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Introduction 

The problem of the itonunhlues of the solution of the Low equation for the scattering amplitude has 

been investigated in numerous papers/1,2,S/. Using, as an example, exactly soluble models, it was estab­

lished that to a whole class of Hamiltonians dilfering one from another in. the set of states i~ which the 

scatterer can be, there corresponds one Low equation with many value solution. Besides, it has been 

show/1{hat for charged mesons with a fixed nucleon the .solutions of the Low equation contain restrictions 

on the coupling constant gr • Recently an attention was payed to the fact that similar restrictions on the 

coupling constant ean arise not only for individual models but also in the exact theory following from the 

analysis of dispersion relations for the IT-N -scatterin~4/. In this connection an inieresting question aris­

es whether these restrictions follow from the ge,neral principles used in deriving "dispersion relations and 

the Low equation or they follow from the appr~ximations which being made in this case. These approxima-

tiona are: 

1. The replacement of the exact unitarity relation by an approximate one with account of the two­

particle intermediate state only ( the two- particle unitarity), and 

2. The restriction on the finite number of partial waves in the scattering amplitude. 
I . 

Khalfi/5/ asserts that the second assumption together with the assumption thai: the coupling constant 

g, is .arbitrary, can lead to the incompatibility of the dispersion relations and the· unitarity relation. In the 

solved model where as usual the scatterinf involves only one wave ( S- or P-~~ave ), the restrictions on 

arise from the exact solution of the Low equation. Such a case is just considered in the present paper. The 
' 

role o.n many particle· contributions to the scattering amplitude is then evaluated on the basis of the solution 

of the Schrodinger equation for the giving model. It is shown that for the energies less than the inelastic 

scattering threshold w <.2 p. the cont:·,bution of the lowes states does not exceed 15 per cent. 

1. Model and equation for the scattering amplitude 

Here we shall consider the Low equation for the. scattering amplitude in one simple model of the field 

theory with a fixed nucleo/61. The Hamilton.ian of the system is of the form 



" 

4 

+ .. 2 .. .... 2 2 2-+ 
H ==' m

0 
( t/1 tfr) + Y, J dx [ IT ( x) + ( V :p ( x ) ) + J1. ¢ ( x ) ] + 

(1) 

+ .. .. .. + 
+g(tfr r

1
tfr)Jdx ¢(x)8(~) +t.m

0
(tfr r

3 
tfr) 

The rest nucleon cqn he in the two states (proton, neutron) which differ in mass m =m + t. m , 
·' op 0 0 

m = m - ~ m ( m denotes the mass of the hare nucleon). The processes of elastic and inelastic scat· 
on o· o o . 

tering of mesons by a nucleon take place due to these degrees of freedom the nucleon. The authors of the, 

pape/6/ have obtained the expression for the elastic scattering amplitude starting from the Hamiltonian 

formalism. 

In the following we shall use this expression t_o con1pare it with the amplitude obtained from the Low 

equation. In deriving this equation we shall start with the 'dispersion relation for the scattering amplitude 

( notes that in this model only the S-scattering is possible ). 

. 2 
MN(Cr))= BN g, [ __ 1 __ 1 ] + 

~)3 2(1) (I)-A (I)+ t. (2) 

00 

+ _ 1 _ J d(r)' (i)'lm 1\f ((!)') [ 1 . 
IT(!) N (!) -(1)-t£ 

+ l 
(!) + (!) 

J1. 

\f N ( (!)) is the amplitude of the scattering of the meson with the energy (!) = y J1. 2 + k 2 on the nucleon 

( N = p,n.) ; t\ is the difference of the observable masses o_f 'proton' and 'neutron'; 1!>. = mP- m n which 

locates the one- nucleon pole; g is the observable ( renormalized) coupling constant. The one-nucleon 
r , 

terms has different sign for proton .N == p, 8 == 1 and neutron N == n, 8 n == -1. We assume t. <' J1. , since 
' . p 

otherwise the nucleon would have an unstable state which would decay into 'neutron' and meson. 

Using the unitarity condition* 

2 :z 
lm ~~N ((I)) = ( 211 J k (I) I M ( (!)) I + a ( (!)) 

. N N 
(4) 

* ' The total elastlo oroes eeotlon ts expressed tn terms of 1\fN((r)) as follows: 

O'ji(i)> == (1)21 \1N{(i)) 12 
11 

U we lntroduoe the amolttude f ((!)) = ~ M ((!)) , then the relation (3) takes more usual form: 
N \2!T}4 N 

Jm f N((r)) =_._k- O'N ((!)) + _k- O'N ((!)) 
41T el . 41T In 
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where aN{(i)) are the contributions from inelastic processes, we obtain, by inserting {3) into {2), the Low 

equation for the amplitude \1 ((i)), i£ many particle contributions a ((i)) are neglected. Here it should be 
N N 

noted that the two-particle unitarity relation obtained in such a way which valids for (i) <' 21.1. i~ the range 

l.l. <'(I) < oo, imposes on the amplitude M N((i)) rather rigorous restrictions; M ~((i)) at infinity cannot dec­

rease more slowly than _1_ • From.{2) and (3) we obtain the Low equation 
(i)' 

1 

{4) 
00 

+ 4" .r d(i) 'k '(i)' ' I ~f <(i) ~ I'C 1 
(I) N (I) - (1)-l£ 

1.1. 

This equation cari be solved by the well-known metho.l of Castillego, Dalitz, Dyso/11. Here we do not 

(5) 

is taken to be positive for -1.1. .,:·(1) < 1.1.. 

Note only the following facts essential constracting the solution. First, in {5) the function S {(i)) = · 

= I lli [ 1 + 1 ] is omit in the denominator. This function, as Oyson/3/ has shown, 
l (i) -· (i) (i) + (i) 

describes th~ contribution~ to the scattering amplitude which are due to unstable states of the scatterer. . . . 

However, in the considered model nucleon and meson can not form a coupling. system 161. Secondly, the 

undetermined constants which appear in solving equations by the method giving in/1/ are determined exactly 

in our case since the location of the one-nucleon pole and its residue are known. 

2. Properties or the solution or the integral 

equation ( 4) and restrictions on the coupling constant 

From {5) it is obvious that M~((i)) has pole in the points ,:,Ll and the branch cut { -oo, -,L] and 

[ 1.1. , oo ), but besides, this function can have one more pole in the interval [ -p.,/.1. ] when 
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~ 2 \ lP.2_ V-y~L w2 r;g, 2 
~ yp.l-V v'll::~ _ _v +v'p.~- w 

=l (6) 

\n additional pole i.n the amplitude ~t Jw) would contradic,t the analytical properties of \fN (w) assumed 

earlier, by means of which the Eg. (4) has been derived. This pole can be excluded by restricting the 

observable coupling constant g , • With this aim we rewrite the equality (6) in .another form 
2 ' a, .\ _o_-= 

yp.2-•Ci.J2=-yp.2-/S2 l-8N4TT J11.2-/'! 2 (7) 
' 1+8 l \ 
N~~ 

If now we put* 

-}/-< (8) 

then the root of the Eq. (7) will lay on the other TUman sheet since ..fli.2=: w:~<'O • Thus, the restriction 

on the co~pling constant (7) arises frorri the solution of the Low equation (4) and the one-particle unit,arity 

relation. >\ similar situation has been discussed in/ 4, 71, T<halfin /5/ has shown in the general case that 

such restrictions will arise when a Einite number of scattering phase shifts remain in the amplitude; in our 

model we have only the S-phase shift in the scattering. 

The assumptions about the arbitraniness of the magnitude of g , the Einite number of scattering phase . r 
' . 

shifts and about the unrestricted energy Ci.J tum out in fact to be nonselfconsistent. Besides the arguments 
\ . 

of the pape/
5
1 the following consideratio~s may confirrn this point of view. Introducing in our model a 

. 2 
cutof£ of the momentum v ( k) .. k L 2 , we obtain by the aforementioned method the scattering 

2+L 

amplitude \IN ("', L ) which will represent a function of the cuto££ momentum L. Instead of (6), the location 

of the addition~! pole will be determined by the equality. 

-8. 2 11 ..;~-..;~ 
N --IJ- V p.i-,l2 V p.i _ \2 + V ILl_ Ci.ll 

j ----' -- ,l ~ 
I: I ( yp,2-~ +\/p,l-6.2 + LJ+.Lyll.t. !i'= 1 

( v' p.2-w2+ L)2 ( y p.2-· 6.:1 + L )3 
(9) 

It is seen now that the restriction of the energy (the introduction of the cutdf of the momentum L) extends 

the region of the allowed g • 
. r 

* The Inequality (8) Is similar outwardly to the restriction on the constant at the presence of the bound state/8/, 

- ~-.,.,...__ 

j 
I 
j 

I 
l 

1" 
I 

l 

I 
I 
f 
I 
j 

! 

I 



7 

It is interesting to treat the problem olthe e~istence of a resonance in the solutions ofthe Low equa­

tion ·Re MN ( (JJ ,.. ) = 0 ' lm M N ( (JJ te) ,;.. 0 : From (5) it follows that the condition Re \1 N= 0 is fulfilled 

for 

Therefore, if g is restricted to the inequality (8) ( the condition of the absence of the nonphysical 'pole in 
t 

· the amplitude · ), then there· is o:>nresonance, since in this case k becomes an imaginary, quantity. Thus, 
. tea 

1 

in our case the resonance exists when the amplitude have a nonphysical pole. Tile same situation takes 

place in the other exactly soluble model/1/ (charged scalar.mesons, fixed nucleon). The solution valids 

there for g.
2 < 1 ( t.he absence of the nonphysical pole ), and the resonance energy is ru = 

. 2 2rr . . rea 

= IL _b_ consequently, in this case too the resonance exists only when the a~plitude has a nonphysi-
217 

. cal pole •. 

As is well known, in analysing their equation for the 17-N scattering ( pseudoscalar mesons, fixed 

nucle9n) chew and Low/9/ have found a resonance in the P-wave. Following the paper of Khalfin/5/; there 

must exist a restriction on rtin this model too, as in the tw~ previous ones. However, Chew and Low don'~ 

point to a such restriction. The question therefore arises whether the resonance in the Chew-Low equation 

does not depend, as was the case of the aforementioned examples, on the existence of ~ nonphysical pole 

in the amplitude for the 'resonance'. values of g: and for the cutoff momentum L. But it is dif!lcult to answer 

this question not knowing an exact solution. 

3. Comparison with the solution o( the Schrodinger equation 

Star~ing from the Schrodinger equation with the Hamiltonian (1) the amplitude 'of the scattering of meson 

·on a nucleon has been o~tained 161 as a power series in the parameter !'!. m = !'!. m
0
exp 1-~ ru;3 I 

,_ "' 2 
\f (ru) = u~g 

N .(217) (JJ 2 
2.\m 

(JJ 

K 

OQ 

11 - ioN A m f dx ( 1 ._ Cos rux) [ exp I 2g2 ~ 1-1]+ ... 1 (10) 
,Q K 

g is the !lonrenormalizable (bare) coupling constant. In the same paper it h~s been shown that the obser-

vable constant g and the difference of the masses of 'proton' and 'neutron' :~ = m "' m is also. 
t P n 

I 
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presented as· power.series hi·~ m, each term of these expansion being finite 

"" ~ =l-2_\m2 I dx·~x[expl2g2~ (J)·je.(J)K"l-1] - ... 
g 0 K K 

(11) 

. ~ ~ aj 
~ = 2,~ m I 1 + ~ m2 I dx1 J dx2x1 x.7(tx"dx 

0 0 1 2 

expl2g2!.~[ -wK"1 ""k("1+x; '""k"~ l+ ... l 
-. K e •e +e 
K · 1 

(12) 

(For details see pape/6/, formula (11) ) • To compare the amplitudes \1 and \1 it is necessary to express 
N • N 

the renormalized qualities of (5) g, and :\ with the help of (11) and (12), in term of g and ~m. We shall 

assume further ~m <<.p. and we restrict ourselves everywhere to the expansion in ~ 
p. 

up to the 

second order. As a result we h~ve the .expression for the amplitude 

\I (eLl)=. 0Ng2 Mm 11+ ~rvg2_ :lm ( p.2-k2 + ikp. )I (13) 
N \217)3 w2 w 11 ll 2w2 w2 

~ow toccmpare (10) and (13) we have only to single out the real and the imaginary parts of (10). For the 

energy w < 2p, ( 2p, is the inelastic scattering threshold ) we have 

where 

~ 2 . 
\f ((J)) = 8Nf5 ~m I 1 - 8 ~m I ( ) 

N (2iTJTc;j' 2 -(J)- N --;L" 1 (J)' g + 

+ 8Ng2 ~m 
TT --p. • 

"" 

/l_2-k2. + ~ 
"2W2 · w2 

l/(J), g )=2p. J dx {1-Ch(J)x )[ exp{2g2 ~· e·(J)r 1-1-2 g2~ _L_~JC ~] 
0 K WK K w:; 

(14) 

(15) 

Thus in the second order in ~ the exact amplitude \i'N (14) differ from the Low amplitude \IN (13) by 
. p. 

the term -8N ~m 11 (w~g), which takes into account contributions from the higher states to the real part 
.. p N . 

of the amplitude; the imaginary parts of \I and \I coincide in that range of energies. When p. < w < 2p. , 
· N · N 

·thenO~I (w,g)<.0,13 and1,5)-_£ ~2;:.-0,7B. (liereitisassurned g2,1rr2=l,since 
1 rr 2w2 

I 1 ((J), g_) for this value is maximum and the value g 2/ rr2> l has no sence in this model, as haa 

. ' l 

! 

I 
l 

l 
~{ 

I 
t 
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been shown i/6/). It is seen that the contribution of many particle states to the real part of the amplitude 

. does not exceed 15 per cent, and is quite satisfactory from the point of view of the influence of many, 

particle states of the low energy processes. 

We consider now the region 2 p. <.(U <.3 p. in this case the exact amplitude. is equal to 

+ 

(16) 

-8 A!!L I (('U,g) + 
N fL 2 

.1\m ----
fL 

I 2 ( ('U,g) is the real function which is analogical to (15), but of more complicated form. From the compari~ 

son of the one-meson amplitude (13) and the exact one (16) it follows that the real and imaginary parts of 

the amplitudes are dif!erent in this ene~gy range. When 2p. ~ (U ~-3~ , then 

0,13 ~12(('U,g)~ 0,92 a 2 fL 2_ \ 2 
-0,8 ~ -"- -- - > -0,98 

" 2ru2 

i.e. the real parts differ anyway by 100 per cent, and the imaginary ones · 
• 4~~ • 

o~_g_ f~v(x+,td2 -('U 2 ~0,15, 
2rr2{U~fL x 2 (U -4p.x 

differ by 20 per cent. Thus in the interval 2p. <('U <'3p. the contribution from the higher states turns out to 

be essential and the one-particl~ amplitude MN is half the exact one. 

This model confirms well the assumption which underlies the dispersion approach in the modern field 

theory that for low energies ( up to the inelastic processes threshold ) contributions from many particle 

states to the scattering amplitude are unessential. The given example cannot, of course, point to a situation 

in the real case of the relativistic particle scattering. 

Further we· would like to discuss the problem whether the relation (8) holds for the coupling constant 

and for 11 arising from the solution of the Eq. (4) and for g and 11 obtained by the rencirmalization proce-
r . 

dures 161 and satisfied by (11) and (12). The pape/61 shows that a necessary condition of the convergence 

of (11) and (12) is 
07) 
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If we substitute in (8) gr and .\ by their expansions, then in the first orders in 1\m the inequality (8) ls 

fu!Eilled for the quantities g and llm under the condition (17). However, we may not speak of a rigorous 

ful£ilment of (8) for the renormalized quantities lli- and L\ obtained by solving the Hamiltonian (1), if we 

don't know exact sums of th'e expansions (11) and (12). 

The authors .express their gratitude to professor D.I.Blokhintsev for the useful discussion of the 

problems broached in this work. 
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