms of ‘ F(3/2 L) C

is 8 constant.

Vit.sl (t-4) s-4].



From equation ( 3.4 ) we obtain a new one:

C(L)+®(L)(1=VTL))
d’+(L)='1-=2ir(L)(DI(L)"V’(L) (4.2)

where V’(L)= V(L)—ir(L)®, (L).

Differentidtirig the denominator of eq. ( 4.2) with respectto we can prove that it is irndependent of A

(for sufficiéntly high values of A ).

Usirig-thig property v’ (L) may be written in the following form:

. t-4
Vl L 21 T—- dut A/u L-]. L-2 1 (Z 1 2 (4.3)
(L )= f f dz(z -z )@(z- ) A% ( —~1) .

e —_— —_—u, ).

16 n2 o t(t-4-4u) o h(4,t) z ")

. 2
After substituting v a—(-z—z'—’—h-—

and expanding accordinigto v and Ty we see that V’(L) has -
sinqularitiés at points Lg - where ®_(L) has them, and In points Ly =Lgp+n (n
So the sinigularities of V’ (L) are at the polnts L=0F%,% 1, ..

integer) too.

Where does @, ( L) have sinqularities?First, - 4 £ E} may have a singularity at the points where V(L)
. d
amd V7 { L ) have them, In any case at points, where [m L=0 and d—f=-0 are satisfied, We call these singu-
= larities ‘fixed singularities!.

_ Accordinig to equation ( 4.2) d>+ (L) mayhavea singularity if o: ¢L¥  has one. We show for this type of
sinqularities that they may be ‘fixed’ only.

First, we assume L, , the point of sinqularity to be complex. Then from equations { 3.2) and (3.3) it fol-
1owé:‘ ‘ ’
As(s, t)y="f(logs t) e.Lx+ g¥(log s t) s-L; : S
Lx and L; must be boundary values of an analytic function on the real axis according to the dispersion rela-
tion (1.4). These analyti¢ functions may have only cuts, from ¢t=.4 to g=.0 butno other singularities. Now,
it 1§ easy to see that L‘x is the boundgry value of the same function on the second Riemann sheet. But the func-
tion Ag(a t) and so L (1) has only two Riemann sheets/ 4 (in our case there is an elastic approximation in the

t chanel), so Im Lx satisfies the very simple singular integral equation of first order:

p, = ImL(x)
i

dx’ =0, Iif x> 4. (4.3)
T 4 r-x )
With. the help of the general solution of this iritegral equation we get the followirg form for L(¢) (boundary condi-
tion L(t) s finite if ¢+ 0 )2

L(t)=1c __2.__
Vi-4

L (4.8)

8/ This is necessary, hecause as we shall see, the zeros of this denominator give very important singularities of @ ‘L)
+

and the place of these singularities may not depend on A



But {f < A0 . A. (s t) has an gssenﬁdl singularity ot the polnt ¢« 4 . Of course ¢  real.

At last we examine the case of L ( t) without any cut, that is to sayL(¢) is an entire function. However,

an entire function whléﬁ has no singqularity at 1n'ﬂn'1tﬁy, is a constant,

All the solutions found as far are of the form:

As(s, t)=f(log s t) :L +:--.'.‘. ’ (41)

where L is areal constantand f(x, ¢) has no essential singularity at infinity. The solutions of the type
(4.7) we call solutions of first type.

. ) - o~
These solutions can not give a.constont total cross section at high energies, only the form Ag(st) =f(t). s

of this type have this behaviour. This function, however, doesn't satisfy ( 1.3 ).

5. The Second Type of Solutions of Equation ( 3.4 )

We get the most interesting solutions, if there are points where the denomiriator of equation ( 4.4 ) vanishes.
Than ®+( L) has apole, and <D+'(L, ) has some finite value. In these poirts the following equation is satis-

R .
fied: .

1-:2ir(L)¢>: (L) ~V'(L)=0. LJ51)

Of course, the roots of ( 5.1 ) are always complex und they depend on ¢ &/, . -

As we mentioned equation (5.3 ) does not depend on ) . This means, that ot (L )and pr¢L) must have
same order of magnitude in ) +

If equation ( 5.¥ ) have a root, then in the expression there appears a term of type: (log s )' S'Ll _ where
1s the multiplicity of the root Ll , and Ll - is the smallest root of equation ( 5.} ). Then q;:(:L' ) have the

following terms:

bad <.
°:(L)-=-f ds. L (logaf a1y, ) =

A .
L-L . g1 L-L# (5.2)
IS (toga ) A" o
= E ] 2
L ~L* (L-L",)
_ LY - 1
d>+(L ) increases as: q>+(L ) ~0 ((log A)r oy
+ 1 + 1 ) + v
As we menticned in the expansian of A s (8 t) for g<’)- there appear only terms of type sk . where k
is an entire or a half of an entire number. This means that the terms of V? (L) have the following structure at
: : -k; -
L Ak L, W H
V'(Ly)=Z (C T = A G 4
oy hiL-y } X Lk

+ terms in dependent of A

6/ L i{s oomplex, beoause in thia point. ’Q+ (L) has a singularity and d)+( L ) has none, but it real
+

+ _ ;
[} (L ) ) ‘( L ). , . If {in the expreasion ) L L wmay be complex anywhere, then it must depend on ¢ , because

Yor are real.

t< 4, + A 8t) and L(t)



[ A

The region of integration in formula ( 1.2 ) and the division of this region in formula ( 2.3 ).
The region of integration in the integral ’1 we denote by 1 in the integral 12 by 2 and
in the integral 13 by 3.

The sum ot series of thig type can not generally give asymptoticaly a function like (log A )F , only in the
case when r=0  and dll the ki satisfy k;>'L + that s to sdy the poles of V’ (L) are on the right from
.
L
In this way at last we obtairied that two sorts of asymptotic behavicurs may exist in the strip approximation:

either L
As(a, t)~ f(logs, t)s

where L is real constant (if equation ( 5.1 ) has no root),or A ¢s t) ~ f(t) s-L ()
F]

The properties of the exponent L(t) we shall examise in a forthcoming paper.

It is a pleasure for the quthor to acknowledge the discussions he had with Dr., V.S. Barashenkov, S. Chulli and
G. Domokos.
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