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Abstract 

The convergence problems connected with the cosine expansions 
- which are necessary in order to derive integral equations from the 
\fandelstam representation - are studied on the example of the 'H-71' 
scattering. A set of equations for low energies is given, in which 
a good convergence of the real part of the amplitude expansion is 
achieved with the help of a conformal transformation of the cosine 
plane. Since each power of the expansion function contains an 
infinity of partial waves, this approach is convenient in cases in 
which higher waves are expected to play an important role. 

1. Convergence Problems 

The problem of obtaining integral equations for the elastic pion-pion scattering amplitude has been stu­

died by many authors in the last time ( see/l/-/31). The common feature of these works is that the singu­

larities of the scattering amplitude are taken from the two-dimensional integral representation of Mandel­

stam/4,5 ,6/,which exhibits explicitly the analytic properties of the amplitude and permits to write down 

different one- dimensional aispersion relations. 

In the paper of Chew and !v1andelstam1ll dispersion relations are obtained for the partial waves. In the 

uni?hysical regions, the imaginary part of the amplitude is obtained as an analytical continuation from the 

physical region of the crossing reactions, with the help of the Legendre expansion. As ·shown in/11,/3/and/7/, 

this continuation leads to difficulties due to the fact that in the region of the spectral functions the Legendre 

expansion is divergent,ana even more, in a wide region near the boundary of the spectral functions,the se· 

r!~s converges very slowly
1
so that higher terms cannot be neglected. 

"' Recently Hsien, Ho and Zoellner/3/ proposed another approach, by which this difficulty may be avoided. 

They write the dispersion relations only for the forward ( and backward ) scattering,in which cases the in­

tegration path never intersects the spectral function regions. The path of integration of the left-hand cut 

coincides with the boundary of the physical region of the second (or third) reaction,so that no analytical 

continuation is necessary. Having performed the crossing transformation,they are left only with integral~ 

over positive energies at ~!I.(}"' 1 . Then, in order to obtain expressions for the partial wave amplitu­

des they use, besides the dispersion relation for A , also its derivative with respect to i. * ( see 

also/8/). For isotopic spin I equal to 0 or 2 only even waves occur, and we have 

A o,2. 
l ('l>) (l~) 

( 1 ) 

* ~- -,2~& /tf- ~a) I~ t}u~ 841UIU't/1' o, ~J.<t!# .-.o.-••tw .. ti"'IIUII •• ,t/!1-,. b11 ,;I&J. 11•'t.!11 ~- tAl!!! cenhtn• of' 
m&88 eystem of the ({ret reaotton. By • ._ ""- ('"'~ .,..,./ --s df!lnote the ~quare nor t.he e.on. -t.-ot.a.l ener 8 y(tn ~ 

tnlts}.Aooordlng to /1/, we also use the symbol "•,Y ...... 

'-~ 

1 . 
.. 



~ 
i 

' ~ 

~ 

' ...... 

where 

4 

• 
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(V:~-(4?8) A
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.... (.Y:~e.nBJ 

• 
These expressions are put into the unitarity condition in a certain approximation, i.e. after neglecting 

higher terms. In/3/ only the S-wave is taken into account and on the right-hand side of (1) are taken the 

first two terms. The case of odd l is treated analogously. 

The series in ( 1 ) converges not only for all elastic energies Y< ?J , but for all ~ smaller 

than 4.8. Of course, Lhe ·convergence rate of the series depends on the distance from the point cos2B-1 

to the nearest singularity. This follows from the fact that the unitarity condition requires information 

about the amplitude in the whole physical region 0~ .t.tr'lJ94. 1 . As the only data known about 
1 A ... A are those at .u1 8 :{, can be expressed only in the power series in ( cos26-1)1 

which has its own radius of convergence. If "' increases, the radius becomes smaller 

and the convergence slower/9~ and for V > ~~4.8 the expansion in ( 1 ) does not converge 

at all. From this point of view we can say that the accuracy of the approximation made in/3/ is 

comparatively small at ')1 greater than f )I._.= 2.4. 

:p..·· 

The integral equations given in the present paper differ from those of Hsien, Ho and Zoellner 

in two essential points. Firstly, in order to achieve a better approximation for the amplitudes we 

use,instead of the power expansion in ~YJ- 1, the following one (in the even case): 

_f .1.. ( )J"'A_' li1'""(Gtt)!t6) 
h.! J .,;_;-rt=O 

0,.2 

A < ).1, <41J
2o; 

..... o 

'IIT(~ae=tJ == o 

where the function lU (ur:/IJJ is chosen so as to make the expansion converge as quickly as possible. 

In other words, the. function W(c..tl9) represents by itself a conformal transformation of the complex 

.... 

cos29 - plane,by which Y_,c. can be shifted arbitrarily far from the region under consideration. 

Due to this fact our equations are expected to take into account the contribution of higher energy region" > 2 

more exactly, because the new expresion for the partial waves 
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( 2 ) 

converges also for infinite energies. This could be especially important in the case in which the expec-

ted resonant state would appear at ~ > 2. 

Secondly, we note that our W(cJ()) contains an infinity of waves ( see below) so that, by using ex-

pansion in nr.,., , we are able to estimate also contributions from higher waves. In order not to loose 

this advantage we use everywhere only power series in w- . In particular, in the unitarity condition 

we prefer the expansion in W"' . because transition to the partial waves would lead to reordering of 

two infinite series and, consequently, to some losses of accuraay. 

It was shown in/9/ that the best convergence is achieved when M1'AD\I) transforms the cut cos~ 
plane into the interior of the unimodular circle. The cut itself transforms into the boundary of the circle. 

Consequently, the power expansion in 1ft converges in the whole cos2 6 plane (without the cut) 

and, a fortiori, in the whole physical region 0 -' cos29 ~ 1. 

><]; The explicit form of this optimal W" is 

( 3 ) 

Here 7 is the cosine of the nearest singularity. It depends on ~ ~ and will be determined in Section4. 

Because of the complicated form of ~ 1 the calculations are to be performed by electronic computers. 

In some cases, however, for rough estimations or calculations which are of no influence on th; final result, 

we replace WM by a simpler function 

( 3~ , 

This function transforms the lef~ half-plane c:Re(c.»~9}(. -z-l of the cos2& - plane,into the unity circle. 

2. The Unitarity Condition 

From ( 3 ) and ( 3') it follows that both WM and ~ contain contributions from all partial waves. 

Therefore we write the unitarity condition without using the partial wave expansion: 
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J,. Ac)},r.tnBJ = "~{j l ~ A(,,Q34JAc,,ut4J J~~ dy 
11-f (4) 

~o.~ = c.noC4n81 - 4k9M.4 ~1 

Next we expand A in powers of W : 

Ao,t A o,i o.t Atl.t a 
(v, t418} = 0 (l'} + A 

1 
(v) .'JI" -1- ~.t~J '1f1' + · · · 

( 5) 

A~ (Y,l4l0) = A»O{ A!cvJ + A1
1
(vJ'II f A.,:'t"J .,.•+ ... ) 

Now, we differentiate ( 4) with respect to :l:: -!h1( 1- cos~) and put i=o"' . We get 

:fi>'-

z , .lu - ~~ 1 r 
:1rtt. A (V,4YJ0=f) = af~ [:., A" (v) A • .f»l K .... .f1J) (6) 

(•iJ....A
1

) - I . .llJ - I• 1 1 (-i) 
~ t 2 

.,1,. 1 - J,7 {.2ll)• ViJ+i k, A~~~. (ll) A"" (v} K ~-. (lJ) 

where 

1 (.l] ~..I •• f 

1<......... = ~l J J 1t1'(tcno,J .w(enl.cJ .Je,~ ad , t-'t 1~0.,.2. 
• •f 1l~i ( 7) 

. ~(iJ .1 a.• • 1 
~ I<,.,,._ = ~t438/ J 1 (4)~-Gn~ .,.(~6,}~(4)18,)·dtcr.J4c/. . felL 1,. i . 

0 •I UJf=i 

"" The diapers len Integrals are written forl= const rather than for cos# = con st. It Ia obvious that 
for t=o,both formulation!! are equlvalent,but the former Is preferable because the differentiation of the 
dispersion Integrals for t"' const with respect to t:, cor.responds to the subtracted dlspsrslon relation 
differentiated with respect to cos I. 
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In this paper we use the first-order approximation, i.e. 0 and 1 in ( 6 ). Owing to the form of ~"tcmBJ 
(.i} 

(see ( 3) ), the explicit calculation of the J< ....... - integrals is awkward,so that it is convenient to per-

form it by digital computers. For some purposes, however, it is necessary to have closed explicit expres-

J{ /4.1 
sions for ,.., • In these cases one must renounce to the optimal n1'"" - functions and adopt the 

Wj. -ones. Then we have, for I= 0 or 2, 

l f. 

K :. .2~ 3a( -I 
11 ~ 

KII ::. 

00 K
J) 

01 

J} 

= !< =0 iO 

KJI -
11 

and for I = 1 : 

- J,y -3 
f 

= f<..,o 

3. The Integral Equations 

We start from the constant l dispersion relations : 

( Sa) 

( Bb) 
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{V,t) -i"l'))!..}1 J.... (V,t) 
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.. 
'r . .w ' r tlv' " +7 JD).,r J .,.,.u,"~~J..A<,!tJ 
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( 9) I 

where J «r.r is the isotopic matrix of the crossing transformation 

~ -2. f% - -4 

o(,IJ =I-~ 1 ¥b ( 10) 

.!;'b 1 

I I 
1.,..., 

( d.u from 1 is =t-1) of..N ). 

Limiting ourselves only to two terms of the expansions ( 5 ), we have to differentiate ( 9 ) with respect 

to 1 and put i = 0. Using ( 6) we obtain the (unsubtracted) integral equations for A! (}J) 

and A: (1>) : 

1 

Ao(l>) 

.. 
- 4 l J,• 
- J,T1 'Y'-Y 

0 

r;1 I 1* I I 

Viifii L A, A_ k,_ 
rt,• ., 

+ 

+ - j_ a.v _ )I' 3 J t -\ ,, ., J 

o£11371. 1 +V .,.,, ,;g., L A_ A a.. K .. ~ 
3rr.O e Jt,Jrt•l 

J -

( lla) 

(dl\T ~ A ' Ao~ ~ J I 1 L.' i_* I I' . (Y) = -a ')) ~ ~V - + ~~ ,., •• f ., . u < > + :i;? ~!. ')) fi•f-.1'.1--t ,.... ... A_ J<. .... 

The factor ~ !!!' I equals to 

~~· ~··f 

0 

1 - ~ -\ J,• I ~I t...•A.r K_'- ( 11 b) 

+ r. OS., ii1 .,,. vu' G·vllil1 L 1l - tlflo, J:O "-.,..., 

.t. ~ ,, 1 ;(. aJ '\l a.')} '))' " ... " -I, ~IJ f6f1 
{l+>l+v't {?;; ~~ A: A,... lUI. 
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-~ " for -N:: Ji~ (~I) -7:~-1 
and ., ,. = 71',. ( elr'J6) -- for 'll-1 

As it was shown ( see the footnote in Section 2) Eq. ( llb) is already subtracted. It is therefore 

sufficient to perform a subtraction only on Eq. ( ll a). In contrast with the paperslll and /3/, in which the 

subtraction is performed in the points s"' s .d = ~ and t .. 0, ~ = S = 2 respectively, we 

choose the threshold of the first reaction , !J = J, ~ ~ = t ... 0 • We define 

a 0 = A'r, .. o,t=O) 

a.'- _ A~(v=O.t=o) 

The two scattering lengths ao and 
lt a are not independent. The relation between them is * 

After the subtraction, Eq. (lla ) takes the form 

A
I 1 
,("))) = a 

4. Estimation of the Errors in the Unitarity Condition 

The convergence rate of the expansion depends on the position of the first singularity of A (li,~IJ). 
This is located at t ==4 which represents the first line t = canst. intersecting ( asymptoticaly) 

the spectral functions A1, and Au . ( In the cosine complex plane this corresponds to a cut beginn-... 
ing at T_:: 1+ ~ ). However, according to the general philosophy of the effective ~ange theory one can 

expect that the influence of very reJ'llote regions of the spectral function is negligible at sinall energies. 

Therefore it is sufficient to take for. the cut of 1?e A for instance the limit t = "'o/;t which cor-
..J- 16T 

responds to the line 1. = const. which intersects the boundary S = ~ of the spectral 

function at l' = 10 .S = 44 ). In the cosine plane this corresponds to a branching point at 

* Zollner and Wolf (private oomunloatlon) obtained a good fit to the t(; - deoay data with 

• .2. 
CC.. ::. -0.~ and Cb ~ 0 .i 
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The estimations which are following were performed at the threshold of the first inelastic process, 

i.e. V• ~ , where T. and 'Z"10 are respectively 5/3 and 2.0476. In order to take the upper li-. r 
mit of the errors, we have placed us in the worse case taking the trial function A = lf'-~l +(:-f/T+!,I 
whose singularities are concentrated at the very begining of the former cut. F0r comparison of the conver .. 

gence of the W"' expansion and the ( cos2 6 - i ) one, we refer the reader to Table 1 of the paper/9r, 

where some partial waves are calculated (for 1 = 0 and 2 ) in both approximations. We shall now con­

cern ourselves with the errors brought in the unitarity condition by limiting the amplitude expansion to 

linear terms in h1( cosQ) • We shall t~ke "'•~{Gt>l)( see ( 31
)) ,rith ~= 2.047{i.e. we shall 

use the ( 8 ) expressions for the J<. ...... integrals). 

In the even case ( isotopic spin 

tA!"A~k!~ ...... relative to their exact values 

'1 1• I I 
0 or 2 ) the errors ~ .. t. A .. A. J.<,.,._ 

~ .• 4:A~K: ... 
are respectively 

-4.08% and +33.2% 

and of its derivative 
- r• r Kll 

and J;
1
A .. A... ... ..... 

Although the latter seems to be large, its value relative to the other terms of the sum is nevertheless 
· ~·r :r1 

very small. This is a consequence of the fact that in the equation ( 11 b) the I: ~.A ... K.... terms 

AI•AI ul 
6Ccur together with the Z: ,. R.,..l'...,.,. terms which ( for I ::r 0 and 2 ) are very large in com-. 

r• A r J/1 
parison with the formers. So the error of the derivative terms reported to E. .4.,. ,q.,.. l't. ,_ 

· is only of 0.67%. 

In the odd case ( I •1 ) both terms are of the same order of magnitude, but the errors are in both 

cases small. They are respectively • 1. 74% and • 1. 046 %. 

5. Conclusion 

The information about the analyticity of the amplitude contained in the Mandelstam representation forms 

a basis which together with the unitarity property of the S - matrix can be used to write down integral 

equations for A . 
, Of course, such equations are not in any way solvable without making some approximations. Among them 

the most important one are the two-particle approximation in the unitarity c;mdition, and the fact that only a 

few coefficients of the cosine expansion are taken into the equations. 

The analytic properties of A contained in the \1andelstam representation are often used for writting 
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down,the dispersion relation only in one variable ( energy, say) which has a simpler form that the two 

dimensional one. The dependence of A on the second variable ( momentum transfer or cosine ) is 

then expanded in a series. In principle, Legendre expansions could be used, but troubles arise due to 

their not converging in the unphysical region. This fact was taken into account in/3/ but, again, such an 

approach needs several derivatives ( ~f], .. J~~= t 1 in terms of which the waves are expressed. 

This means that together with the Legendre expansion ( now only for positive energies ) also the Taylor 

one is necessarily used, which has its own radius of convergence. 

In the present paper we attempted to expand the cosine dependence of 4 (')), .t:.ntJ) also 

around cos {} = :t 1 but into the powers of a certain function W( cos (} .J ll) which has the same 

location of the singularities as A has. This leads, firstly, to the 'most rapidly' convergent power ex­

pansion for the amplitude ( see Appendix 1 of/9/ ). The estimations made above in Section 4 about the 

errors introduced by taking into account only the first two terms of the expansion lead to the same conclu­

sion. Secondly, we removed at least in part the asymmetry in the treating of the energy and momentum 
transfer in the theory. 

We are especially indebted to Prof. H. Y. Tzu for valuable sugestions made during this work. 

It is also a pleasure to express our thanks to all the participants of Prof. Bogoliubov's seminar for fruit­
ful discussions, 
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