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Ahstract

Using the results of the preceding p::\pex'l the integral equatien for
o4 and expressions for the other phase-shifts are obtalned, It contain
the phase-shifts of JT@F - scattering d; and 6‘, . The important
role of backward 7rA”— scattering dispersion ralations is establlshed.
The phase-shift 8, -is shown to influence greatly the aN -scattering.
The scattering length of J' is evaluated from consideration of the small
p-phase- shifts of 7N -scattering near the threshold. .

1. 'Ttansi'tijon to Partial ‘Waves

In the foregomg paper/ 1/« the analyt1ca1 properties of the scalar coeff1c1ents of the plon -
nucleon: scatterinq amplitude in complex g -plane for fixed Cose = C (in the cm. s. ) have been
analysed. The contribution from the cut of crossmg—reactlon Il was approx1mately expressed by the k
functions . : ,
) g u; (g% c ) , .

2 ¢ . g
/':-(216).=€ o 2= 0,4 o ’.‘-(’1.1).
Here u‘, and M1 are determined by 7 #. -scattering phase-shifts ( see formula ( 1.5.5-)*.
The function F for ¢ ‘= -1 is the electromagnetic formfactor of the pion/ 2/, Therefore,
for the sake of brewty we shall call F F "S- and. P- formfactors  ( although'actually this

“term is a formal one for ,s' ).

These formfactors /:‘- entered the kernels of the fihql system of integral relations ( 5.4 ),

(1.5.6) and (.1.5.10) which determine the amplitudes of 7)'.4/ -scattering,

The integrdl terms of these relations are explicitly expressed by the partial scdtterinq ampli-
. tudes. In order to get integral equations for partial wave amplitudes we must go over to partial waves
on the left-hand side of our relations. The usual way is integrating with @( c) over the region
~4€Ccs +4 . Butthis is not the only possible way, e.q. CGLN/3/ used to that end-the ex~ .
pansion in ¢ about e¢'= 4. 4

Let us investigate more closely the analyticity properties of é in the iunphysical;reqion
of reaction I in order to choose the best way of ‘projecting’ on the partial waves. When deriving
the integral relation the expansion of é ) in cosine of reaction III in unpliysical region has

been used. The convergence region of such expansion is determined by singularities of Mandelstam --

* . This paper will be published in JETP wunder the tltle ‘Plon-Nucleon scattorlng at low energieq -I' .
We shall refer to it as *1°, . - s :

*%

I.e. the formula/a‘a/ from I.




representation. The nearest ones, after the poles being extiacted, which restrict the expansion of
Re f are the asymptotes- . § = (M+m) < , §= V[M f-/u}z. The region of convergence for Jm P
is wider and determined by the spectral functions boundaries ( the curves 6;3 ; CZJ in Mandeistam's
notation”/%/). P

Using Heineks theorem’>/ we can find the ellivse of analyticity in the coemplex plane Cos &, .
Then we go over to the variables qz) ¢ by means of (1.5.1). The curves CR and CI

: .
(Fig. 1) can be obtained which restrict the lLegendre expansion of Re @ and .7n1§'5 corres-

pondingly.
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One can see, by inspection of Fig. 1, that the usual way of going over to partial wave ampli-
tudes enables us to take into consideration the nearest singularity from reaction III up to 23-‘-'-2,35’

“

only. ( From here on we put,jx.rl )e

Practically we restrict ourselves to two $- and p -waves of the reaction III. This apprc-
ximation gives a great error in a certain region below the curve CR where ~ cos 63 has @
large complex value. Therefore we make a transition to partial waves by expanding our functions into

a Taylor series at the point ¢ = - 4 ( see in this connection also /6 /).



;. The crdvcmtcrqes of this procedure crre the followmq A R ,
1) the nearest part of unphysical contribution from recrction III is"taken into account with
a considerable accuracy; o
' 2) the amplitude of reactron IIT enters the mtegrcmd for the physrcal value of cos 6 - - .:l,
so we do not use in fact the cmalytrcal continuation into the unphysical region of cos e cmd al-
ways stay in the regron of convergency,We can expect our formulae to be correct in some region be-
low Q ‘9/14 where the inelastic contribution is still small; ,
Jyat €=~ 4 the unphysical cuts from crossing reaction II ~are absent and the cut
. fromreaction III  is the only unphysical one; '
4) at €=~ ou formulae are very stmple, because relatibn ( 1.4.7 ) is greatly

simplified. &

2. The Equations for Partial “aves

Bearing in mind the apphcatron at low energies we restrict ourselves to S§- and /J -

waves only. "Je have in this approxwatlon
Z) r (1')/ -
2, - 2.
J(22)=j.’/,(2k, fj.fjg /21 1}

(& (.*j k . ; .
’,{ 9V =4 /Zf-//*;%/(?/zi-/)

2

(- . . {1‘)’ .
#), ' Ay madh = R
By (1.2.3) f}z /Zf_,/are expressed throuqh :4 -1 -4 ﬁ(/[j 5),/5 B//_g.s)- , 3

as follows:

£ lg3-1= 4 {ﬁ‘*}zw%w (W-M)/e(gt}j

(22)

95 -[25‘// = :;: [4/3(0:::((2‘/ F [W—M}B"’(zyj
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j, [g -1)= ﬁ(* ZJ+[WMj/22/5(2944ﬁ,w/3[221/j
-7[, [iJ 1) = L—{ZZ d(2¢/+4f63d(z¢}+ (WaMJK(- 2}]

Here W=9,, ,-ﬂ,¢20195/7/md o>, /22} are ¢(2§<} qn}:¢[ifc} in €=~/

after subtraction at the point, 71 =0.

Let us consider the subtraction. Supposing, as usual, a linear rate of increase of the amp-
litude at infinity and taking into account crossing-symmetry properties, it'is easy to show that for
the functions A (‘:'ot and. B €7 one subtraction is sufficient, and that there is no need of

such subtraction for ,6 St s cpnverﬁent to take the experimental values of scattering

lengths d, dJ and 433- ﬂrg d-’g’ as subtraction parameters. We also subtract the functions
- ¢ :.) at the pomt z Zo"' wit}%ut introducing additional parameters, to ensure the correct
vcmishmg at 2 %5 0. Letus introduce the following notations : '

$=4- @w"@% - 95-/‘.‘5'5:/*523:; | (2.4)

P o

Here ¢ is the pole term contribution, ¢:”J/ is that part of the integral terms which con-

tains no formfactor and is the one-which contains them. is zero if f = F" s d

k-4 , L g

All the terms in the right-hand side of ( 2.4) are vanishing at i2= O except-subtrac-
tional constants @0 . These , except ﬁo #can be expressed through experimental values

ﬂ‘_:-’-[d’-d‘g/ , a, =_’./4,+2a_,) > @z .

Let us make an additional approx1mat10n We shall restrict- ourselves in the 1ntegrcmd to “33
only, because of the relatwe values of the phase shifts .

The integrcxls in the tight-hand side of { 2.4 ) will depend then on Jm f = Y( Z 2
and formfactogs only. As a result we ge;t the intégral equation for 7[3 2 and the other phase
shifts are determined'by ¢, Such an approximation corresponds to the first step when solving
the complete set of integral equations for partial wave amplitudes, by iteration procedure, the ex-
perimental value of ‘d 3 ‘being the zero approximation. ’

The ‘subtractional constants can be expressed as follows:



)
B eﬁfuszq A4)4 A4A14" B¢ ﬂ”-17~—}4 A‘dﬁu

r. z
plo) 4" e gu)
o Gm2 o
T - 6(1e5)ag + (26)

+ bm —[ﬁ“ Y- 8“12=/+9M/fz‘/ 5’/”‘”2‘{/2

‘and the pole terms are

o | :n/“'

ﬂp-.{/' M‘)/’*Z‘ ) /io /f*z 9,“;}/25@ /—22’/‘_
8- SR A )
[/‘fmd(/*z 9Mz |

"6"/”}‘Zr w41 )Hﬁ&/jér_—' +ln A- aJ)MfI/CZ

AR
2‘2 (27)

.2/ w-4L- 2?3

MP21+292 :
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-2/ 272
B = -327M*f

*4’7'/14_;[

Let us go over to inteqral terms. After putting €== f in (1.5.4 ),( 1.56) and ( 1.5.10)

we have taking into account ( 1.6.3)

gs - Zz a3%1¢ﬁw.

= L [P '
v/ / g/ x (x-g2) : (2.8)
.0



¢ ‘ = Q 7m ¢-(XJ

b Jr X
- -g¢

G (x, Z’}dx

where

Eqx)- Epcgy

G‘.(x,ifj =
Ecxo

By differentiating of the aforementioned expressions with respect to ¢ at

find

/
-2 .7 P
?;,_,./ = 7..0 x:\r o [4 x-9%)p(x, gzzja’z +

+ —/]M ¢(X}£Im_2_. dx

?(x 22}-: 2:[/((2'/-MJ [k[l\’) MJ /

x-g* wix)
»y ¢(-\’) . e ,'
77 ar / x,9%) _\__Pp::w ' dx +
' ' ' | cx)

/7m Boor
A (xzz}a’x - /7 ¢(x} __foer)é‘ (x,z

(2.9)

;) = d-xEplx),

c =~ 4 one can

(2.10)

3
X
Wiocx- -¢% j (2.11)

brong? = *?"*Jﬂé:-fz b-1)s gt foor

F
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o , N ¢ . . -7
Informulae (2.9)-(2.11) i=0" for A™ é=7 for &,8 but B _=0. The signof
A G is chosen to be positive when the 77~ -scattering length is positive. The imaginary parts

of ¢ and 26 entering (

(2.8)—=(2.11) are expressed through }0 " in the following way

(47 - 187 yx o
Im AT () == £Z YR pexrcocx) ¢ x=2Me x) ]

Jmﬂ(”(x/ = <S’.7‘._. /Z@—-/Mjwf-x]

-7 _
JIm 8 "-3’2%(25 M )3

T B = 4.7,-}46 (g-M) .

Tm ot = 3T & pwrx=20M
2 x
wp, “ ,,
Ima'=-F ¥ 30p, [-Mwrx]+ x(pork-20M)
3 X oo
L t7 oy 2p-M A . (2.12)

/. Y[ Rp-M)x -
7mﬂ = 274‘): Iz L . A /14/
I

So, we have for _{;3 the integral equation which contains pion formfactors and the other phase

shifts are expressed by means of }p , the subtractional constants and formfactors.
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3. The Expansion in i/ju and Evaluation of the Small P -Waves

- Let us look into the properties of the equations obtained. After the expansion in vi/Ad the
main terms of the J7A/.-part coinside with those of the CGLN equations after in the latter ones an
analogous subtraction has been made. But our equationezcontain in addition 7 -terms. Note that
the formal transition to the static limit /M - oo) is Impossible even in 'p—waves because the con-

tribution to @;_J_ from _s-wave is proportional to M .
‘ o _ .

2 R
‘ Small p-waves for Q - 0 =4 = Q. Q 3 are determined by the subtractional
- constants - Q Q. , Gy and {ntegrals which contain i) cmd formfactors After the calcula-

tions havinq been performed we get with an accuracy of 4 / ‘M

Qg = ~0,141 +»2M ¥,

Q5 = ~016Y r2MY -, (31)

a” = OIO}'S. ",'QMYD "24; .

[ -]
Here o= L wexopx)
. | ‘{0 3.77/ ‘2 'Ao (xz a)dx

/ [26 (x,o/+A («r,a)_]dx (32)

s Xwix)

2 r ‘ ‘ ' '
The values £ =008, 4 = —0016 ,a_a ~0.094," Qg4 = 0232 have been

used.
The inteqgrals with ./33 were computed over the-interval from O to Zz &.The values

of J[ in this interval have been taken from experment7 8/ Taklng into account the integral f o
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we find the accuracy of our calculations to be 5%, what corresponds in ( 3.1 ) to a few thousandths, -

By comparing the right hand side of (3.1} with the experimental data we can estimate the in-
.tegrals P S" entering it. A resonable correspondence can be obtained with the help of ? only

In the table the experrmental data and the values of the right-hand sides of ( 3 1) for ZMLP 2 0, 12
are given.

Table
Experiment T Theory
.................................................................... S S S
Ay ~0.039 £0.022 : _ -0.02
A,  —0.044£0005 . ~0.04~% .
4,  00®Bfoo®m 05 + 24

By inspection of table one can see that the large experimental errors make it impossible to
draw any conclusion about the integral %’1 which depends on the P -wave of T -scattering,
"~ However, the sign and order of magnitude of }[’o can be considered to be reliable. This result is in
accordance with the conclusions of papergz. . ' ’

If we take tor the s-wave i~ —scattenng the 'scattering length’ approximation ( see’ Y )

B RNCTEEN S
T7ec, {/ l+d) ve obtain from 2M 4%, = 0. 12 the value &, = 0.9/m.
This result also agrees with the paper’ 9/ where c\’_,~1/ has been obtained We stress in particular
that the numbers of the.right-hand side of (3.1 ). are not reliable. The matter ts that the difference of
large terms occur and small terms of the order ‘/114 become important. o ’

which gives us _(y 001

However, th1s terms can not be computed with necessary accuracy because the terms which arise

“"(x 4 give badly convergent integrals. That is why

in the expansion’ of denominators of the kind ‘1 + 2
a reliable computation of the small p -wave has to be done without an expansion in 4/44 . This com-

putation and the solution of the integral equation for - 7{” " are now in progress.

-4, The Discussion of Results

1. From the double Mandelstam representation the system of integral equations for the partial
wave amplitudes of -Jr A’ -scattering have been obtained. The important role of 7].A/ ~backward scat-
" tering-has been ascertained It is this dispersion relations which are already sufficient to get the sys-
tem of .Integral equations. As there is little hope for the strict proof of the Mandelstam representation
the proof of backward scattermg dispersion relation becomes of great interest.
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2. .The s-phase’shift of # /4 -scattering is shown to enter the expression for TN~
partial waves- with a large coefficient M . Due to this fact we 'succeeded in determining the
'sign and order of magnitude of J:, from the consideration of the small p-wgves of 7/~
-scattering near the threshold only, dispite the roughness of our computation and large experimen-
tal errors, - We hope that a more precise computgtion of 's- and p- waves in the energy
interval 100—-200 MeV will enable us to get some more information about p-wave of  Fw-

[} ccxttenng

3 These results corresponds to the pcper/ 9/ and contradict to the conclusion of pcpeflo/ .
Putting aside the question of different methods to obtain equations for particl wave amplitudes
{ see In this connection/ 6/ } we note the followmg

a) having in mind to get information about resonance behaviour of: .p-wave of ## -scat-
- tering the authors left out of consideration the s-wave which gives the main contribution to GN
scattering; b) there is no subtaction in this paper, the necessity of which was ‘already empha: -
sized by CGLN. As a result, for example, J' glves a contribution to a, in this work.

» Besides, the integrals in this paper which depend on Im J( 35 Were evaluated very roughly.

] The value o. .35 05 defined by (5.3 ) of/ 10/ being computed by our method is 0,176 instead
of 0.213.

The authors would like to thank prof. H.Y. Tzu for very important discussions. -
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