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Using the results of the preceding paper 1 the integral equati<>n for 
OL,a3 and expressions for the other phase-shifts are obtained. It certain 

the phase-shifts of 11' 3r - scattering ~ and &f . The important 
role of backward 1t ,..\/- scattering dispersion relations Is establlshe,d. 
The phase-shift ~/1 Is shown to influence greatly the 7rY -scattering, 
The scattering length of !'.,. Is evaluated from consideration of the small 
p-phase-shl!ts of 7(./V' -s·catterlng near the threshold. . 

1. Transition to Partial 'Naves 

In the foregoing pape/11* the analytical properties of the ~calar coefficients of the pion -

nucleon scattering amplitude in complex ta -pla~e for fixed Cos8 = ~ ( in th~· ~:m.s: ) have·been 

analysed. The contribution from the cut of crossing-reaction III was approximately expressed by the 

functions 

; i. • 0_, 1 ( 1.1 ) 

Here u.D and u1 are determined by 'HiT -scattering phase-shifts { see formula { 1.5.5-}""*. 

The function F, for c. = - 1· is the electromagnetic formfactor of the ~ion121, Therefore, 

for the sake of brevity we shall call ~, Ff · s- and. p- formfactors (although· actually this 

term is a form~! one for J=; ). 

These formfactors F;; entered the kernels of the final system of integral relations { 5.4 ), 

( 1.5.6) and (.1.5.10) which determine the amplitudes of 7/"K -scattering. 

The integral ter.ms of these relations are explicitly expressed by the partial scattering ampli­

tudes. In order to get integral equations for partial wave amplitudes we must go over to partial waves 

on the left-hand side of our relations. The usual way is integrating with 1J ( 4::) over the region 

- :1. C ~ + :L • But this is notthe only possible way,· e.g. CGUJ/3/ used to that end the ex­

pansion in C about c ,.. t1, • 

Let us investigate more closely the analyticity properties of t} in the unphysical region 

of reaction I in order to choose the best way of 1projecting1 on the partial waves. When deriving 

the integral relation the expansion of g, . in cosine of reaction III in unpHysical region has 

been used. The convergence region of such expansion is determined by singularities of Mandelstam 

•. -.. . :. '· '•' ' .,, 

* This paper will be published In JETP under the title 'J>io!>•Nucleon scatterl;,g at low .energies -:-1'. 
We shall refer to It as • I •, 

** I.e. the formula/~.!1/ from I. 
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representation. The nearest ones, after the poles being extracted, which restrict the _expansion of 

'Re <ff are the asymptotes . S • ( M +;") 4 -' S = ( M ,. _)A) 2• The region of convergence for :Jm cp 
is wider and determine~ by the spectral functions boundaries ( the curves l1a , c23 in ~.landelsta::-.1::' 

notation/ 4/). 

Using Heines theorem/51 we can find the ellipse of analyticity in the complex plane Cos~ 
Then we go over to the variables q_~ c by means of ( 1.5.1 ). The .:.:unes ~ ll. and C.r 
(Fig. 1 ) can be obtained which restrict the Legendre expansion of 11e ip and J1>1 ¢ cor;es-

ponding1y. 

-... 

- Jl{ -f 
fib 
' 

F i q. l. 

c 

-I 

~I 

() 

_,. 

l 
9/_,u 1. 

One can see, by inspection of Fig. 1, that the usual way of going over to partial vmve ampli­

tudes enables us to take into consideration the nearest singularity from reaction III up to lJ. 2=-2
1
3S 

only. ( From here on we put .f4:: 1 ). ' 

Practically we restrict ourselves to two s- and p --waves of the reaction III. This appro-

ximation gives a great error in a certain region below the curve C ~ where - cos 8
3 

has a.. 

large complex value. Therefore we make a transition to partial waves by expanding our functions into 

a Taylor series at the point C = - 1. ( see in this connection also I 6 1). 
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The advantages· of this procedure are the following: . : 

1) the nearestpart of unphysical contribution from reaction III is-taken into account· with 

a considerable accuracy; 

2) the amplitude of reaction III enters the integrand for the physical value of cos~ •- 4., 
so we do not use in fact the analytical continuation into the unphysical region of cos SJ and al­

ways stay in the region of convergency. We can expect o{U. formulae to be correct in some region be-

low q.a =- ~;U"where the inelastic co~tribution is stili smal~ . 

3) at C = - 1.. the unphysical cuts from crossing reaction II are absent and the cut 

from reaction III is the only unphysical one; 

4) at C. = - J.. our formulae are very simple, because rela\ion ( 1.4. 7 ) is greatly 

simplified. 

2. The E~uations for Partial 'Naves 

Bearing in mind the application. at low· energies we restrict ourselves to ~ ~ and f-
waves only. We have in this approximation 

,c:t; f~J fl"'J' -
1'_s(f..2J =fr ('J,~-1}.,.. jl- f'/.3-.J.} 

j (r; f+; .· , 

P' rfz) = /. - (o~-1) f._!_ ,rt!ta'-IJ 
.~ .2 ~ 3.Ji ''7J y 

j_ (tJ 'ilzJ' 
p~ .; J I ( i. ~- I) 

( 2.2 ) 

z . ;[: ,.~ (. {.~ (+ J _, "'P' -J 
3y ( 1.2.3) l,,;)rr)-l}are expressed through I} . I . o<.• '/O·s),(J = Bjrs-'i)' B 
as follows: 

;{(+~2~-1) = :::: { fJ(+hJ_a) ~ ~" UJ {W-~) jlltt.lJ} 

~(-Jc9)-l) = ~;; { 4'fiw~ctlz~ ~o {W-M)B'-Jttt,~J 

f;_l+Jc1.~ .I) :: fc- M [ -IJ'+ft.'"J + Lttotu (W1-M~r1..zj 
8.17 w . 

( 2.3 ) 
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{#-)I ~.,. A1 ! / I . ,j, • J ) I, (f~~l) = ;nW fl'+;ffj.z)+{W-M)I 2tzftttt.ZJ ~ 4fa t.lj1f~2J/J 

rt-.J' z -!'t 1-M { , )gt-./ , J Jj { f .,-1) ::: ~ .:.~ , 2 fj._z.t:l/.t'j.9 + 't f!, {.,)tJ( rz9 1- {W-M If 2_; J 

Here f4J= fj,, W:;: ft"'!o./P!r;h.nd ¢ Yf') 
after subtraction at the p:oint tj." = () • 

are t:/'lf,~C} anditP{f.!cJ in c=-1 
d& 

Let us consider the subtraction. Supposing, as usual, a linear rate of increase of the amp­

litude at infinity and takirig into account crossing-symmetry properties, it-is easy to show that for 

the functions 19 {~~ ct a~d B'-' one subtraction is sufficient, and that there is n? need of . 

such subtraction for fJ . It is convenient to take the experimental values of scattering 

lengths a,1J a.J and a33 • t,;..., o(3J as subtraction parameters. We also subtract the functions 
... ml t.- o ~ . . r (f_") at the point£:::= 0 witHout introducing additional parameters, to ensure the correct 

vanishing at fa_, 0. Let us introduce the following notations 

I . ~ + ~ 1" ~».AI + P;r;; ~ r/>l = ~/ + ~.v + ¢~: ( 2.4 ) 

. (1, 

Here ¢. · is the pole term contribution, ~..cl' is that part oft he integral terms which con-

tains no formfactor and ¢.JIJ1 is the one·which contains them. 4'1in is zero if { = "". J. 

All the terms in the right-hand side of ( 2.4) are vanishing at fz= 0 excep~ subtrac-

tional constants ~ These I except A 6:.can be expressed through experimental values 
':t"D • rc " 

a_ ::: fr a,- 4.1) .I tl'f> = f (t2/ + .2aJ) .J 4.33 . 

Let us make an additional approximation. We shal~ restrict ·ourselves in the integrand to . <X.IJ 

only, because of the relative values of the phase shifts. 

The integrals in tl)e -right-hand side of ( 2.4 ) will depend then on .7, .,S3 = lp (f. '1 
and formfactors only. As a· result we ge: the integral equation for hJ and the other phase 

shifts are determined'-by 'f. Such an approximation corresponds to the first step when solving 

the complete set of integral equations for partial wave amplitudes, by iteration procedure, the ex­

perimental value of ·. t(J3 . l?eing the zero approximation. 

The subtractional constants can be expressed as follows: 
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cO .,. .Lj ;J,.,,tftKJ dx 
:JIZ X 

" 
( 2.6) 

a'-~'= - 327i Mz.J a tz.2. 
p :lft,W-:f-2'/.a 

( 2.7 ) 

2 

'..f. ~1iMaLz.__i_f-2. -
. T foz.wa 

Let us go over to integral terms. After putting C •- f in ( 1.5.4 ) , ( 1.5.6 ) and ( 1.5.10 ) 
we have taking into accoimt ( 1.6.3 ) 

ciJ 

m LJ: :7,., ¢ tx; · d x 
Y.:n~ .~ = -r.- ( z; ( 2.8) 

...v "' x x-z. · . /) . 
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00 

~1r = 'lz.j ·Jm !Fe)(; r;.. (x.1 tz. 2) dx 
-;;:- X- fj.z ' . 

0 

. ( 2.9 ) 

where 
£•(X)- £'.•(f_l) 

G,.{J(,f_1) = ' ' · / fi (x) ~ :i.-.x£;·tx}. 
;:; (X.) 

By differentiating of the aforementioned expressions with respect to c at c = - 1. one can 

find 
00 

I ~- I 

,:,;. - 'l I :J,. ¢(1() ! 
~~- 71 o xcx-z!J 1- <rx-f,z;y;r.x .. tj,z;Jdx + 

00 . 

+ fz.j:7m ¢(X) dtpt~ ~ ~ J 
:11 -' QX 

' tJ ax. 

ftCJC,zz; d:. fz. [ Ktf_z.J- M.J- /:k(x; -M.] I ·-
I 

,/; -­. :t'.NJi -

00 

x-~Z ~~X) 

DO 

fz.j:J,., ¢tK..J r;."rx .. f') 
----- z ' 31 x-z 

0 

~}_.-)+W&(K.) dx +­
W~(X) 

<1!:1 ' ,. ' 

_ ~~ (Jmf/>{X.J ,4.(x_. z;dx _ £ ~¢(K) ..i:.[.·XKtx; ~~(K.,f'.J idx 
Z:n)"x-o• ' f. ;n-"j~ . <ix .W}xJ{x-f•JJ 0 /. (} . 

A/(K,f~ = F/tx;{xt;·tf'l- f )~o ~·'tt.~lftKJ 

if-}~.) 

( 2.10 ) 

... 

( 2;11 ) 
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l {-.1 
Informulae (2.9)-(2.11) i=O' for A 1-J i=f for «,13 but A'.,.._ ... O.Thesignof 

~ ~~ 

Ll.~ (;. is chosen to be positive when the 'iTJr -scattering length is positive. The imaginary parts 

of ¢ and. tP 1 
entering ( 2.8 )- ( 2.11 ) are expressed through 'f in the following way 

J/11.1/(+J(X) =- /~;rr 1/'~X)[fi,CX)t...J(X).,.X-2/vfW(J<)J 

7 /1(+; 1 cv 
.Jm.n (X)::: 8rt.-:;[{,~-/J1)4Jt-Xj 

Yrn ol. = 2..?£ ..!£. ~ cu "~- x- 2wM 
2. .X 

UJ~ 

dM o( I:::- _ !£. f./1 3wfJtJ [(/fi-/H)wl-xJ +- X {fi W-1- x- 2wM.) 
3 X. . 

( 2. 12 ) 

So, we have for ~:J the integral equation which contams pion 1ormfactors and the other phase 

shifts are expressed by means of '/' , the subtractional constants and formfactors. 
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3. The Expansion in .1.4 and EvaJuation of the Small p -Waves 

Let us look into the properties of the equations obtained. After the expansion ·in d.~ the 

main terms of the Tl-"" -part coins ide with those of the CGLN equations after in the latter ones an 

analogous subtraction has been made. But our equations;contain in addition 'Ji 1i -terms. Note that 

the formal transition to the static limit (M .... <:o0) is impossible even in p-waves because the con-

tribution to P, from . s-wave is proportional to M . · 
. lili ' 

Small p-waves for tJ. .t_., 0 · ~~ -~ a,·1c. 9, 3 
are_ determined by the subtractional 

constants afJ a_ J a.11 and integrals which contain 'P (X) and formfactors. After the calcula­

tions having. been performed we 9et with an accUracy of .1j M 

Here 

CJ..31 = ..., OJ 1'-11 ~2M ~0 

a.13 = - 0,~ 16 '{ t- 2M.~ - ~ 

a.11 = 0~ o l S' - 2M P., -;. Z~ 

'P. 0 

~ = 

c:;.o 

.... _!_j w'x.J pc.xJ. A., (x, D) dx 
3TJ X~ · 

0 

" 
[ ~ (;1 (K,o) + A1 {-¥, o;J d-". 

-~ 

2. 
The values f = 0.08 

1 a.+-= -0.016 . '~-=- 0.094 / a.33 -· 0.232 

used. 

( 3.1 ) 

( 3.2 ) 

have been 

The integrals with h3 were computed over the· interval from () to f 2 = 6'. The values 

of f in this interval have been taken from e~periment 7,8( Taking into account the integral £cO 
jJ3 ~ 
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we find the accuracy of our calculations to be 5%. what corresponds In ( 3.1 ) to a few thousandths. · 

By comparing the right hand side of ( 3.1 ) with the expe~imental data we can estimate the in­

tegrals ~ ~ <J; entering it. A resonable correspondence can be obtained with the help of ~ only. 

Iri the table the experimental data and the values of the right-hand sides of { 3.1 ) for ~Mfi;, ~ 01 12 

are given. 

Tab 1 e 

Experiment Theory 

····································································~·······························································; .................................•......... 
a.31 -0.039 !"0.022 -0.02 
a.,J -o.o44 :t Ci.oo5 - o.o4 ....; .Cf; 
a.,i -0.038 r o.038 7 o.045 +._2 ~ 

3y inspection of table one can see that the large experimental errors make it impossible to 

draw any conclusion about the integral ':1!
1 

which depends on the f -wave of 7i:li -scattering. 

However, the sign and order of magnitude of ~., can be considered to be reliable. This result is in 

accordance with the conclusions of paper91, 

If we take tor the s-wave 7tli" -scattering the 'scattering length' approximation ( see/9/ ) 

1j. ~ ('f_) ~ o<s 1-
. · «J 2ct~~: I_ · 

which glVes us ':PD~O,O!.t:;:;;;(1+1+d) -1.we obtain from 2M~ =-.0.12 the value a 4 • 0.9 ~. 
This result also agrees with the paper/9/ where ~.s~ J -'lv. has. been obtained. We str~ss in particular 

that the numbers of the.right-hand ·side of ( 3.1 ) are not reliable.· The mattf~r is that the difference of 

large terms occur and small terms o_f the order ~&w become important. 

However, this terms can not be computed with necessary accuracy because the terms which arise 

in the expansionof denominators of the kind 1 + 2 ~.1 give badly convergent integrals. That.is why· 

a reliable computation of the small p -wave has to be done without an expansion in 44w . This. com-; 

putation and the solution of the integral equation for I are now in progress. 
. . ~ 

4. The Discussion of Results 

1. From the double Manqelstam representation the system of integral equations for the partial 

wave amplitudes of · Ji..A/ -scattering have been obtained. The important role of 71./ -backward sc:;at­

tering has been ascertained. If is this dispersion relations which are already suffiCient to get the sys­

tem ofintegral equations. As there is little hope for the strict proof of the Mandelstam representation 

the proof of backward scattering dispersion relation becomes of great interest. 
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2 .. The s-phase shift of 'iltr -scattering is shown to enter the expression for :Ji.N­
partial waves with a large coefficient .M . Due to this fact we succeeded in determining the 

sign and order of magnitude of ~ from the consideration of the small p-waves of 7r .A!-
-scatteririg n~ar the threshold only, dispite the roughness of our computation and large experimen-:-

tal errors. ·We hope that a more precise computation of s- and p - waves in the energy 

interval 100-200 MeV will enable us to get some more information about p-wave of 7i1i­

scattering. 

3. These results corresponds to the paper/9/ and contradict to the co~clusion of pap~lO/ .. 
' ,, Putting aside the question of different methods to obtain equations for partial wave amplitudes 

( see in this connection/6/) we note the following: 

a) having in mind to get information about resonance behaviour of .p-wave of 'Ji1i •scat­

tering the authors left out of consideration the s-wave which gives the main contribution to !JiJI' 
scattering; b) there is no subta~tion in this paper, the necessity of which w~s already empha. -

sized by CGLN. As a result, for example, cr, · gives a contribution to a.
13 

iri this work. 

Besides, the integrals in this paper which depend on Im j
33 

were evaluated very roughly. 

The value t1..3
3 

as defiried by ( 5.3 ) of/10/, being computed by our· method is 0.176 instead 

of 0.213. 

The authors would like to thank prof. H. Y. Tzu for very important discussions. 
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