ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

T. Voros, V.G.Soloviev, T.Sİlos

$$
E-932
$$

AN INVESTIGATION OF PROPERTIES OF TRANSURANIC ELEMENTS
Hze, at cece, cey. quig; 1962,

T. Voros, V.G.Soloviev, T.Siklos

$$
E-032
$$

AN INVESTIGATION OF PROPERTIES OF TRANSURANIC ELEMENTS

An application of mathematical methods developed in constructing the theory of superconductivity ${ }^{1}$ in order to investigate properties of atomic nucleus is found to be rather fruitful. The investigations of the pairing correlations of nucleons of the superconductive type which have been published in ${ }^{2-5}$ allowed one to account for some properties of nuclei which do not appear in the model of independent particles. In a further development of this approach a "superfluid" model of a nucleus ${ }^{6}$ has been formulated by one of us, and the strongly - deformed elements have been investigated $7-9$ on the foundation of this model.

The properties of transuranic elements have been investigated in ${ }^{7}$ on the foundation of the superfluid model of a nucleus. The spectra of the single-quasiparticle levels of odd-mass nuclei were calculated there and it was shown that the density of the calculated levels is in a good agreement with experiment and it is about twice as large as that given in the Nilsson's scheme. The energies of the two-quasiparticle excited states of a number of even-even nuclei were calculated. Corrections to β and γ^{\prime} - transitions were found which are connected with the superfluidity of the ground- and excited states. It is shown that the corrections play an important role in the nucleus.

Later on an improved scheme of calculations has been suggested ${ }^{2}$ based on the use of experimental data on the single-particle levels of odd nuclei and on the pairing energies. On the foundation of this scheme appropriate calculations for nuclei in the region $154 \leqslant \mathrm{~A} \leqslant 188$ were performed and a satisfactory agreement with experiment was obtained.

In the present paper we continue the investigation of the properties of nuclei in the range $225=\mathrm{A} \leqslant 255$ on the foundation of the improved scheme, namely: we choose the main parameters of the model basing on experimental data on the single-quasi-particle levels of odd nuclei and on the pairing energies, we analyse the probabilities of β transitions and calculate the two -quasi-particle energy levels of a number of even--even nuclei.

1. Choice of single-particle levels and pairing interaction constants

The basic foundations and the properties of the "superfluid" model of a nucleus as well as all necessary equations are given in ${ }^{7-9}$. For the ground state of the even system, for example, the equations for obtaining the correlation function C and the chemical potential λ are of the form:

$$
\begin{align*}
& \frac{2}{G}=\sum_{s} \frac{1}{\sqrt{C^{2}+\{E(s)-\lambda\}^{2}}} \tag{1}\\
& m=\sum_{s}\left\{1-\frac{E(s)-\lambda}{\sqrt{C^{2}+\{E(s)-\lambda\}^{2}}}\right\} \tag{2}
\end{align*}
$$

where G is the constant of pairing interaotion, n is the number of nucleons In the system under oonsideration. The summation is performed over the single partiole levels of the energy $\quad E(s)$ of the average field. The energy of the system is written in the ground state, as

$$
\begin{equation*}
\dot{L}=\frac{\sum}{s} E(s)\left\{1-\frac{E(s)-\lambda}{\sqrt{C^{2}+\{E(s)-\lambda\}^{2}}}\right\}-\frac{L^{2}}{G} \tag{3}
\end{equation*}
$$

Our calculations are based on somewhat ohanged levels of energy of the average field given in the Nilsson's soheme. To determine the states we have used notations founded on asymptotio quantum numbers: N is the total number of osoillatory quanta, n_{2} is the number of osoillatory quanta along the axis, perpendioular to the symmetry axis, Λ is the oomponent of the partioles orbital angular momentum along the symmetry axis. \sum is the projeotion of the partioles spin on this axis, $K=\Lambda \pm \Sigma$, Π is the parity. The state is written as $K \pi\left[N n_{z} \wedge\right]$ or more briefly $N n_{z} \Lambda \uparrow$ provided $K=\Lambda+\Sigma$ or $N n_{z} \Lambda \downarrow$ provided $K=\Lambda-\Sigma$;
$\hat{\hbar} \omega_{0}^{0}=44 A^{-k}$ Mev \quad Further, K denotes the final filled single particle level of the average field for $G=0, K-1, K-2$ and so on denote the hole states and $K+1, \quad K+2$ and so on the partiole states.

The summation in Eqs. (1) and (2) is performed over energy levels of the average field though it was performed over twenty- four levels around the level K in the first papers ${ }^{7}$, further ${ }^{9}$ in order to improve upon the reliability of calculations, the number of levels was inoreased up to thirty- six ones. We investigate how strongly the results of oaloulations depend upon the out off in Eqs. (1) and (2). For this we calculate the oorrelation funotions C and $C(k) \quad C(k)$ is the correlation function of the ground state of the system with an odd number of nuoleons) for $Z=94$ and $Z=93$ and the pairing energy P_{Z} for $Z=94$, when below the
state K the summation is carilied out over seventeen levels of the average field, and above the K-state various cutoffs are performed, namely: for $K+3$,
$K+6, \quad K+9, \quad K+12, \quad K+15$ and $K+18$. For the calculation results see Table 1. For the same value of $G_{z}=0,0185 \frac{\lambda}{n} \omega_{0}^{\circ}$ (corresponding to real nuclear forces in summation over thirty-six levels) the correlation function C strongly depends on the cutoff increasing with an expansion of the summation region. However, inthis case the magnitude of the pairing energy P_{z} changes strongly, too. The ratio $C(K) / C \quad$ weakly depends upon the outoff if the later is performed sufficiently high. Acoording to the superfluid model of a nucleus the quantity G_{2} is found by comparing the caloulated values of P_{z} with experimental values of pairing energies, the values of G_{z} being dependent on the cutoff. Therefore, to clear up the role of the cutoff it is necessary to make calculations for such different values of G_{z} so as to obtain for each cutoff the same value of the pairing energy. The results of such calculations are given in the lower part of Table l, we failed to choose such G_{I}^{\prime} 's so as to obtain strictly the same value of pairing energies for all cutoffs. However, alterations of P_{Z} for $K+6$ and larger are small. From Table 1 it is seen that if below K more than $s i x$ levels are summed then the correlation function C and the ratio $\bar{C}(k) / C$ and so all superfluid properties are practically independent of the cutoff in obtaining the same value of the pairing energy.

Thus, the main characteristics of superfluid states are practically independent of the cutoff if it is made at energies both major to K and minor to K and higher than 3 MeV . In restricting the summation in equations such as (1) and (2) there is no need to introduce a cutoff constant since the pairing interaction constant G seems as though it would renormalized with account of this cutoff.

We shall compute the characteristics of superfluid states, the relative probabilities of β - transitions and the energy levels of even-even ruclei basing on experimental data on the single-quasi-particle levels of odd nuclei and on the pairing energies. To carry out this program we change the position of a number of levels in the Nilsson's proton and neutron schemes so as to obtain spectra of single-quasi--particle levels of odd nuolei which agree with experiment. In doing so, we choose suoh $G_{N} S$ and $\quad G_{2}$'s 00 as to get experimental values of pairing energies. We solve the equations of the type (1) and (2) on the electronic computer and compute the
energies $\dot{C}, \vec{C}\left(k_{i}\right), C^{2}\left(k_{i}, k_{f}\right)$ of the ground and excited states. Table 2 gives the relative position of a number of levels of the average field in the proton and neutron schemes and there are also those changes $E(s)-E_{N}(s)$ which we have made oompared with the Nilsson's schemes for $\mathcal{S}=0,24$, whose parameters are represented in Table 1 , case $C \quad 5$. ($E_{N}(s)$ are the energy levels in the Nilsson 's scheme). It is seen from Table 2 that we may restrict ourselves to one set of energy values for the proton system and to one set for the neutron system for all nuclei in the range $225 \leqslant \mathrm{~A} \leq 255$ although the equilibrium deformation ohanges somewhat in the transition from one nucleus to another.

The behaviour of the caloulated single-quasi-particle levels of nuolei with an odd number of neutrons is given in Fig.1, and with an odd number of protons in Fig.2. We assume the ground state energy to be equal to zero below $\mathcal{C}(K)=0$ we plot the energies of the hole excited states, above \mathcal{C} (K) $=0$ we plot the energies of the particle excited states. On the left we indicate the oharaoteristics of states and conneot the identical characteristics by dashed lines. From the comparison of the energy levels (Fig.l and 2) with experimental data it follows that the obtained values of spins and of particles for the ground states of all nuclei are correct in this region, for the exception of those of Th^{229} and BK^{243}. The calculated excited-state energies agree with experimental data in most cases. However, as it is seen from Table 2 we do not take into account the ohange of the average field in the transition from one nucleus to another. Therefore, we can not account for such changes in the behaviour of single particle levels, for example, the approach of the level $631 \downarrow$ to the level 743 in $\frac{143}{} 32 U^{235}$ in comparison with $\int_{34}^{143} \mathrm{Pu} 237$.

In finding oonstants of pairing interaction G_{N} for the neutron system and G_{x} for the proton one the oalculated values of the pairing energies were carefully compared with experimental data ${ }^{11}$. The results of the analysis are given in Fig. 3 and $<$ where experimental values of pairing energies P_{N} or P_{z} are connected by the dashed lines and the computed ones by the full lines. The pairing energies were computed from the formula:

$$
\begin{equation*}
P_{N}(Z, N)=\frac{1}{4}\{3 \dot{C}(Z, N-1)-3 C(Z, N)+\dot{C}(Z, N+1)-\dot{C}(Z, N-2)\} \tag{4}
\end{equation*}
$$

From Fig. 3 and 4 it is seen that a satisfactory agreement was obtained between the calculated and the experimental values of the pairing energies. Their discrepancy does not exceed 100 KeV .

From the comparison of the calculated values of the pairing energies with experimental data we get the following values for the pairing interaction constants

$$
\begin{align*}
& G_{N}=\frac{26}{A} \text { Mev }=0,0165 \mathrm{~N} \omega_{0}^{0} \\
& G_{z}=\frac{29}{A} \text { Mev }=0,0185 \mathrm{~h} \mathcal{N}_{0}^{\circ} \tag{5}
\end{align*}
$$

In summation over thirty-six levels of the average field. In 9 for the region $154 \leq A \leftrightharpoons 188$ they have been found $G_{N}=\frac{26}{A} M e V, G_{Z}=\frac{2 i}{A} M e V$ and it has been noted that G_{z} was a somewhat understated value. Thus, in both regions of deformed nuclei $154 \leqslant \mathrm{~A} \leqslant 188$ and $225 \leq \mathrm{A} \leqslant 255$ the constants of pairing interaction change according to the law $\frac{1}{A}$ and wake the values: $\mathcal{U}_{N^{\prime}} A=26 \mathrm{MeV}, \mathcal{U}_{Z} \cdot A=(28-29) \mathrm{MeV}$. The obtaining of the same value of $G_{N} A$ for all neutron systems and of the same value of $C_{z} . A$ for all proton systems in both groups of strongly-deformed nuclei means that the region of effective interaotion which is limited to the aforementioned cutoff has been chosen correctly. The values (5) for G_{z} and G_{N} are smaller than the correspondling *alues in 7 by $0,0035 \approx)^{\circ}$ beoause of the increase of the number of sumed levels from twenty-iour up to thirty-six. The values (5) are somewhat larger than those found in ${ }^{5}$, where $G_{N} \cdot A=(16-19) \mathrm{MeV}$ and $G_{\mathrm{L}} \cdot A=(22-25) \mathrm{MeV}$. This is due to the fact that the summation in ${ }^{5}$ was carried out over a very large number of levels.

We consider the obtained correlation functions. The values of the correlation funotions C for even system and the ratios of the correlation functions of the excited states to those of the ground states given in Table 3. From th Table it can be seen that the blocking eflect is also important in the transuranic region as in the rare-earth region ${ }^{9}$. The values of C for the neutron systems decr sed somewhat compared to the raxemearth iegion ${ }^{9}$. In spite of the deorease of $G_{N}^{\prime} \%$ and $G_{z}^{\prime} s$ in comparison with ${ }^{7}, C$'s slightly ohanged for the neutron systems (see Table 6 for $G_{N}=0,022$ た ω_{0}°). For the proton system in 7 understated values of C and $C\left(K_{4}, K_{2}\right)$ have been obtained bonase of the fact that the summation region was selected non-symmetricaly so below k the sumation was carrice out only over four-seven levels. The values of correlation functions C for the proton systems very slightly decreased An the reston $225 \leqslant \mathrm{~A} \leqslant 255$ in comparisor with the region $154 \leqslant A \leqslant 188^{9}$. It should be noted that the values of C for $Z=92-100$ are approximately the same as those for $N=92-100$ in the rare-earth
region ${ }^{9}$. Table 4 gives the ratios of the correlation functions of the ground states of odd systems $C(K)$ to C. In the oonsidered region the ratios for the neutron system are the same as in $154 \leqslant \mathrm{~A} \leqslant 188^{9}$, and for the proton system in the transuranic region $C(k) / C$'s are somewhat larger than in the rare-earth one.

Thus, the efficiency of the pair correlations of nucleons of a superconductive type decreases very slightly in the transition from the region $154 \leqslant \mathrm{~A} \leq 188$ to the region $225 \leqslant \mathrm{~A} \leqslant 255$.

2. Analysis of the probabilities of β - transitions

General rules of constructing corrections to β-transitions connected with the superfluidity of the ground and exoited states are given in ${ }^{12}$. In ${ }^{9}$ these corrections are calculated and the probabilities of B - transitions of even and odd nuclei are analysed in the region $154 \leqslant \mathrm{~A} \leqslant 188$. We shall make a similar analysis of the probabilities of β transitions in the region under consideration $225 \leqslant A \leqslant i s$

We compute corrections for the superfluidity $R=R_{N} \cdot R_{Z}$ for B transitions between single-quasi-partiols states in odd nuolei. Calculations are oarried out on the computer by the formulae given in ${ }^{12}$ making use of the schemes of the single-particle levels of the average field and of the oonstants G_{N} and G_{z} which have been found in the previous Section. The results obtained are plotted in Fig.5-8. The neutron corrections R_{N} are given in Fig. 5 which correspond to β-transitions without any changes in the number of nucleon pairs in the neutron system. The neutron corrections R_{N} which correspond to transitions in whioh the number of nucleon pairs changes by unity are given in Fig.6. A position of the ground state of an odd nucleus is denoted by the number of neutrons has been writing on the ourves for the odd system. The single-particle states (labeled with respect to the number of neutrons) are plotted on the abscess axis, whose quantum numbers are given in Table 2. Similar ourves for the proton systems are plotted in Fig. 7 and 8.

We investigate the probabilities of β transitions in odd nuclei. With this alm we systematize the experimental data and the results of caloulations on Tables 5 and 6. Inttial and final nuolei are written in the first oolumn of these Tables, an additional classifioation is given in the seoond column. I are transitions belonging to the first group, II are transitions belonging to the second one ${ }^{12}$ they are first to be written for the proton system and then for the neutron one. The third column contains R_{η}, where $\eta=\left\langle I_{i} K_{i} \lambda K_{f}-K_{i} \mid I_{f} K_{f}\right\rangle^{2}$ The experimental values of $\log _{\mathrm{f}} \mathrm{f}$, with an appropriate referenoe are given in the
fourth column. We calculate $\mathcal{C o}_{\chi}(f)$'s normalizing them with respect to the first from the given set of transitions between identical single-particle states in various nuclei. The values of ρ_{0}, t_{r} are given in the fifth column of Tables 5 and 6. The values of jofift, $\left.R_{2}\right]$ are written down in the last column. From tables it is seen that the corrections for the superfluidity are essential for β - transitions belonging to the second group where they allow us to explain changes in the values of lof fity for $\boldsymbol{\beta}^{\beta}$ - transitions between identical states in various nuclei.

Making use of the corrections $\quad R \quad(F i g .5-8)$ and of the data from Tables 5 and 6 we can compute the values of $\omega_{f}(\mathcal{f})_{r}$ for β-transitions between the aforementioned states in any odd nuclei.

It is interesting to compute absolute values of logft using the wave functions obtained by Nilsson. The results of calculation are given in Table 7a, the fifth column of which contains the values of logft calculated without ineluding pairing correlations with the aid of the formula

$$
\begin{equation*}
f t=\frac{B}{(1-x) F^{2}+\times y^{2}} \tag{5}
\end{equation*}
$$

where 3 and x are the constants \bar{r} and G are the Fermi and Gamow-Teller's matrix elements. If pairing correlations of the superconductive type are taken into account and the statistical multiplier is singled out, then the expression (\mathcal{t}) abs takes the form

$$
\begin{equation*}
(f t)_{a b s}=\frac{B}{(1-x) F^{2}+x y^{2}}\left(R_{\eta}\right)^{-4} \tag{7}
\end{equation*}
$$

 it is seen that the corrections related to the superfluidity of the ground-and excited states improves the agreement between theory and experiment. However, as in l? the calculated absolute values of (it) abs are smalier than the experimental values of $(\beta t)_{3}$ by a factor of $5-10$.

We consider β - transitions in even nuclei. The relative probabilities of 3 - transitions in even nuclei can be calculated, making use of data on 3 decay in odd nuclei between the same single-particle states, only in thoso cases when the selection rules are the same and there is no K or Λ-forbiddenness in even nuclei. We sum up experimental data (Table 7b and 7c) over 3 - decays of
even nuclei and compare them with our calculations. We write the data obtained so that all transitions between the same single-particle states may be in the same place. We write also β - transitions in odd nuclei which have been used by us for determining single-particle matrix elements. From Tables $7 b$ and $7 c$ it is seen that the calculated values of $\log ^{(}(\mathrm{P})_{r}$ are in a satisfactory agreement with experimental data. This agreement proves the correctness of the two-quasi-particle aspect of the states of odd-odd nuclei and of the excited states of even-even nuclei as well.

As it has been noted in ${ }^{9}$ it is advisable to go over from the systematization of the observable values of $\log f t_{,}$, to the systematization of $\log \left[f t, R_{\eta}\right]$ "s excluding the influence of pairing correlations and statistical arguments. In 9 the classification of $\quad \beta$ - transitions is given in the following form:

$$
\begin{array}{ll}
4,0<\log f t_{3} R_{\eta}<4,7 & a u \\
5,5<\log f t_{9} R_{\eta}<6,5 & a R \\
5,5<\log f t_{9} R_{\eta}<6,5 & 1 u
\end{array}
$$

From Tables $5,6,7 \mathrm{~b}$ and 7 c it is seen that most values of $\log f t_{\mathrm{g}} R_{\eta}$ go into these regions of values, however, there appears to be a tendency for a removing the lower boundary of the values of lop $f t_{3} R_{\eta}$ from 5,5 up to 5,0 for transitions $\mathcal{A} u$.
3. Two-quasi-particle levels of Pu^{240} and Cm^{244}

We calculate the energies of the two-quasi-particle levels of Pu^{240} and cm^{244} and the values of $\ell \mathcal{V}(\beta t)_{\mu}$ for appropriate β-transitions. Here there are no new parameters, since all parameters are determined in studying odd nuolei.

Making use of the values of G_{N} and G_{z} and the single-particle scheme given in the first Seotion we calculate, as it has been done in 9 the energies of the ground-and the two-quasi-partiole excited states with the aid of the computer. The results of calculations are given in Tables 8-9. The neutron levels are written in the upper part of Tables 8 and 9 and the proton levels in the lower part of Tables 8-9. The configurations of the excited states are given in the first column, the quantum oharacteristios of the states $K-2, K-1$ and other being written at the bottom of both neutron levels and proton levels. In the second oolumn we give $K \pi$, the state with $\Sigma=0$ being ifist written, and below the state with $\Sigma=1$. In the
third column we give the calculated energies of these levels. The measured energies of levels with configuration setted up as single-particle one are given in the fourth column. B - transitions from odd-odd nuclei whose configurations are at the top of the corresponding columns are given on the righthand side of Table. In the left column we write the β-transition olassification, provided $\Delta I \leq 2$ and in the right column we write the observable values of $\log f t_{3}$ and in brackets the calculated values of $\log f t_{r}$. The notations are the same as in ${ }^{9}$, F are the β - transitions belonging to the third group, and Λ - transitions are \wedge - forbidden.

Thus, the energies of the two-quasi-partiole levels of even-even nuclei are predioted in Tables $8-9$ and it is shown at what rates these levels will be settled for corresponding $\quad 3$-transitions. In the case of Pu^{240} there is not a single state with an uniquely determined configuration, and the levels with the energies $1,42,1,53$ and $1,6 \mathrm{MeV}$ will go evidently into the scheme of the caloulated states. The calculated energies of the neutron levels of pu ${ }^{240}$ differ little from the calculations in ${ }^{7}$.

In the case of Cm^{244} the level $6+$ with the energy $1,042 \mathrm{MeV}$ and $\log \mathrm{f}^{2 t},=5,9$ has been discovered experimentally in 14 which agrees well with our calculations giving energy equal to $0,92 \mathrm{MeV}$ and $\ell \sigma \rho(\mathcal{\mu} t)_{c}=6,0$.

Thus, in the transuranic region an agreement has also been obtained between experiment and calculations carried out on the basis of the superfluid model. of a nuolequs. For a further study of the physical nature of the excited states of transuranic elements it is necessary to increase the amount of the experimental material.

In conclusion we take as our pleasant duty to thank N.N.Bogolubov, L.K. Peker and N.I.Pyatov for very fruitful discussions, we thank also N.A.Busdavina for making numerical calculations. One of us (V.S.) thanks S.K.Nilsson for giving us the improved soheme of single-particle levels of the average field before its publication. Two of us (T.V. and T.S) express our gratitute to N. N. Bogolubov and D.I. Blokhintsev for their hospitality at the Joint Institute for Nuclear Research.

Table 1

Investigation of the role of the cutoff

	K + 3	$K+6$	$K+9$	K +12	K +15	K +18
$g z\left(\hbar \omega_{0}^{\circ}\right)$	0,0185	0,0185	0,0185	0,0185	0,0185	0,0185
$P_{z}\left(\hbar \omega_{0}^{\circ}\right)$	0,037	0,055	0,070	0,081	0,091	0,102
$C\left(\hbar \omega_{0}^{0}\right)$	0,059	0,077	0,091	0,103	0,114	0,125
$C(k) / C$	0,64	0,75	0,79	0,81	0,83	0,83
$G_{2}\left(\hbar \omega_{0}^{\circ}\right)$	0,024	0,023	0,021	0,020	0,019	0,0185
$P_{x}\left(\hbar \omega_{0}^{\circ}\right)$	0,074	0,1025	0,101	0,103	0,094	-2102
$C\left(\star \omega_{0}^{\circ}\right)$	0,106	0,130	0,128	0,127	0,123	0,125
$C(n) / C$	0,84	0,85	0,84	0,84	0,83	0,83

Table 2

Single-particle levels of the average field

Neutron system				Proton system			
N	Charac. of the levels	$\begin{gathered} \text { Energy } \\ \text { E(}) \\ \text { in } \hbar \omega_{0}^{\circ} \end{gathered}$	$\begin{gathered} E(s)-E_{E}(s) \\ \ln \pi \omega_{a}^{0} \end{gathered}$	2	Charac. of the levels	$\begin{gathered} \text { Energy } \\ E(s) \\ \& \hbar \omega_{0}^{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & E(s)-E_{N}(s) \\ & \text { in } \hbar \omega_{0}^{\circ} \end{aligned}$
[37	$3 / 2+[63 I]$	-0, OI	-0,01		$3 / 2+[65 \mathrm{I}]$	0	0
139	$5 / 2-[752]$	0	0		I/2-[530]	0,04	+0,0I
I4I	$5 / 2+[633]$	0,05	0	93	$5 / 2+[642]$	0,I2	0
I43	$7 / 2-[743]$	0,I3	0	95	$5 / 2-[523]$	0,I4	-0, 01
145	$I / 2+[63 I]$	0,I7	-0,03	97	$3 / 2-[52 I]$	0,27	-0,05
147	$5 / 2+[622]$	0, <5	-0,04		$7 / 2+[633]$	0,28	-0, OI
I49	$7 / 2+[624]$	0,3I	-0,07				
I5I	9/2-[734]	0,37	-0,09				
153	$1 / 2+[620]$	0,45	0				

Table 3
The values of the correlation functions

	Proton system			$\mathrm{Cr}_{2}=\frac{29}{A}$			Neutron system $G_{M}=\frac{26}{A}$									
Z or N	90	929	94	96	98	IOO	138		140)	14'3	144	I 46	I48	I50	I52	154
$C(K, K+I) / C$	0,67	0,59	0,100	0,28	0	0	0,		0,4I	O,OI	0	0	0	0	0,5I	0,66
$C(K-I, K+I) / C$	0,08	0,63 0	0,47	0,40	0,54	0	0		0,44	2,4I	0,35	0,25	0,4I	0,55	0,8I	0,69
$C(K, K+2) / C$	0,72	0,64 0	0,68	0,33	0,47	0,53	0,		0, 5.2	0,50	0,43	0,33	0,3I	0,43	0,54	0,67
$C(K, K) / C$	0,69	0,63 0	0,4I 0	0,65	0,19	0,59	0,		0,57	0,57	0,49	0,58	0,58	0,64	0,59	0.64
$\mathrm{C}(\mathrm{K}-\mathrm{I}, \mathrm{K}) / \mathrm{C}$	0,70	0,66	0,53	0,67	0,60	0,59	0		0,59	0,62	0,59	0,63	0,69	0,73	0,73	0,69
$C(K+I, K+2) / C$	0,73	0,7I 0	0,720	0,75	0,49	0,68			0,69	0,70	U, 64	0,65	0,52	0,62	0,64	0,68
$C(K-2, K-I) / C$	0,72	0,69 0	0,65	0,72	0,72	0,68		70	0,59	0,69	0,72	0,75	0,8I	0,85	0,85	0,81
$C(K+I, K+4) / C$	0,82	0,80 0	0,76	0,84	0,59	0,71	0		0,76	0,78	0,72	0,72	0,65	0,63	0,56	0,69
$C(K+2, K+3) / C$	0,8I	0,82	0,85 0	0, 30	0,73	0,78		79	0,8I	0,8I	0,79	0,76	0,73	0,69	0,66	0,69
in unit $\mathrm{K} \omega_{0}^{\circ}$	0,146	0,137	0,I25	$50, I$	IT 30,	1090	04	0,IT9	0,ITE	0,I64	0,099	0,097	0,099	9,107	0,II7	0, 126

Table 4
The ratios $C(k) /$,$C .$

Proton system							
2 odd/ 2 even	87/88	$87 / 90$	91/92	93/94	95/96	97/98	99/100
$C(k) / C$	0,89	0,88	0,86	0,83	0,74	0,71	0,7I

Neutron syatem

$\mathrm{N}_{\text {odd/ }} \mathrm{N}$ even									
$C(k) / C$	0,84	0,8I	0,75	0,69	0,63	0,60	0,63	0,72	0,80

Tablo 2

ah $\quad \beta$-transitions in the odd nuole1

B-transit:	adatition.	R. 2	$\log (f t)$	$\log (p t)_{t}$	Logl
$S_{X}=\{5 / 2+[642]\} \sim S_{N}=\{5 / 2+[622]\}$					
$\mathrm{N}^{239} \rightarrow \mathrm{P}^{239}$	I II	0,16	6,9/I0/	-	6, I
$s_{2}=\{5 / 2+[542]\} \quad \longleftrightarrow \quad s_{4}=\{7 / 2+[624]\}$					
	$\begin{cases}\text { II } & \text { I } \\ \text { I I }\end{cases}$	0,13 0,07	6,1/IO/ $6,8^{/ 17 /}$	6,1	5,2 5,6
$s_{t}=\{5 / 2-[52]\} \sim \delta_{N}=\{7 / 2-[743]\}$					
$\mathrm{NP}^{637}+\mathrm{P}_{4}^{20}$	111	0,22	6,8/I0/	-	6, I
$s_{z}=\{7 / 2+[6,3]\} \quad \longleftrightarrow s_{w}=\{7 / 2+[624]\}$					
$A_{n-5}^{245} \leftarrow \mathrm{P}^{243}$	I I	0,48	$\sim 6^{1 / 10 /}$	-	$\sim 5,7$

2able. 6
保 A-transitions in the odd nuolei

β - transition	addition. classif.	$R \cdot 2$	$\log (8 t)$,	$\log ^{\prime}(2 t)_{L}$	$\log \left[f t, R_{2}\right]$
$S_{2}=\{\mathrm{I} / 2-[530]\} \quad S_{N}=\{3 / 2+[63 I]\}$					
$\begin{aligned} & \mathrm{Pa}^{233} \rightarrow \mathrm{U}^{233} \\ & \mathrm{~Pa}^{257} \rightarrow \mathrm{U}^{157} \end{aligned}$	$\begin{array}{ll}\text { I } & \text { II } \\ \text { I } & \text { II }\end{array}$	0,06 0,29	$7,2 / 15 /$ $\approx 7,0^{1 / 6 /}$	$\frac{7,2}{6,5}$	6,0 $z 6,5$
$S_{z}=\{3 / 2-[52 I]\}$					
$\begin{aligned} & B_{1}^{145} \backsim C^{245} \\ & A_{m 1}^{244} \leftarrow C^{244} \\ & N_{p}^{217} \leftarrow U^{257} \end{aligned}$	$\begin{array}{rl}\text { I } & I I \\ \text { II } & I \\ I & I\end{array}$	0,04 0,14 0,43	$\sim 7,0^{\prime 17 /}$ $\approx 7,3 / 17 /$ $6,010 /$	7,0 6,9 6,0	$-5,6$ $=6,4$ 5,6
$A_{x}-\{3 / 2-[52 I]\}$					
$\mathrm{BH}^{24 /} \longrightarrow \mathrm{Cm}^{2+5}$	1 II	0,22	7,0/16/	-	6,3
$3_{7}=[9 / 2-[523]\}$					
	$\begin{array}{ll}1 & I \\ I & 1 \\ \text { I } & \text { I }\end{array}$	$\begin{aligned} & 0,29 \\ & 0,20 \\ & 0,53 \end{aligned}$	[$\begin{gathered}6,0 / 70 / \\ 3,7 / 17 / \\ 26,2 / 10 /\end{gathered}$	6,0 6,2 5,8	5,5 5,0 $-5,9$
$2_{2}=\{3 / 2-[523]$					
	$\begin{array}{ll} I & I \\ I & I \\ I & I \end{array}$	0,34 0,76 0,39	$\left\lvert\, \begin{gathered}\sim 6,2^{\prime} 10 / \\ 6,177 / \\ \sim 6,3 / 77 /\end{gathered}\right.$	$\frac{6,2}{6,5}$ 6,2	$-5,7$ 5,3 $-5,8$
$S_{1}=[5 / 2+[642]\} \sim s_{N} m\{7 / 2-[743]\}$					
	$\begin{array}{ll}1 & I \\ I & I \\ I & I\end{array}$	0,49 0,24 0,25	$6,5 / 17 /$ \sim $6,8 / 17 /$ $0,6 / 17 /$	6,5 6,8 6,8	6,2 $-6,2$ 6,0
$s_{2} \equiv\{7 / 1+[53]\} \quad \leq \in\{9 / 2-[734]\}$					
$B^{349} \rightarrow 4^{149}$	I 7	0,78	6,9/707	-	6,2

Table 7a
Calculated absolute values of logftabs of the ar
transitions in the odd nuclei.

Table_7b
ah $\quad \beta$-transitions in the even nuclei

State	β-transition	State	$R \cdot 2$	$\log (2)_{3}$	$\log (\beta t)$	$\log 5$
$\begin{gathered} 5 / 2+[642] \\ 6424-624 t \\ 1 t \\ 642 t-624 t \end{gathered}$	$\begin{aligned} & \mathrm{Np}^{239} \rightarrow \mathrm{Pu}^{239} \\ & \mathrm{~Np}^{240} \rightarrow \mathrm{Pu}^{240} \\ & \mathrm{~Np}^{240} \leftarrow \mathrm{U}^{240} \end{aligned}$	$7 / 2+[624]$	0,07	6, $8^{177 /}$	6,8	5,6
		$0+$ ground	0, I7	$6,7^{\prime 1} 91$	6,4	5,9
		$\begin{gathered} 0+ \\ \text { ground } \end{gathered}$	0,I3	5,7/18/	6,5	4,8
Table 7c						
14 A-transitions in the even nuclei						
State e	β-transition	State	A. 2	$\log (f t)$,	$\log (f)$	
5/2-[523]	$\mathrm{Am}^{239} \mathrm{Pu}^{239}$	$5 / 2+[522]$	0,29	6,0/10/	6,0	5,5
$\begin{gathered} 523+0-622^{4} \\ 0- \end{gathered}$	$\mathrm{Am}^{242} \rightarrow \mathrm{Cm}^{242}$	$\begin{aligned} & \text { O+ } \\ & \text { ground } \end{aligned}$ $0+$	$0, \mathrm{~T} 3$	7,120/	6,4	6,2
523 - 6224	$\mathrm{Am}^{242} \mathrm{Pu}^{242}$	ground	0,06	$-7,6 / 201$	6,7	-6,4
$\begin{gathered} 6- \\ 523+624 t \end{gathered}$	$\mathrm{ArO}^{244} \rightarrow \mathrm{Cm}^{244}$	$\begin{gathered} 6+n \\ 6227+624 \end{gathered}$	0,32	$5,9 / 14 /$	6,0	5,4
$\begin{gathered} 5 / 2+[642] \\ \text { I- } \end{gathered}$	$\mathrm{Np}^{239} \rightarrow \mathrm{Pu}^{239}$	7/i-[$[4] 3$	0,40	6,5/17/	6,5	6,2
$\text { 642个 } \underset{\mathrm{I}-7431}{ }$	$N p^{236} \xrightarrow[\rightarrow]{P n^{236}}$	grouna $0+$	0, IO	6,6/2I/	7,2.	5,6
6424-7434	$\mathrm{Np}^{236} \rightarrow \mathrm{U}^{236}$	ground	0,09	7,012J/	7,2	5,9

Table 8

$$
A=240 \quad{ }_{94}^{46} P_{k}^{240}
$$

Fig.I.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

References

1．J．Bardeen，L．Cooper，J．Schriffer．Phys．Rev．108， 1175 （1957）．
H．H．Боголиоов．出于Tע，34，58，73／」958／．
Н．Н．Еоголиобов，В．В．Толмачев，Д．В．Нирнов．Новни метол в теории сверхпроводимости．
Изд－во АН СССР，І958．
2．A．Bohr，B．Mottelson，D．Pines．Phys．Rev．110， 936 （1958）．

Nucl．Phys．9， 655 （1958／59）．
C．T．Беляев．Mat．Fys．Medd．Dan．Selsk．3I，N． 11 （1959）．
4．А．Е．Мигдал．НЭІ甲，37， $249 / 1959 /$ ．
 L．S．Kisslinger，R．A．Sorensen．Mat．Fys．Dan．Vid．Selsk．32，N．9（1960）．
5．S．G．Nilsson．0．Prior．Mat．Fys．Dan．Vid．Selsk．32，N． 16 （1961）．
6．В．Г．Соловъев．IAH СССР IЗЗ， $325 / 1960 /$.

8．Лю Киань，Н．И．Пятов，В．Г．Соливьев，И．Н．Силин，В．И．Фурман．夗Тя， $40,1503 / 196 \mathrm{I} /$ ．
9．В．Г．Соловьев．Известия АН，сер．ф्रиз．2Е，IIG8／I96I／．
B．Г．Соловьев．Mat．Fys．Skr．Dan．Vid．Selsk．I，N．ll（1961）．
C．Gallagher，V．G．Soloviev．Mat．Fys．Dan．Vid．Selsk．
В．Г．Соловьев．Препринт ОИЯИ P－80I，／I96I／．
10．B．Mottelson，S．Nilsson．Mat，Fys．Skr，Dan．Vid．Selsk．I，N．8（1959）．
11．B．M．Foreman，G．T．Seaborg，J．Inorg．Nucl．Chem．7， 305 （1958）．
12．В．Г．Соловвев．ДАН СССР，ІЗ7，I350／I96I／．
13．Б．Н．Захарьев，Н．И．Пятов，В．И．Фурман．НЭТФ 4I，I669／I96I／．
14．S．E．Vandenbosch，P．Day，D．J．Henderson．Bull．Am．Phys．Soc．6， 239 （1961）．
15．R．G．Albridge，J．M．Hollander，C．J．Gallagher，J．H．Hamilton．Nuol．Phys．27， 529 （1961）．

16．K．Takahash1，H．Morinaga．Nucl．Phys．15， 664 （1960）．
17．F．S．Stephens，F．Asaro，I．Perlman．Phys．Rev．113， 212 （1959）．
18．M．E．Bunker，B．J．Dropesky，J．D．Knight，J．W．Starner，B．Warren．Phys．Rev．116， 143 （1959）．

19．J．O．Newton．Nucl．Phys．5， 218 （1958）．
20．F．Asaro，I．Perlman，J．0．Rasmussen，S．G．Thompson．Phys．Rev．120， 935 （1960）．
21．P．R．Gray．Phys．Rev．101， 1306 （1956）．

