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To be printed in the Proceedings of the Intemational 
Congress on Many '3odies Problems. Utrecht (Netherlands), 
June 1960. This is the text of the report made by the au
thor at the international Congress on Many "lodles Problems, 
Utrecht, June 13, 1960. 

In this report I shall give an account of my recent work 'Model hamiltonian in the theory of su

perconductivity' just published as a preprint by the Dubna Institute. 

Here the simplest dynamical system, caracterised by the well known reduced hamiltonian was 

considered and it was treated by methods which are completely rigorous from the mathematical 
point of view. 

In conclusion of this report we intend to discuss the general situation in the theory of supercon
ductivity and superfluidity. 

So let us first consider the simplest model system in the theory of superconductivity caracterised 
by the reduced hamiltonian of the form: 

The second-quantized operators 

states of momentum p and 
mions. 

Q,l and 
spin S 

We have adopted the following notations: 

t- ( ~ s J -I c (- p, -s) 

~ (/) ~ {O
T€ (s) 

' 

( 1 ) 

+ 
Q., { destroy and create, respectively, free particle 

, and satisfy the usnal commutation rules for fer-

( 2 ) 

The application of the BCS method and of our method of the compensation of 'dangerous diagrams' 
leads in this case to the Rame results. 

About two years ago ZUbalev, Tserkovnikov and myself have drawn attention to the fact that the 

case of this model system is one of that .VeJ:}C rare problems of statistical mechanics where the assymp
totlcally exact solution can be found. 

·~ 

In our note we have obtained the assymptotically exact (for V-+oo) expression for the free energy. 
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This result was established there in the following way: The hamiltonian H was in a special 

way devided into two parts H0 and H1. The problem with the hamiltonian H0 was solved 

exactly by means of a U - V - transformation. In order to take into account the influence 

of H1 perturbation theory was used. It was shown that any tt tJr, term of the corresponding ex

pansion is assymptotically negligible for V- __,.. co In this connection the conclusion was 

made that the influence of H1 is to be neglected after the limiting process V- 00 • 

It is evident that such reasoning can not claim to be mathematically correct. But it should also 

be emphasized that in the problems of statistical mechanics even more crude approaches are used. 

Very widespread are, for example, approximation methods based upon selective summation of, in a 

certain sense, 'main terms' of perturbation theory series. The other terms, although they even do 

not tend to zero for V __... Oo , are omitted. 

The real doubts concerning the validity of our mentioned results arose when varions attempts to 

apply the usual Feynman diagram technique have failed. When I'm speaking here about the usual 

Feynman technique I mean the diagram technique where the anomalous Pairings: 

I I 
+ + 
(kl ~, 

' 

,-, 
a_f a,l ( 3 ) 

are not taken into account. The necessity of introducing such anomalous pairings is clearly seen when 

we perporm our canonical U,.. - V transformation. And if we permit to introduce these pairings, as 

it was oone for example in the works of 3elayev, ~rkov and Zubarev, all is right and the rorrect results are 

immediately obtained. 
But if we apply the Feynman's technique in the orthodox way- as in the quantum field theory- we 

must put such pairings ( 3 ) equal to zero. 

In view of this situation Zubarev, Tserkovnikov and myself have recently investigated the whole 

infinited system or 'chain' of linked equations for the Green's functions corresponding to the hamil

tonian H
0

• 

We have succeeded to show that the Green's functions for the hamiltonian H0 satisfy any 

equation of thia chain for the exact hamiltonian H with the error of the order of Yv 
This confirms the result of our earlier mentioned paper and it becomes clear that the additional 

tenn H 1 is 'not effective'. 

However one may consider the situation from a purely mathematical point of view. - As soon as 

have fixed the hamiltonian, say in the form ( 1 ), we have a quite definite mathematical problem which 

should be solved rigorously without any 'physical assumptions'. 

Then it is not enough that the approximate expressions satisfy the exact equations up to the tenns 

of order of smallness of i /V and we must estimate the difference between the exact and the approxi- t 
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mate expressions. 

In order to get a full insight in the behaviour of the model dynamical system I have adhered to such 

purely mathematical standpoint and solved the problem in the preprint I have mentioned in the begin
ning of this report. 

The chief aim of this work was not only to have a fully convincing proof of allready known results 

but to acquire a deeper understanding of the situations with the anomalous Green's functions ( 3 ). 

I must strees that the reasonings and proofs became very involved because of the renunciation 

of the so called 'simple physical considerations' and the need of using instead the complicated ma
thematical majoration technique. 

But I shall explain here the main ideas which are very simple. So we shall consider the dynamical 

system with the hamiltonian H in the case of the zero temperature: 9 - 0. 

Because of methodical reasons it would be more convenient for us to consider a somewhat more 

general hamiltonian, containing terms which are the sources for the creation and annihilatlon of pairs: 

( 4 ) 
i 
2.V 

where )1 is a parameter which we shall assume to be greater or equal h to zero: 0. 

Note that the case Y <. 0 needs no special consideration because it may be reduced to the 

case '1 > 0 by a simple gauge transformation of the Fermi-operators: 

Q,f ~ i a,l j cil --... - i a..,. 
•• 

Let us emphasize also that the case Y > 0 P will be considered only in so far as it is of interest 

for understanding the situation in the real case, where )> > 0. 

Fer our present investigation we shall not need those concrete properties ( 2 ) of the functions 

~ (I) I r (f) which were mentioned above. It will be quite sufficient to satisfy the following general 
conditions: 

1) The functions " (h, T { () are real, partly continuous and have the sirnrnetry properties: 

~ (-/)=--~(/); T(-IJ-1' (f) 



2 ) 

3 ) 

j j._ (f) f 4 const 

r (I) -+-OO 

1 

v 

0 

for !I 1- oa 

z J.A(f}/ L Const 

,,.. 

4) lim 

V-oo 

i 
~?tV 

[ ~Jv ( {.) > i 
v ~ ~ r fJ x + rz-( IJ' (1.) 

sufficiently small positive :C . 

Let us represent now H in the form: 

J.l = flo r I{J. 

where 

for 

N.~ L rm~~~- ~ L ~m{cv+~j~,t;~+ 
(f) {{-) . ( 5) 

+ +- } IG I~ 
+ ( Y + (;) ~f a_f + 'l V 

111 ~- :v {Z ~(t;c!{4,- VG}(2: ~(I}D:.1 ~1 -v&)<6> 
(~ (~ 

where G is an arbitrary complex number. 

for any 

In ord 

fonn in 

Th 

where 

Starting from this representation one can get very easily the expression for an upper limit for the Here 

lowest eigenvalue E 11 of the hamiltonian H 

Let E 0 ( G ) be the lowest eigenvalue of H0 , considered as a function of G . It 

As J.-11. ~ 0 we immediately see that: 

Eo ( c;) ~ E ~ will 

• 
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for any value of G . So the best inequality will be 

( 7 ) 

In order to evaluate the left hand part of ( 7 ) it is sufficient to note that H0 is a quadratic 

form in the Fermi-operators. 

Thus by the corresponding canonical transformation we can obtain the following identity: 

Ho ~ L -~~~(I)/ V-t{; I'"+ T).,( I;' (it/- ul t-(kl v-.t) (a! UJ t a_lllf) + 
(f) . ( 8) 

+i- v{fG 1~- _i L [ -1>..·{(-JJM'~I'+T'"{f). -rm]} 
v ({) 

where 

J. ( /) = E ( t) I " {I) I 

... 

Here obviously: u (-/) = ~ ( 1); v- {-1} =- v-(1) 

is real, v- -complex, and U ;.,_ + / 7//1..:: i 
It follows that the operator amplitudes: 

will be of the fermion type. 

JJ+G 

/Y-tG/ 
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Hence the lowest eigenvah.ie [ 0 (G) of H o is attained for the occupation numbers: 

+ 
~~ ~, =- 0 

We thus obtain: 

E. (G)~+ { G •c;- ~ L [ -/J..'-(t] /j)+ c; /~t-7'' (lj - T (IJ]} 
ct) ,. 

Consider now the minimum problem - to find b for which f o (G) gets its lowest value. 

Two different cases must than be considered: V = 0 and ).) > 0 . In the first case 
V -=- 0 we may write: 

Eo (G)=! VF(G*G) 

F(x)=x,-_i_ Z { -/>."(f}X+T~(I/-T{t)} 
v (/) 

We see that f 0 { b} does not depend upon the phase of G , being the function oUts module 

only. 

For this reason the minimum condition enables us to determine only the module of G 

P= /61 
but not its phase. 

The examination of F (X.) shows that ( in virtue of ( 4° ) ) it has only one minimum point 

X. 0 ) 0 in the relevant interval X ~ 0 

We thus have: v 
:t F (xo) ~ £ ~ 

Let us turn now to the case }) ) 0. Here not only the module of G 
fully determined by the minimum condition for £

0 
( G ) , 

but also its phase are 

;_ 

• 
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It can be shown that G must be real: 

Where X. = X-0 > VJ. > 0 is determined by the minimum condition for the function: 

( 9 ) 

in the interval X G. 0 . 

So in both cases we have: 

y F (X, ) f1, E" ( 10 ) 

In order to prove that the suplementcny term Hl, in the hamiltonian H is not effective and that 

we have the assymptotic equality: 

{ ~-v 
i -
~ 

we shall obtain now a lower limit for E u . It would be very desirable to qet rid of the term: 

and to obtain thus the identity of the type ( 8 ) for the complete hamiltonian H . This could 

have been achieved by considering b not as a C - number byt as the operator: 

But unfortunately it is impossible to carry out the canonical transformation from the fermions a to the 

fermions d... with G being an operator. 

Nevertheless we allways can try to generalize the identity ( 8 ) for the total hamiltonian H 

by puttinq G ::. L with some prescriptions as to 'the correct order' in products of operator 
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and by adding supplementary commutator terms. Following this way we have in fact obtained such iden

tity which we h shall write down. 

Let us first consider the operators: 

~ = ~ ( -/~e f.. '{f)rT• rt/ + T (1})'/• 

E (/) (0 .. 1l J',. 4! = - , ,-, k- ~: (I)+ T 1, {!) - T (I)) 1~ 1c- ~ ( L + Y) 

K : ( L t )J ) ( L ++ v) + ~ L . 

where /> is an arbitrary real number, (at the last end we shall put /' ~ 0 ). 

We then have the identity: 

U z I: (elf P1 +aq i1 )( Pl o,l tq,l a__l) + 
""'-

(I} ( 11 ) 

+ i V { u/--1 L [ v{~t ~) fNIJ+r·a)- rm]}t VK-
v (/} 

where 

s~-vl Ll~rt;l~ 
vz (~} 

The expression of lv contains many terms with commutators. Note that the commutators: 

I [ a-1· LJ I= V I J.. r IJ 41 1 {, ~I J. m L 

j [L,L}fb+ ~ [ {._1.(/;~~ 
(/) v 

i 
etc. are of the order of smallness of - • v 

~ 

• 
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By using these simple estimates and by applying our majoration technique we have proved that: 

for any normalized wave function 

We thus get the inequiality: 

-- which is the starting point for our investigation. 

In particular this inequality yields tbe following lower limit for E H 

v £ ~ T F { Xo) - Z ( 13 ) 
N 

Here Z is a constant when V ~ CX1 

Therefore in virtue of ( 10 ) we may write: 

I ~- z 
v 
~o ( 14 ) 

v~oo. 

By inspecting the inequalities ( 10 ), ( 12 ) ~ne can also obtain an information concerning the as

symptotic behaviour of the operators L _, L 

S.o in the case Y = 0 we have: 
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< fIt"/ t./ L - C "/"' 4> > L- T =-v 
'*' .,.. < 4:> f L L -c "'/ ~cf:> > {;; _!_ v 

.. ( 15 ) 

J Const.; C '-' = ~o 
where </> is the wave function for H corresponding to E 11 , or more generally <ft. is 

a wave function for which: 

-It rr < cp H <P > - E ~ 'Ji 
H 

Const. 

Thus, for states with the average energy assumptotically close to the lowest energy E If the 

operator C L with an assumptotic accuracy is equal to the c -nucber + C.t.= X.o 

Such states, however, do not possess similar properties for single operators L and iJ 

Let us consider, in fact, the state cP11 with the lowest energy £,., . Generally speqjp.ng 

a case of degeneration may occur, so. that we shall have not one but a certain linear manifold 

{ 4'
11 

} of possible states with the same lowest energy f I( 

Since in our case ( V :: 0 ) the operator 

N = I ctf lkt 
{I) 

representing the total number of particles commutes exactly with H one allways can find in this 

manifold { <Pu } such state cp~ for which N takes a certain definite value, say No 
Then obviously: 

~~-' < cpH. L 4'11 > = 0; 
11:-1 ~, 

<~ L<PH >=0 

Therefore W 
the operator 

state. 

' 
can not take even approximatively a definite value in the state </>,., 

& l.t would be approximatively equal to zero and not to C 2."' Xo > 0 

since otherwise 

in this 

.. 

~· 
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Consider .::ow the linear manifold { cf>} of states with energy assumptotically close to f tf • 

Since L 1 L approximatively commute with . H it is natural to expect that it is possible 

t~ choose such <P , in the manifold { ~ } , for which both L and C' assume de- . 

finlte values with the assymptotic accuracy. TWs expectation turns out to be quite true. It is just 

this circumstance which explains the success of the approximate method where we repiace the ha

miltonian H with the exact conservation low for N by the hamiltonian H
0 

for which N 

is no longer the exact integral of motion. 

Now it can also be shown that the approximation method could be formulated in such a way that 

the conservation low for N would not be violated, even formally. 

To tWs end we may introduce the operators 

i.J 
c ( 16 ) 

satisfying the commutation relations for the Fermi-amplitudes with the assymptotic accuracy. 

Such operators are in some respect analogous to the operators: 

+ -fa. 
~~ = (No No (l,f 

introduced by me more than ten years ago in the theory of superfluidity. 

Let us now turn our attention to the case )J > 0. rn this case we have proved more strict ine-

~ T ( ~ Io <<P (L+JJ-C) ~+Y-c)..,.,>f=y 
qualities: 

~ + ~ 
<cfJ (L+Y-c)(L+JJ-c)4>>f V 

( 17 ) 

• 

Here I ') , is a constant when V- C>O and )I is fixed ~ 0. 

Therefore, when we include in the hamiltonian the terms with the sources of pairs: 

~(t) .,. + 
"' ( Ql ~~ + af a-_4- ) -Y ( 18 ) 
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t 
the operators L , L themselves become assymptotically C -numbers equal to C -JJ for 

states with the energy assymptotically close to E H • 

We see that here an analogy arizes with the theory of ferromagnetism in an isotopic medium. 

When the external magnetic field is absent the direction of the magnetisation axis is not fixed. If 

however a magnetic field, whatever weak, acting along a definite direction is switched on then the 

vector of magnetisation at once orients inself, in just that direction. 
<it 

In our problem we have essentially the same situation. If the pair source terms ( 18) in the 

hamiltonian were replaced by the terms of the form: 

with a phase ~ 

were changed into 

- y}: 
(f) 

}.. {tJ icp t + -i'{ 
-z- ( ~~ a_.1 e + a-1 a.-_1 e ) 

, than the relations 

L-vC-v 

L ~ ( C -Y) e- t'cf 

( 19 ) 

This result can most easily be established if we notice that the hamiltonian with the source terms 

( 19 ) may be reduced to our usual form ( 4 ) by the gauge transformation: 

-ifa. 
a, I --+- e ctJ 

+ . 'II + 
a, :f. - e ,_ '~"'ct./ ( 20) 

In our preprint we also have studied the averages of the products of second quantized operators in 

Heisenberg representation: 

fl f
1 

( t 1 ) ... 4 1 s ( is ) 
+ 

4 f ( t) being equal to Q,J ( t} or to Q,J (e). 

Here the equations of motion: 

~ 

~ 

da,t -ru -
.,. 

ol ~i 
rJA; 

+ 
T ( ~) ~ f- .( (f) ~~ ( Y+ L) 

+ + 
T (! J a,4 + ( v + i.J ) a,__ I f... (I J 

began to play the most important role. 

( 21 ) 

t 

I 
\ 
I 

\ 
I 
'l 
; 

I 
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We see that the difference between the equations of motion for the hamiltonians H H
0 

resides in the fact that in the case of H, L is the operator and in the case of H
0

, L 
is replaced by the C. - number C- V. 

Let us first consider the situation where J) > 0 . 

Then the inequalities ( 17 ) may be applied. 

By systematically using them together with the majoration technique we were able to prove that: 

lim i<flf
1 

(i-1) ... 11t5-·(l:s)~-<f1/1 (f1) ... Ills (l-s)>H.}=O (22) 
v~Oc7 

Because the limH 

f,;~ < /lft { ti) ... IIJs { fs) )Ho 
v~oa 

obviously exists ( it may even be easily calculated in the closed form 

limiting value of the average: 

exists and is equal to ( 23 ). 

( 23 ) 

we see at once · ·~hat 

The case \) = 0 is somewhat more involved because in this case only the weaker inequalities 
( 15 ) do hold. 

To treat this situation it is profitable to deal with the operators ( 16 ) and to write down the equa

tions of motion for them. In such a way we have proved that the relations ( 22 ) are s(ill valid when 

Y = 0, provided the numbers of creation and distruction operators among Ill~,. ... tlfs are the 

same. 

Suppose, on the contrary, that t\je difference between the numbers of creation and distruction amp
litudes in the considered product is equal to 11tf= 0. 

It is easy to see that in this case the limit 
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-e~~ < flJ, (ti) ... als ( ts) >, = 
(11 >O) 
~~-o 

• e~mt f ~Hf,- < t1lL ( ti ) ... {/h ( i;$) ~~~ } : 
( JI)O ) v _,..Ool' ~-o ( 24) 

= fh~ 
(

)1>0) 
v ... o 

{ e.v ~~ 41, c ~., J ... 41,.c t, J >,~ } 

also exists. This limit is intefP.reted by us as the 'quasi-average': 

< A4
1 

(tt) ... Af, {ts) > 
So we adopt the following definition of the quasi-<rverage 

<AI (t
1

) ... 1lf, (ts)>~£i~ < al, (t,) ... a/. (t,)): 
t 1~>0) 

\ >~-.o 

( 25 ) 

which shows that in the .case when /1, = 0 the quasi-average is just the usual one. 

It is enteresting to note that if the source terms { 18)of the hamiltonian were replaced by source 

terms ( 19 ) then the value of the quasi-average would be multiplied by e ~ ""'"' . 
We have here a kind of 'hidden' degeneracy because no degeneracy would manifest itself in those 

averages which only have the physical meaning that is for which 11, c. 0. 

The same conclusions are also valid if we consider the averages of field operators in ! -

-representation. 

+ - -. ) < ... r ( l;,i ' t i, 5i ) ... lf ( /;I() ~ I() s I( ... > ( 26 ) 

Here the average: 

< ... > 

~ 
~~ 
~~~ 

)(':,~ 
-~~ 

' 
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is defined as the usual average: 

lt;m, < ... > 
H 

v~oo 
< ... > 

Uo v-oo 
for the case when )J > 0 or for the case when Y = 0, J?, = 0 . If )J = 0, f1.. f 0 ( 26 ) is 

to be defined as the quasi-average. 

The investigation of the averages of such type ( 26 ) may present some interest because here one 

has a very rare non trivial model When it is possible to prove • Uhe principle of vanishing correlation 1 

by direct calculation. 

Consider for example the average: 

( 27) 

Then the assumptotic form of the expression ( 27 ) will be equal to the product 

of usual averages ( l) > 0 ) or of auasi-averaaes ( ).) = 0 ). 

Such properties lead to the possibility of introducing the notion of the quasi-average not by meons 

of supplying the given hamiltonian with infinitesimal source terms but by considering the assumptotic 

fonns of usual averages. 

We have given here an account of ol8-'investigation of the case f) = 0. It must be stressed that 

the same results can be obtained, and even in a more simple way, for the case fY > 0, the case S = 0 

being the most involved from the mathematical point of view. 

So far only the-Simplest model system caracterized by the reduced hamiltonian was treated. But 

all results were established by rigorous mathematics. 

Let us turn now to the general situation in the theory of superconductivity and superfluidity re

nouncing the claims of the full mathematical rigour. 

__ :>HtHH!.lfi HHC:ildlyt \ 

";~e!iHWX IICCJie.l!.OBaHIII ~ 
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We shall examine first the notion of the degeneracy of a state of the statistical equilibrium. 

The notion of the degeneracy is familiar in quantum mechanics and its meaning concerns the .ei

genfunctions of em operator, say of the hamiltonian. 

At first sight it may appear that any state of the statistical equilibrium is always non degenerate. 

In fact, the average of a given dynamical variable ,4 

<A>= 

is always unambigously defined. 

SpA e-HfE;~ 
Sp e -Hfe 

~ 

( 28 ) 

But the real situation is not so simple as that. To get an idea of the inherent difficulties let us 

consider the case of em ideally isotopic ferromagnetic medium with the temperature below the Curie -point. Denote by· dYL the magnetisation vector. If no external magnetic field is present then the 

average value of calculated by the usual formula ( 28 ) is obviously equal to zero. 

We thus see that usual averages ore not the best tool for describing such states of statistical equi-

blium. Let us switch on em infinitesimal external magnetic field ).) e ( )J )' 0) ; then: '-

-
.&;m- < m > 
( 'Y-o) 

JJ>O 

will be e A where A f 0 (because the temperature is below the Cuire point). 

Here we may introduce the notion of the quasi-average. The quasi-average ( 1/ />e""~ of a dyna

mical variable may be defined as 

where < 11 

Um- < A >,e-
( 

Y> 0 ) 
v~o 

"'> - t~n--
/it v-oo 

- Jlre ..... 

Sp fie e 
s - Hyg 

p e e 

• 

and 

wit 

usu 

oft 

intr< 

ave 

tion 

is e 

for 

the 

con< 

whe 

is t 



and where J.f ,;: is the hamiltonian containing the external magnetic field terms. 

We clearly see that quasi-averages do depend upon e and we have the degeneracy connected -with the rotation group of the orth e . 

It is also evident that the physical properties in the considered case are best caracterized not by 

usual averages but by quasi-averages; the usual average bieng merely the mean value 

J 
-of the quasi-average, taken over all possible direction of e 

-We may remove the degeneracy by fixing e say in the direction of the Z - axis that is by 

introducing an infinitesimal magnetic field acting along this axis. 

Such a procedure is always used in the theory of ferromagnetism. The special notion of the c:uasi

average has not been explicitely introduced in this theory owing probably to the triviality of the situa
tion. 

Let us consider now the case of a cristal state. Then the average density 

( 29) 

is expected to be a periodic function of coordinates. But if we apply the formula ( 28 ) we just get 

for ( 29 ) a constant value due to the existence of the translation group. In momentum representation 
the usual averages ( 28 ) must verify the relation: 

+ < a-le Q_~t > = 0, 
~ _, 
JC = IV 

conditioned by the conservation of momenta. 

Wee see that in this situation too the1110tion of the quasi-average must be introduced. 

Let us add to the translationally invariant hamiltonian H the infinitesimal external field terms: 

( 30) 

where U ( i:) is a periodic function of -"t with appropriate periods. The main role of such terms 
is to get rid of the translation group and to fix the position of the cristal structure. 
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We define the quasi.averaqe ( 11 > as 

<. A >, - fM.., 

_!k 
Sp (1/e-9) 

Sp e-t .urn <./1)::,; 
'Y-O v-0" 
where J.l ,J is the hamiltonian supplied with the terms ( 30 ). 

Then the quasi-averaqe 

+ - -< lf (>t )ljl (~ )> 

, .. 

' 

is no more a constant: it is a periodic function of representinq in fact the average distribution of densi

ty in the cristal. 

The quasi-averaqes in momentum representation 
+ < a, JC, Q, t) > ( 31 ) 

._. _, 
need not be zero, even if k:. F 10 • The selection rule based on the fJIOII\entum conservation law doee 

..... _,)-
i (IC-IC ~ 

It is easY to note that the quasi.averages ( 31 ) are defined up to the factor ~ with an 

not work here. 

-indeterminate ~ • - - --
In fact, if we replace V (~) .. by an equally acceptable-function U (t. + ~ ) then ( 31) 

, ct-" 1J 
are to be multiplied by t 1! (i) 

The degeneracy is removed by fixing the form of the external field 
Let us turn now oue attention to the most general case of the statistical equilibrium of a macroscopic 

dynamical system. We first consider the usual averages: 

t ~ -< ... ljf (t.~.. &.~.,s ... ) ... lf'(t,.,.,.,.,s,.) ... )~ 
+ - -f S p f ( ... If' ( t.., f.., s~ )- IJ' ( ip, .,.,., s,)..)e } 1321 

Spe-f = ~m--. 
v.-.0<0 

o: 

t 

f, 

t 
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or the corresponding quantities in momentum representation: 

( 33) 

We may remark thcrt the additive conservation laws lead to the selection rules for these averages. For 

example the law of conservatien of the total number of particles demands the annihilation of all those 

averages ( 32 ), ( 33 ) for which the number of the creation operators is not equal to the number of 

the destruction operators. 

The law of conservation of the total momentum demands the annihilation of all those averages ( 33 ) 

for which 

etc. 

We shall formulate now the general definition of the degeneracy and that of the non degeneracy of 

a state of the statistical equilibrium. 

Introduce in the given hamiltonian the infinitesimal external field or source terms which violate 

the mentioned conservation laws and observe the effect of these terms on the values of the usual 

averages. We shall say that the considered state of the statistical equilibrium is not degenerate if 

these averages exhibit only infinitesimal variations. 

We shall speak about the degeneracy of a state of the statistical equilibrium if some of the averages 

( 32 ), ( 33) obtain 1inita increments and the selection rules become violated an a finite amount ... 

As we are considering only the stable systems those combinations of averages which correspond to 

physical quantities independent from phase-angles, directions etc. may exhibit only infinitesimal varia

tions even in the cases of the degeneracy . .. 
For degenerate states of statistical equilibrium the notion of the quasi-average may be introduced 

just in the way explained above- the quasi-average ( fl > being the limiting value of the usual 

av~rage < tl );, corresponding to the hamiltonian J./ Jl with infinitesional extra terms removing 

the degeneracy. 

We stress once more that in defining the quasi-averages the conventional limiting process of the sta

tistical mechanics V- DO must first be carried out, before we tend Y to zero. 

Let us consider for example the situation in the (heory of superconductivity ( below the transition 

point) where the degeneracy is physically conditioned by the appearance of a condensate of bout 

pairs in the s-state. 
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In such cases the degeneracy may be removed by including into the hamiltonian the source terms of 

the form: 

where 

- v I: -w- ( 4) (ttl ~~ -r ~J a-{- ) 

{f) 

y > 0; t= ( P,S); -J= 
1V(-lJ=-w(JJ 

(-P,-5) 
•• 

and where W ( f) is a real function. 

These terms remove the gauge - group . 

a, f. - a,f e '" 
connected with the conservation law of the total number of. fermions. 

( 34) 

We have previously discussed the influence of such terms in the case or the model system caracte

rized by the reduced hamiltonian. 

In the general case the situation remains the same*. In particular the quasi-averages 

< a._l (kl > 
have real non zero values in spite of the selection rules. 

Let us also remark that in the theory of the superfluidity of Bose-systems the source terms removing 

the degeneracy may be taken in the form: 

-vfi 
Because of these terms we can consider both 

to R. with an assymptotic accuracy. 

+ 
( ~o + Ot,o) 

~ 

(l,o and ao as macroscopic C -numbers equal 

The general notions of the degeneracy of the states of the statistical equilibrium and the quasi-averages 

were introduced here in view of their application to the perturbation theory treatment of problems of the 

statistical mechanics. 

* There Is a difference with the previously considered ease of the model system. In that oase all mentioned 

results were proved with full mathematical rlgour and In the general oase we must be satisfied by more eurlstlo 

arguments of the kind adopted In treating most problems of the statlstloal meohanlos, 

' 

' 
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As is well known in the recent years some powerful techniques using the partial summation have 

been developped in the framework of the perturbation theory. 

We are refering here to the Feynman diagrams technique and its various modifications and genera

lisations. 

Among somewhat older approaches we also may mention the Fock's method very convenient for the 

computation of 'the first approximation '. 

Nevertheless we wish to point out now that some aspects of these techhiques need to be clarified. 

It is instructive to notice, for example, that varlons attempts to use the Feynman diagrams approach 

in the orthodox way have failed in the theory of cristals as well as in the theory of superconductivity. 

8y the orthodox way of using the Feynman diagrams we mean the procedure~ of introducting the 

diagrams containing only those lines which are 'permitted' by all selection rules. 

Refering to our previous discussion we see that the main cause of the difficulty resides in the 

fact that the degeneracy was not removed before using the perturbation theory. 

We may now announce as a kind of the general principle the following prescription: 

In order to apply any form of the perturbation theory treatment for the study of a degenerate state 

of the statistical equilibrium we must first remove the_~_egeneracy or, what amounts to the. same, we 

must work not with the usual averages, obeying all selection rules, but with the quasi- averagds which 

do not satisfy some of them. 

Therefore the diagrams must contain also 'anomalous lines' which are to be introduced always 

in the ( as last partially ) summed form. 

Such lines correspond to 'dangerous diagrams' in the sense that they give a finite contribution 

in spite of the fact that they are formally conditioned by the infinitesimal extra terms in the hamilto

nian. ... 
We may remark that these infinitesimal external field or source terms can be ommited in 

actual computations. From the purely technical point of view their only role consists in granting us a 

kind of 'permit' for using the anomalous Green's functions based upon the corresponding quasi

averages. 

For example in order to obtain the correct results in the theory of the crista! state the diagrams 
~ 

must contain not only the lines ct-p a-p 'conserving' the momentum but also the anomalous lines 
~ 
ct.p CNp' 
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In the theory of superconductivity the diagrams must contain not 
,.---, r+ ~ 

~ 

only the usual lines . Up a.p' 

but also the anomalous lines ~f a,.f 1 Q,f Q.._f 1 etc. 

The main cause of the success of our -tv v transformation in obtaining the correct results 

for the theory of superconductivity was due to the fact that it enabled us to work with the quasi-ave-

rages. 

It is still an open question whether this situation has some meaning for the quantum field theory . 
•• 

In view of the recent remarks made by Nambu we may think about the possibility that in the quantum 

field theory too the Feynman diagrams may contain more lines than it is permitted by the selection 

rules. 

~~ ~ Pu&tW'~ 'P ~'D~~ 
4n 3uf<.t 18, 1960. 
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