





Abstractv

Several ways of estimation of the effective radius of strong interactions are discussed:
1) the estimation by the number of the last term in the angular distribution expansion in the Legendre
polinomials, 2) the estimation by the known total cross section of the channel and by the value of the
angular distribution in one point, 3) the estimation by the total cross section of all channels and by
the cross section of the elastic scattering channel, 4) the estimation by the mean square of the trans-
versal momentum by means of the uncertainty relation. The first two of them are generalized to the
case of inelastic reactions of a very general form a +b-»c+d+ e+ ... (the particle spins are

arbitrary). All the ways are not connected with any model of interaction ( potential well, optical model).






in the expansion of ¢ {8) in the Legendre polinomials must vanish within the errors starting with a cer-

tain number L I,egL o , since with the experimental errors decreasing L o Can increase. Thus, L o

gives apparentfy an understated value already for the lesser of the quantites 20, 207 .

Appendix A shows that (1) holds for any reactions a + b »c+d+e+... If the number of final
particles is larger than two, then o @) must denote the distribution with respect te the angle between
the beam direction and the momentum (related to the c.m.s. of the reaction), of any fixed final particle.
Over the other variables the integration is made. In particular, direc.:tions of emission of other particles
must not be detected. For example, for the reaction #+p+ N + nn o(6) may tmply the angular distribution

of a nucleon.

(1) is true for each channel of the reaction g+ b-...for example, for the channels s ~+p+p+n™,
+n+n®, s+p+n_ +n° etc. After having written down the relations (1) for all possible channels
and having summing up them, we see that the result is of the form (1 ) again. ¢ () in ( 2) may imply
therefore the angular distribution of a nucleon irrespective of the number of other particles (to say nothing
about directions of their emission). I.e. we can obtain information about L, and further about ls or

¢ not being sure to pick out any definite channel of the reaction under consideration.

So, the aforementioned way consists in the finding of the number L, of the last nonzero coefficient in
the expansion of the anqular distribution of any singled out product of the reaction in the Legendre polyno-
mials. Of course, it is not necessary at all to find beforehand all the previous coefficients. To find
that L , which is worth to start with the calculation of integrals ( 2 ) we may use more rought estima-

tions of r, presented below which are based on inequalities giving a lower limit of re
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Ogievetski and Grishin/3/ have given the inequality for the reactions of the type a+ b1 +2 which
can turn out to be useful for estimating 1, or r5 in the cases when the value of the angular distribution
in one point @’ and the total cross section of the reaction a + 5+ 1 + 2 are know. We write it in the

form which is valid for arbitrary spins (for the derivation see Appendix B):

_dal8) « o 5 (9 (3)
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where 3 (607)denotes the largest of the expressions






Fsien Ding-chang has obtained /5/ the estimation of such a kind ( N is arbitrary )

2
_dol@) < o (] +1) (s)
dQ T 4n I
which is obtained from ( 3 ), ( 4 ) by the replacement of all functions d’ by unit. d Jn( 6)<1, since
m, -

these functions satisfy the unitarity relation

Though this estimation is strongly understated, but in return it does not require the calculation of sums

such as { 4) and can turn out to be useful as a preliminary estimation.

Rarita and Schwed/s/ have pointed out an interesting way for estimating the radius of interaction

in the elastic reaction a+ b- a+ b . This way requires knowledge of only the elastic cross section

o°l and the total cross section oot of the plocess a+ b~ (all channels ). As Qgievetski and

Grishin/4/ have pointed out, this estimation follows from the formula ( 3) and the so-called optical

theorem (see, for excmple/7/, §24). We draw the proof for the case of arbitrary spins.
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For 6" =0 , the right hand side of ( 3) turns into ol +1) /4n . since d’ (0°)=8_ .
0 m,n '
For the left hand side we have

_de(0[(2j +1)(2j +)]= 2 |<m'm |R(0O°)|m m > >
d0 a b a b a b

4 4
m,m. ma ’ mb

2
> Z |<m, mb‘R(o°)1m‘mb>12_>_ 2 (im<mm|R(°)|m m>] = (7)
m,m m, m,

= E P ) (0" )3 ) (o™ P2 41(2jrD)]
m,m A4nh mom, 4nh :
a b






2
~oy to know only (A p© )mv for any of the particle - products of the reaction.

Appendix A

In the paper/g/ the author has pointed out the way of obtaining the following formula for the transi-

tion matrix of the reaction of the type a+b-+1+2+ ... +N:
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The notations are somewhat different than in 6,, ¢, - are spherical angles of the momeritum 51

of the particle | related to the c.m.s. of the reaction; 6, ¢, are spherical angles of the momentum
2
P, of the particle 2 related to the Lorentz system, whge the total momentum of the particles 2,3 ...

.-V is zero. Etc. In this case 0, is the angle between P and the relative momentum Ea of the
>

particles & and b ; 92 is the angle between the directions i;’; and -ﬁx . All spin projecti-

ons m are projections on the directions of the corresponding momenta.

D’ (g, 0, 9)=e""%d  (0) e (A.2)

/10,117

' J
The function d_ isdefined in I, denotes the total angular momentum of the system (the

total angular momentum of particles g and b or the particles 1,2 ... & ), ] is the total angular

momentum of the system of particles 2,3... N etc. For other details See/9,10,12/.

Instead of the variables p ,m , ] M
2 17717 Ty






Wetrwve used the following unitarity properties of the functions P's and the Clebsch-Gordgn

coefficients:

[[dcosO do L":n(—vr, 6, - ) D:.;' (=m0, n—¢ ) =

= 4z 5 5 (A.5)

=8 ) . (A.6)

Let us multiply the sum, appearing in ( A.4 ) inside the module sign, by the complex conjugated expres-

sion, i.e. write the squared module of this sum in the form of a single but double sum. Use then the rela-

tions:

LsJ (O,Q,d)):("'l)m-“ DJ ((D J®’(D ) (A'7)
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0,0

«ind the formulas (1) and (19) from/M/. From ( A.4) we obtain ( for similar calculations see/l/):
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