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Introduction S : ‘ ' ' ’

The problem of the nonuniques of the solution of the Low equation for the scattering amplitude has
been investigated in numerous pap‘ers/l’z’a/. Using, as an example, exactly soluble models, it was estab-
 lished tha/t to a whole class of Ylamiltonians differing one from another in‘kthe set of states in which the
scatterer can be, there corresponds one Low equation with maﬁy value solution. Besides, it has been -

/1/,

shown’ “‘that for charged mesons with a fixed nucleon the .solutions of the Low equation contain restrictions

on the coupling constant g'r . Recently an attention was payed to the fact that similar restrictions on the -
coupling constant can arise not only for individual models but also in the exact th‘em:y following from the
analysis of dispersion relations for the 7-N -sc‘atteriné‘v. In this connection an interesting question aris-
es whether these restrictions follow from the general principles used in deriving dispersion relations and
~the Low equation or they follow from the approximations which being made in this case. These approxima-
" tions are: ‘ ‘
1. The replacement of the exact tnitarity relation by an approximate one with account of the two-
particle intermediate state only ( the two-particle ‘unitarit);), and
9. The restriction on the fi/nite numBer of partial waves in the scattering amplitude.
Khalf{n/s/nsserté that the second assumption together with the assumption that the coupling constant
g. is arbitrary, can lead to the incor;lpatibility of the dispersion rélaﬁons an& the unitarity relation. In the
solved model where as usual the scattering involves only one wave ( S- or P-wave ), the restrictions on
‘arise from the exact solution of the Low equation. Such a case is just considered in the present paper. The
role on many particle’ contributions to the scattering ampﬁtude is then evaluated on ‘the basis of t'he solution
of thé Schrédinger equation for the giving model. It is shown that for the energiés less than the inelastic

scattering threshold w <2y the cont-ibution of the lowes states does not exceed 15 per’ cent.

1. Model and equation for the scattering amplitude

Here we shall consider the Low equation for the scattering amplitude in one simple model of the field

theory with a fixed nucleon/6/- The Hamiltonian of the system is of the form
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The rest nucleon can be in the two states ( proton, neutron) which differ in mass m‘ap =mo+ Amo s

my =m —Am ( m, denotes the niasfs‘ of the bare nucleorx). The processes of elastic and inelastic scat-
tering of mesoﬁs by a nucleon take place‘due to these degrees of freedom the nucleon. The authors of the
'paper/ 6/ have obtained the expression for the elastic scattering amplitude starting from the Hamiltonian
formalism. , .

In the foliowing we shall use this expression to compare it with the amplitude obtained. from the Low

equation, In deriving this equation we shall start with the dispersion relation for the scattering amplitude

( notes that in this model only the S-scattering is possible ).
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My (@) is the amplitud;a of the sc;ttering of the meson with the energy w =/ p7+ k7 on ‘the nucleon

( N=p,n);A is the differencé of ghe obs;:rvable masses of ‘proton‘ and ‘neutron‘; A =m,~—m, which
4 locates the oné-nucleoﬁ pole; 8, is the observable (renormalized) coupling constant. The ‘one-nucleon ‘

'tems hgs different sign for proton N=p, 8p=~1 and neutron N = n, § ,=~1, We assume A é'y , since
.otherwise the nucleon would have an unstable state which would decay into ‘neutron * and meson.

Using the unitarity condition*

Im Mﬁ(m)=(2rr)zkwlMN(w)|2+ aN(m) 4

The total elastic cross seotion s expressed in terma of MN((;)) as follows:
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I we intreduce the amplitude fN(a)) = (_2?)_ MN((;)) , then the relation (8) takes more usual form:
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where aN(w) are the contributions from inelastic processeé, ‘we obtain, by inserting (3) into (2), the Low
equation for the amplitude MN(w), if many particle contributions a, () are neglected. Here it should be

noted that the two-particle unitarity relation obtained in such a way which valids for @ < 2y in the range

¢t <@ < oo, imposes on the amplltude M, (@) rather rigorous restrictions; M (w) at mflmty cannot dec-

. rease more slowly than . From (2) and (3) we obtain the Low equation

(02
5y 83 1 1
MN(w)=' N G [ - 1+
(27)3 20 w-A\" w+A
(4)
+ A 1 ke M) | L+ Y
@ p N (4] "'(4)‘/—16 w+ow

This equation can be solved by the well-known methnd of Castillego, D.alitz,Dyson/l/- Here we,do not

give the calculations but we give at once the result:
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where / p7= w7 is taken to be positive for —x <'w <.
Note only the following facts essential constracting the solution. First, in (5) the function S(w) =-
=-2 oL 1 + 1 1 is omit in the denominator. This function, as Dyson/?’/ has shown,

) W+ ©
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descnbes the contributions to the scattering amplitude whlch are due to unstable states of the scatterer.

However, in the considered model nucleon and meson can not form a couplmg system 16/, Secondly, the

1/

undetermined constants which appear in solving equations by the method giving in’ */ are determined exactly

in our case since the location of the one-nucleon pole and its residue are khown.

2. Properties of the solution of the fntegral

equation (4) and restrictions on the coupling constant

From (5) it is obvious that M;,((o) has pole in the points +'A and the branch cut (~co, ~u] and

[ i, ), but besides, this function can have one more polg' in the interval [ —y,u ] when
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An additional pole in the amplitude M Asm) would contradict the analytical properties of MN (w) assumed
earlier, by means of which the Eg. (4) has been derived. This pole can be excluded by restricting the

observable coupling constant g .+ Vith this aim we rewrite the equality (6) in another form
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If now we put*

dx
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then the root of the F‘\q. (75 will lay on the other Nliman sheet since Vi@ =@X 0. Thus, the restnctlon
on the couphng constant (7) arises from the solution of the Low equation (4) and the one-particle umtarlty
relation. A similar situation has been discussed in/% 7/ Khalfin /5/ has shown i in the general case that

‘such restrictions will arise when a finite number of scattering phase shifts remain in the amplltude; in our

model we have only the S-phase shift in the scattering.
The assumptions about the arbltramness of the magnitude of 8, » the finite number of scattering phase

- shifts and about the unrestricted energy w turnout in fact to be nonselfconsistent. Besides the arguments

. /5/

of the paper’? the following considerations may confirm this point of view. Introducing in our model a

2
cutoff of the momentum v (k) = PI:—L—’— , we obtain by the aforementloned method the scattenng

amplitude My (@, L ) which will represent a function of the cutoff momentum L. Instead of (6), the location

of the additional pole will be determmed by the equalxty
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It is seen now that the restriction of the energy ( the introduction of the cutdff of the momentum L ) extends

the region of the allowed g .
, T

The. inequality (8) is similar outwardly to the restriotion on the consatant at the presence of the bound state/s/.



~Itis interesting to treat the problem of the existence of a resonance in the solutions of the Low equa-

“tion ‘Re MN(w'“) =0,Im My (0, )# 0 . F‘roiﬁ (5) it follows that the condition Re M ;= 0 is fulfilled

for : .
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Therefore, if g, is restncted to the mequallty (8 ( the condition of the absence of the nonphysncal pole in
* the amplitude -), then there is nonresonance, since in this case k becomes an imaginary quantity. Thus,

in our case the resonance exists when the amplitude have a nonphysxcal pole. The same sttuatxon takes(

place in the other exactly soluble model/l/ ( charged scalar mesons, fixed nucleon ). The solution valids

there for __ &2 < 1 (the absence of the nonphysical pole ), and the resonance energy is @ =

=p _ng__ 2chsequently, in this case too the resonance exists only when the amplitude has a nonphysi-
" cal pole.. o
As is well known, in analysing their equation for the 7 ~N scattering ( pseudoscaiar mesons, fixed

nucleon) chew and Low/g/ have found a resonankce in the P-wave. Following the paper of Khalfin/S/; there ..
’ must exist a restriction on gfin this medel too, as in the tw:) previous ones. Howeve\r, Chew ana Low'dontt
poinf to a such restriction. The question therefore arises whether the resonance in the Chew-Low equation
does not depend, as was the case of the aforemenhoned exampl es, on the exxstence ofa nonphysxcal pole

in the amplitude for the resonance® valués of g and for the cutoff momentum L. But it is difficult to answer

this question not knowing an exact solution.

3. Comparison with the solution of the Schrodinger equation

Starting from the Schrodinger equation with the Hamiltonian (1) the amplitude of the scattering of meson

’ . oo . -3
‘on a nucleon has been obtained 76/ a5 a power series in the parameter Am = AmoeXP {-g% D }
P , i . . , X
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K
g is the nonrenormalizable ( bare) coupling constant. In the same paper it has been shown that the obser-

“vable constant g and the difference of the masses of ‘proton‘ and ‘neutron‘ A = m = m is also-
3 . n



presented as power.series in'Am, - each term of these expansion being finite
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(For details see paper’ "/, formula (1)) . To compare the amplitudes M, and ¥ it is necessary to express
the renormalized qualities of (5) g, and A with the help of (11) and (12), in term of g and Am, We shall
aésume further Am <<’ and we restrict ourselves everywhere to the expansion in ._Am__ up to the
' n
second order. As a result we have the expression for the amplitude

2 2Am {1+ 8N32 Am (u —k’ + ikp. )} (13)
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Now to campare (10) and (13) we have only to single out the real and the imaginary parvts of (10). For the

energy < 2u ( 2y is the inelastic scattering threshold ) we have
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Thus in the second order in A#m the exact amplitude '\T (14) differ from the Low amplitude ¥, (13) by
the term -8 éﬂ I, (o, g), which takes. into account contributions from the higher states to the real part

of the amphtude, the i 1magmary parts of M, and \1 comcxde in that range of energies. When p < w <2y,

“then Og Il(co,g)<_0,13 and 1,5 /__2 22 zk’/__ 0,78.‘. (Yere it is assumed .g2/72? =1, since
n @

I,(w, g) forthis value is maximum and the value g2/72>1 has no sence in this model, as has



been shown in/6/ ). It is seen that the contribution of many particle states to the real:part of the amplitude
‘does not exceed 15 per cent, and is quite satisfactory from the point of view of the influence of many
particle states of the low energy processes.

We consider now the region 2 <'w <3y in this case the exact amplitude. is equal to

V()= _Owg? 2Am g1, by g? Am (#i= @, ikp oy

27)w? ® 7 B 20 ? w? R
. » (16)
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I,(w,g) is the real function which is analogical to (15),l but of more complicated form. From the compari-
son of the one-meson amplitude (13) and the exact one (16) it follows that the real and imaginary parts of
the amplitudes are different in this enefgy range. When 2p <o 3y, then
0,13 <T,(0,9)g0,92 , -08% 87 #I-'C
: 7 202

i.e. the real parts differ anyway by 100 per cent, and the imaginary ones -

2, -
4(0/4#(1
0g 8 ;X _yGrpl-w? <o
@ —=tyux .

Zﬂyzw'_u x 2

1,3 ;_”81 Lalj,_ >0,3
differ by 20 per cent. Thus in the interval 2u <'w <3y the contribution from the fligher states turns out to
be essential and the one-particle amplitude M, is half the exact one.

This model confirms well the assumption which underlies the dispersion approach in the modefn field E
theory thaf for low energies ( up to the inelastic processes threshold ) contributions from many particle
states to the scattering amplitude are unessential. The given example cannot, of course, pdint to a situation
in the real case of the relativistic particle scattering.

Further we would like to discuss the problem whether the relation (8) holds for the coﬁpling constant
a'nd for A arising from the solution of the Eq. (4) and for g, and A obtained by the rendhnalizatiog proc’e-i ‘
dures /6/ and satisfied by (11) and (12). The paper/6/shows that'a necessary coﬂdition of the convergence
of (11) and (12) is :

Am_ <1 . . an
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If we substitute in (8) g, and A 'by their expansions, then in the first orders in Am the inequality (8) is

. fulfilled for the quantities g and Am under the condition (17). However, we may not speak of a rigorous

fulfilment of (8) for the renormalized qudntities g and A obtained by solving the Hamiltonian (1), if we

don‘t know exact sums of the expansions (11) and (12).

. The authors express their gratitude to professor D.I.Blokhintsev for the useful discussion of the

problems broached in this work.

References

1. L.Castillego, R.H.Dalitz, F.J.Dyson. Phys. Rev. 101, 453458 (1956). _
2. R.Norton, A.Klein. Phys.Rev. 109, 991-998 (1958).
3. F.J.Dyson. Phys.Rev. 106, 157—159 (1957).

4. A.A,Ancensm, 3.H.I pu6on u np. KITD /6yner onyBnukomauo/,
5. 1A Xandun, XKI3TP / 6yner onyGaukonano /

6. B.M.Bap6awos, I".B.Egumos, XIT®, 40, 848 /1061/,
7. F.Zacharisen. Phys.Rev. 121, 1851 (1961).

8. B.H.l‘puﬁda,- f.B,3ennnonny, fA,M.INepenomon., XITPD, 40, 1190
/19817, ‘ |

9. G.F.Chew and F.E.Low. Phys. Rev. 101, 1570-1579 (1956).

" Received by Publishing Deéartmeﬁt
on July 24, 1961



