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:\bstr ac t 

The rfr.-ctlve m<>thod of <'al<'ul"tln~ •li • trlbut Inn ... and <'nrr,.l~ttlonR 

In th" arbitrary models o f the multipl.- production has h<>Pn round. T hP formula" 

ar<> P.•p('dall ~· ~<lmple for the covariant mod Pl. It '" "'hown how thl' "tud ~· of 

thl" model can fa<'llltate ealculatlons In mort' <'Ompllcat<'d mod<>!,., 

Introduction 
~- ~:;;;;.=-= 

The success of the Fer::-~i statistical theory in the prediction of the output of antiprotons at 25 3eV 

heightened the interest to this theory. On the other hand there appeared forcible proofs of the fact that 

the final s tates in the multiple production have not equal probabilit/ll. This betokens that in the gene 

rot expression for the probability of the transition W C-+ 1 :. (2::rr/h) I H d 12, p ~ne can:ot 

but take into acc:ount the dependence of the square of the transition matrix element \H ~ 5-\ "":: J' ( p 'l' .. 
. . . pn) =: T ( p) on the characteristics of states (it depends at least on the directions of particle mo­
menta). 

~lew theories of multiple production ·,..,ill have therefore to deal with the integrals of the form 

m calculating statis' ical weights and spectra. An exa11ple of this is the covariant for:nulation of the 

Femi theor/2/ in whic!l it is i:nplied that :f:: (2.1'\..€
1 
... Qn)- i . 

The usual :nethods of calculating statistical weights/3/ comprizing the rather effective t,{onte-

Carlo/.V methods consider the case when F : Const but can not be applied when F is 
arbitrary. 

In the present paper we treat the application of the :,1onte-Carlo :nethod for obtaininq s tatistical 

weights and quite generally, for obtaining kinematic distributions for on arbitrary interaction model with 

the square of the matrix ele:nent F . ( The distributions of stars with many prongs according to kinema­

tic characteristics: mo:nentu:n distributions, angular and correlation ones et al are called by us kinenatic 

distributions). To obtain these distributions it is necessary to find an effective way of derivation frorr 

the model the distributions which follow from this same model whatever complicated the model and j or 

I inematlc characteristics are. It is shown/6/ that the construction of a table of rando11 stars which must 

correspond to the model solves this problem. However, there are two facts '.vhich decrease the efficiency 

of picking random stars/6/, namely, it is difficult to fall into the physical reqion in which the monenta 

change, i.e. it is necessary to reject i:npossible sets o! no!':lenta, and, secondly, it is co:nplicated to 



4 

reproduce the distribution of momenta which follows from the given model, i.e. it is necessary to reject 

unlike! y sets of momenta. 

The first aforementioned problem is solved in § l by two methods. This can be done in a general 

form since the physical region in which the momenta chanqe is determined only by kinematic inequalities 

The second difficulty is du~> to the kind of the modeL However, we shall show in ~ 1,2 how this 

difficulty can decrease in the factorizable nodels; in particular,convenient formulas will be obtained for 

the Fermi model and, especially, for the covariant modeL f(inematic mstrlbutions which follow from 11ore 

complicated models can be got with improved accuracy from the covariant model ( § 3 ). This is due to the 

fact that the efficiency of the '.1onte-Carlo method must increase with improving approximate models. 

The kinematics of particles with variable mass and certain simple expressions for covariant weights 

are considered in Appendices A and I3. 

The simplicity of the formulas suggested in this paper will allow us very likely to calculate weights 

and kinematic spectra of several tens of particles in the covariant model and up to eight-ten particles -

in other more complicated models. 

J ~ 1. New Method of Obtaining Kinematic Distributions 
--=-- .:=:--~ ~ ~ ~ -:::=::--~ 

- -1 • Let the ( P~, ... ) p... ) - distributions density of the system o!_. n particles with masses m ~ 
and energies e I( be given by the square of the matrix element F ( p) . The shape of the 

region 'D of the allowed values of the momenta is determined by the conservation laws. The complicated 

form of the region D makes the sampling of pK from '"D and the uniformity of this sampling dif­

ficult. Both the difficulties will vanish if we find the transformation of D into the ( 3 n - 4 ) - di­

mensional cube. Such a transformation has been found by Ju.N. 3lagoveschensky and the autho/51. 

The following physical considerations prompt an another solution of this same problem. 

-The choice of the momentum p1 in the rest system of particles with the energy E can be -made simply. Owing to the equality of all the directions the direction p
1 

can be chosen randomly at 

an arbitrary point of the unit sphere surface. For the quantity ei one can choose arbitrary value between 

mi and e£,.,a.~ (Ea.+m~-(~mi()2 ]/2E - However,oncethe:nomentum P~ has 

been chosen the other particles are already no longer at rest but they possess the momentum -J1. ( and 

the energy Ea :::; E- e i. ) . The sphere w2. - the region of the possible values of Pa. - is 

deformed therefore into an ellipsoid d.a 161, 

We shall subject, however, the momenta of the particles 2, 3, .. . n to the Lorentz transformatio~ 

T~ which would deform cl2.. into w2.. I i.e. we shall pick Pt. .n the rest system of partie-
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les 2,3, .. . , n, . Then, the uniform sampling of the direction and the magnitude P2... will be easy 

T -~ ~ T again. The inverse trQJ!sition 2. yields pa. in the original frame of reference. The 111atrix ~ 

is known since it depends only on E. and p~ . In the following we have the same situation. -piC. is picked in the rest system of particles K, 1( -t- 1, . .. 
1 
rt , in which the region of allowed 

va.4!es P"- is sphere C..V K • Its radius is determined by the energy E ><. and the momentum 
- P ~ ·of the particles ~ , K + I 1 ••• 1 

rL. : 

- -p ~ M~ E2.. Pa E ,, =- E 1(- :\.. - eK-i P ><. ::. t< - :1..+ P~<- i. ~ \(, =- "' - K ; 

( 1.1 ) 
E 1. :::. E ·, P 1 = 0 ~ .f I( :::. m I<+ d.+ m~< ... :t ;- .. . + m" 

e_K ryl().~ ( M! + m ~ - ~;) /2_ M " i p ~ M ~ e. ; trt~ tr1 ; . 

The transition into the Lab.sys . in performed by Lorentz transformation 1 • If we denote the ..,., K- i 

quantities in the rest system of partl'cles I{ I \(+ I) ... , n 
P: and p~< by QK , the azimuth of pK 

by 1 
- ', Hie cosine of the angle between 

with respect to f5: by p K ( notations 
are taken from paper/6/) then T: i. will be 

PK ?I( :::. rK ( PK ?~ +VK eK) 
pKJ 1 -?~::: pKJi-9:i 
et( : rK ( eK + v K PI( ?K) 

QK :::. EK /MK 

QK VI(;:- PI( /M K; 

0' vI p 1. / M i. ' 

( 1.2 ) 

In /6/ it has been shown that the shape of dK does not depend on g>i., ... , <f~<- i . This faci­

litated the calculations. The sphere W K possesses the followingconvenient property~)its radius 

does not depend on Q tl ... l ?1(-:i as well. Indeed the value of the radius depends on the choice of 

the foregoing momenta ~, ... 
1 
p •<-~ only through the value of the effective mass M K • By 

using ( l. l ) we write 

M~ = ( E 1<-l eK-~Y--( ~-,+ PK-,)2.::: M ~,+m~~-2.(E,<-Ieil_,+ PI(_, P~<-1 7~< -,) · 
By substituting here e.K- I and p K-f l(ll- l from ( 1.2) we obtain 

M~ =- M ~1 + m;_1 - 2.M~<-t e K- l . 

Thus, M K depends only on the quantity e. 1{-t but not on the direction of the 

We shall prove('*)by returning in Eq. ( 1.3 ) to K ::: l. 

( 1.3) 

K - I ) particle. 
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The property ( ~) seems to be s trange and even contradictory to the common sense; it may seem 

that it proves the independence of the region of allowed values of the k -th particle momenta on the 

configuration of the momenta (fixed in value) 1,2, . .. ( k - 1 ) particles , which is not real. In 
- - - <•) -{2.) 

fact two sets of momenta with the same e~ I ••• I e K - 1 and, say, different '71(. and '{~~. 

when trans forming into the laboratory frame of reference differ one from another not only by their confi­

gura tions, but also the energy values ( eK in this case ). 'So, in this frame of reference the va lues 

of the :nomenta are not fi xed and any paradox does not arise. 

The set of sphere <...:> K ( k =-1,2 , .. . ) can_ be eas ily mapped into the cube. It should re­

member only that the density of the uniform sarr.pling pI( within cut< will be different for vari-

ous k due to the different size of W"' Then, it should take into account the change in the 

densiLY F due to the Lorentz transformations . But it is not difficult to do it by changing careful-

ly the variables . 

It will be convenient for us to take the phase space integral in the form 

S(E,P) = ~cPpi .. .)d3pK .. jd3 f':-i d3 pn ~(p~,. .. ,pn)8(~_,+pn + ~-~) 8(~-te~- ~-~ 1.4 ) 

d.1 d.K («>0) 

p K ::: 'f K pi( ( k <n-i)( 1.2) we pass into the res~ system of 

particles K, . .. ! rL . '.'le find the Jakobian of this transition taking into account the fact that the 
3- 3 -

transition matrix is triangle and the differential :or:n ~ =-~ 

By substituting the variables 

is invariant. VIe find 
e" ~ 

S(E,P)= ~ - .. ~crrl( · · · ~cL3p~-2 \cP ?"_, d.3p" T(p) 8( jt_,+p: +~_, ) >( 

( ) 
... - 1 

w,_l. OC> 8( \ n ( I- ) 
lC en_1te"'- E.,_,J eK e." 

1 

w .._ 

We pass in the internal integral ( the weight of the system of two particles ) into the s ystem where 

P ::: 0 To do it we use the fact that 
11-1 . 

8~ ( p:_i+ p> ~-,) 8( e~-~- en- En-~)= S~(p~-,+pn+ PJ = 8\~-1 +pn)S( e.._ ,~ e"- ~-) 
~OW 

s ( E' P) = ~ . \ cl' p. \ ct:p,_, c!:p5(p) 8CP,_;-p.)8(e,_,e.-M,_,)"Q ( e, re:,) I 1.5) 

W ll (oo) 

The integration over p,._ and 

by e,_, Q:n / Pn-i M n- i. 

- :. ~ P,-i means p"' =. - pn-&. , the multiplication of the integrand 

and the substitution 

it re:nains ' 

$n (E JP) 

This fomulc 

We have to c 

the unit thre 

0.
11 ~~~ 

\' \~ 
c.' a • 

~ m 
where 

w(~~.) .. 
and 

In our case 

( 1.6 ) exp 

is conveni· 

Sn(E 
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- -::: - = n-1-t- m.,_, -rn"l - rna 
[ ( 

M 2... '1- 2. )a. ] v~ 
P~-1 + ?,., ~M.,_, ., _:1 ( 1.5,1) 

It re:na:ns only to integrate over ? n-:1. > ~ ..,_:!. in the limits ( - 1, 1) ( 0, C!.::r.) : 

i. ' a3l - t'l-2.. 

~ \ r cL~:; rd.':; ~ l n \ ti ;i) 3="( n) en-1. e, p.,.;~., n €.1< 
SJE,P) =) .. j ?K "' J Pn-2.)C-(I\ ·i ~v-•h-1' r - Mt'l-i i e:K ·(1.6) 

W" W.,.z -i o 

This formula will be further initial for calculating phase space integrals and for obtaining random s tars . 

We have to complicate it by reducing all the spheres to the unit radius and by mapping each of them into 

the unit three- dlrr.ensional cube. For this purpose we use the identit/51 

a" o." i i 

\: ~ ;( p., , p~)dp •.. d.p~ = ~· ~ <l>(p, ., p.)w(p., .p.)cip:. . dp. ,l 1.11 

Q' a ' ~ m 
where 

and 

0 0 

In our case the 'linear' transformation ( 1.81 )* is of the for:n 

PI< - PK P~max 
?I( - 2-?1( -1. 
qsl(- 2...n ~I( 

( k = l. 21 "• 1 Y) - 2. 
( l{-::.11 21'''1 ~ - i 

( k -:::: 1121 ... I n - i l . 

( 1.8 ) 

( 1.8 l ) 

( 1.82 ) 

( 1.6 ) expressed in terms of new variables ( they are in the right hand side ) takes the final for:n which 

is convenient for picking stars 

S, (E,P) ~i . \1 ( 1.9 ) 
0 

where 

* -The expan~lon (l!l non-1lnearJ but ro r ~iven PK·;l It 1 .. linear. 
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.,_,_ 

¢ = ~ . e.,_i e.., p.,_1. n 
M., _J. 1 

PI( .... ~J(. · 0:Ji f -.1 ( 1.10 ) 

This ::1eans that if we shall choo:-;E.- uniformly fro:n ( 0.1 ) rando:r. :ligits for each variable of the inteqra-

tfon and rejec• ( fer the re;e.::tion 11ethod see/6/.17/) a part of sets of ( 3 t'\ - 4 ) nu-nhers so 

that the otLer sets r~ay have ( ur.nor·nolized ) dis'ribution de nsity cp , then we shall obtain stars 

fro:n the re:nair.inq sets by the invers0 recalculation in P~< 
1 

Y(><, ~~ . All the statistical properties 

of these s tars correspond exactl y to those of the model possessing the square of the r1atrlx e lement :f". 
The recalculation is perfor11ed as follows: i~ p

1 
, ••• , p K-<~. are a lready obtained, then using 

( 1.8,2 ), ( 1.1 ), ( 1.3 ) we have to obtain P~< in spherical coordinates an.:l then using ( 2.5 ) -

( 2. 7) fror./6/ ·,...e have !o obtuin p,., !n the rectangular coordinates and also the energy, effective 

r.ass anrl co:nponents of •I.e :nor:1en1urr: of the remaining particles k+i., .. , n.. in order to proceed to 

• he deter11ination cf 0 '6;: '.'/e ~ave the iollowinq sequence oi the equations: 
- { I ><. H 2. 2. '/. 
P._~ XI( , Y~)Z~ } ~ RK = (XK+Y\() 2 

X,= P.[ it~.'/.+(~~~: CDS ~.- ~. Sin '9. ) ~1-'7; )+ ~. e, 
~I(~ P~l ~: ~K ?K+(R ~: ~s~~ i- ~Sin~~~i-?; ]+ ~I(~ e,l( ; 
l : o~Jz .. &.n - &c.osffi ~ i -nz. ] z ... e. · 

K I . 15; Ml( {I'. P... 'jl( '(I( + M I( I 

XI(.,~ K+ :x:.K ~ Yl( .... = Y ... + ;:} .. j ZK+,:.. ZK+ .CK ~ t' I<+ I= KEI(- e. I( 

( !.11 ) 

P::~ P:+p~+tPK oi((PK7K+veK) h. M~+,='M~+ m~-2.MI( eK . 
It should rer:1ernber that each r:1orr.entu11 pi<.. is r1eas ured injts own fram.:_ of reference, they - -r:an not be therefore summed up, for exa,nple . The only exception are P" -~ and p.. obtained in 

their com~non rest syste:n. Therefore, for K=: n { 1.2 ) takes the forrn 

e"' = Qf\ -1 (e., - v.,_, p,_,7.,-·) e = M - e ., .,_ i. ., _ i. ( 1.2' ) 

x 2,. Let us cons ide: now !actoriz•Jblc r.odcls i.e. such r:1odels in which the square of thE' r.1atrix ele­

r:lent - F-('p) c~n ~ ~orr.ehow divided at le~st into two independent multipliers. Fror.1 the physical 

point of view the factorizabil!~y ::o:respondr, to the pcssibili~y of breakinqup the system of second(fry 

particles at least into two non-intemctin<J subsystc:ns. Such are the f'errr.i model and the covariant rr.o-

del. The larqe class of !:Jctor!zed covariant models has been considered m/17/. 

For the factorized :nodcl ~he e£:!den-:y of the sa:nplinq can be improved still rr.ore by a special me· 

thod which is called by us the qroup nethod. 

We hrea~ up the ~y~te~1 of N pmtides into rL qrcups l, .. . , t. , ... , 1"\.. let the 
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number of partic les in the i., - th group be n ;, ( ~ n i.. = N ); let the r.1ass , energy and :norr:en-
L.: i 

and tum of the particle } from the L.- th. group be now denoted by m i.j, e.c.j , p.:j 

denote the total energy, momentum and effective mass of particles from the (_- th. e.;,. ' p;, 'rn;, 
group: 

n~ 
~-- ... 
~ p;_· :::; p;_ 
J=i d 

We denote the :nini:nur.-1 va lue of 

follows 

......., 1"1 .:, 

mi.. by m i- = r. m l. i. 0 '.'le transform the phase space integral as 
J=i 0 

'0,. (E ,P) = [ n <L'P•k 8 ( 2: p.j- P)8(2: e~ - E) F ( p,j) :: 
J 1J :,d l-JJ 

= ~ n d.' p' 8 ( £ p c - P) 8 (i: e' - E) F ( Pc ) n 8 ( ~ p, -PJ > 
l-,j J L-= 1. J L~i d {.::{ yt J 

x 6'( i'e., -ec) cl' ji>i..e~ ~ ( fJ d'Pc d_e~ 8(& p.-P) S(t e,- E)x ~Vt o ~ " '" i \ ~-1 1.-"-

x ~ il ci'fcjB(tp.i- -p1-)S(~e ~,-e.L) F(-pi.j) . ~ j.i J = ~ 0 J- .i. <l 

Let the breaking up of N be now chosen so that F ( p.:j) is factorized: 

( 1.12 ) 

Let the analytic expression be also known for 

( l.l3 ) 

Then 

S JE,P)"' ~ Q, <i'p,d.e, SJ ~., fc)&(E p,-P)S(&.ec -E)< u• > 

This formula expresses the weight of the system in terms of the weights of the s ub systems , qene-

ralizirig naturally the formulas from/8/,/4/ . It is just the basis of the group method for calculat-

ing weights and sampling s tars. If e L,. J p \., are given then it is not difficult to pick the momenta of 

the particles of the L- th group ( at least in the same way as in the § 1 ). It remains only to con--sider the methods of picking the quantities e. i.. , pi.. . We use again as above the transition into the 



lO 

rest syster:: of the groups l., 

The tmnsforrr.ations 'T' i.. 

funct:ons, therefore 

, ... , n, . In this systen all t:-te directions have equal probability. 

does not -:-honge the four-dinensionol differential and the- product o: 8-

SN(E/ P) ~ ~ cP~ Ji.t s: (e1,pi.) ... ~ ci~f:_, <t€:f\-i srt-1 (en-t, ~-1) s'l (M~:t €~ -i, -ft-.). 
8 8 ( 1.15 ) 
~ ~-i 

Here we denote S;_ ( e l-) p ~) = s~ (e. i.. I p d; s(.. denotes the region of inte?ration over p .. ) e (. 
I he total energy, !TlOr:lenturn and effective :-nass of the systerr; of the oro ups L- , •.• , n.. ore deno-

ted by E (_ 1 Pl. > Mi., . The equations for the surfaces <:?ntining 8 ~ ore qivcn in Arpendix (/!. ). 

Sometir:1es it is appropriate to toke as intearotion voriobles quarlruples p ..:, l'l1...i_ or eL
1

11'\ ., ?i,¥~· 

[ q. ( 1.15 ) is convenient for calculo~!nq the weiqht. For sampling it is to be co11p1koteri by r-'lppinq 

oi ... , sn-1 into the unit r-:ube. If we denote the lir::its in whi:::h p:. , ei.. chan'je by 

e ' n" n ( o, p i... r::ax) and ( i, , ~i... ), !hen the in:lial 'orr::ula :or pickinq ei.., r.:. will be 

i. :1.. 

Sw(E,P)~ ~ ... \ 
0 0 

~-i tV 

~ cLr~ d.?K d ~I( cle_l( • cp ( 1.16 ) 

where 

n- i ~ ,.., n-a.s c =--)( ~~ 1 ) r4 )"-i.s r - .=+ \ ct>=- PK t<l...e.~<,PK e.K-Q,t<. P~<h-'\(k)<. . \2:n Yl\M,._{€.-1\-i ,-p"-.f/· 
(1.17) 

The rejection method will now be applied twice: when pickinq €-~ , p\.. ( l =.i, ... , n) and 

Pl.J. ( } ::. i 1 .. . 
1 
n_~ > 2-). Hovinq ~osen l_~s !n the § 1) fro~ the hyper-cube a necessary 

number of quadrupes of the quantities ( e_~ , \~\.. ) we calculote q> and .:.:or::pare it with 

a randorr: nur:1ber .:X. frorr. the interval ( 0, qr max ) where <$mo."' is a :::ertafn upper est:r.-.ate of 

the quantity $ . Those quadruples for which <f> >d... will possess the necessary cii:;tribut ion. 

The group 11ethod ( 1.16 ) is r-:ore effe::tive thun the direct sarr.pling ( 1.9 ). Th0 unlikely c.:>JT.--binations ei.. , Pt will be found here rarely since the distribuuor: density nepenls on st::aller nurr.-

ber of variables. 

We consider, e.q., the f'ermi 11ode1 F ::: t Let the nur.:ber o! rx.Jrticles N l1• e\·en. 1re:Gk ~P 

the syste:n :nto groups; each group contains two particles. Then/6/ 

~ * a S. (e. p. \::. i. ::rr tl. h ( '3 e..~ e..! - ~ p~') 
'- ~.., \.. J 3 m~ tn;, d . "'- e..~ ~..~ 

( 1. 18) 

( the asterisks denote the quantities in the rest system of the pairs: 
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)/ 
Jj( 2, ~ 2. a.. ) e:t=(m~-rm~i-m~ 2-111~; r~i:::e,i-1 -til;,L. 

Having pi~ed ( as in ~ 1 ) the set ( ~ - 1 ) of quadruples of the quantities e i.. -P'-
1'12 - ":S ... "" ' 

late CV :: S. (e.;., pi.) . Let the maximum <P mQlf. of this product over all e: ...... pi. be known even 
l.•L v - ... J 

if roughly. If we reject all those sets e~ J p" for which 4> turns out to be smaller than the number 

we calcu-

uniform! y chosen from ( 0 1 ~ mcvc then the remaining sets will have the distribution of energies and 

pair momenta required by the Fermi model. It is not difficult now to obtain energies and momenta of par­

ticles in each pair knowing only their direction of emission, i. e . adding 2. (N /2-) quantities ?~, 'f~ more, 

The general number of samplings is as usual '3/11-4 - it is impossible to describe the system of 

N various particles by smaller number of variables. However, 'P depends only on 2.N- 4 
variables ( in fact on 't ( W -~) since there is no dependence on <f~ ), but not on 3N-4 
as was the case with <P in '"§ 1. The function of smaller number of variables has less sharp 

raaxi:nu:n cp max ; this means that we need to reject smaller number of sets e;. , pc.. in order to 
reproduce the necessary density. 

The greater are the groups the better is the efficiency of the group method. It is true that for the 

groups of three and _:ore particles the picking p\.j. using e.i., p<. already picked requires to 

reject those sets P<j for which q:>i. (pi.j) ( see ( 1.10) ) is less than the random nu.rnber from 

( 0 1 4>~1rlQ)( ( ei., f i.. ) ) (for pairs of particles we do not need the rejection) . This can slow 

the increase of the efficiency but can not stop it with the increase of the group magnitude. 

At present there are no convenient analytic expressions ( suitable for any energies , momenta and 

masses) for the weight of three, four etc. particle systems . It is the obstacl~> in the way of increasing the 

efficiency. In the following we shall see that in the covariant model some formulas for statistical weights 

turn out to be very simple. The covariant model, unlike the other ones, con therefore be tested in detail 

up to the creation of tens of particles. 

In the paper by Granovsky and the authorfl6/ a different principle for obtaining distributions and 

correlations has been applied. It is a machine analysis of the so called 'generalized table of random stars' -The electronic computer took into account both the hardly and very probable sets p '- by putting in 

T-emory all <11(p) . Sorting cp in accordance with the kinematic characteris tic of interest the compu-

ter gave immediately necessary hystograms. In comparison with the direct method the group method would 

give here too better efficiency ir:1proving the accuracy of hystograms. Iniortunotely, the model of the 
papt>r/ 16/ Is not factorizable . 
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~ 2. S o m _e m o d e 1 s 

"!e apply the ~ 1uatbns o1 § l to ~he '!lode Is of Fer11i and Srivastava-Sudarshan/2/. 

To calculate the integr::~l ( 1.4 ) using the Monte-Carlo method we have to sum sinp!y q> 

( : . 10 ) or $ ( 1.17 ) obtained after the unifor:n picking of points in the hyper-cube. If the points 

p in the hyper-cube are distributed ununiforrr:!y but with the density cp• ( p) , then 

S(E,P)= t im - 1 
[ <\>;p) . 

'O't-oo n cp (p) ( 2.1 ) 

The dete~m:nation of the hystograr"ls- dist~ibution~ of p with respect to the quantity q(p)- can also 

be redu:::ed to the ' 'sorting of p with respect to q, 1
', i.e. to the calculation o: the su."Tl over all 

:hose p , !or which q,( p) is close to ~0 

s ( q,~) = [ q> (p) I q>"(pl]( P"'-Cf(P)"' q..) . ( 2.2 ) 

In this paragraph it is ir::plied that cp * (p) = i ; rr.o:e general case is referred !o § 3. 

l. The Fermi model F ~ i yields no essential sir:.plifications as :compared tc tr1e 1eneral ca.".('>. ln 

( 1.9) one succeeds in integrating only over lpi , ... 1 <;9,._1 . It ~s impossible to inteqrate ;n the 

ren:aining ( 2 n. - 3 ) - dimensional integral over Q
1 

, ... 1 i7 n- 2. since cp dejJends in a 

complicate manner on ilj. , ... , '?n -z.. . The integr::~tion over i? .. -i y:elds ( 1. 18 ). It is conveni-

ent to pass to the variables e i- instead of p.:. . We have 

where 

Sn(E,o) 

'\ 

) ... 1 
0 0 
"--',..---' 
(2.. 1'\ - 4) 

.. -2. 

n l - d.- l""h ( F) o eK. 11 . '-Y 
1 ( ~ ( 2.3 ) 

2. n-2. 

( F ) )"'-2.. ~X E.,~ 1 p::i (3 e."' e"" P.,_i " 2..) n -p e (e - m ) cp ~ (4.r. . ---=-- , _1 ... - M2.. p.,_-1. K I( I< '"''4~ 1(, • 

3 M2. M .,_" 1 
, _1 .,_1 ( 2.4) 

-oo -
In the ::::q. ( 1.15 )1 in which g i.. is taken from ( 1.18 ), we can also integrate only over \P.1J ... ~P~-.1· 
It is convenient to choose rn i., I e. c., ?~ as integration variables ( see Appendix A ). 'Ne 

have 

Here 

tion~ 

the c 

are~ 

to be 

<: 
"' 

The 
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Q 
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( 2.5) 

2. l. 2. ~ .... "" 
Here e.~~. W\(XJ( is taken from ( A.2 ), M' :::. E - p ~ P\1£ = l: m ~ ~ for other notations and rela-

k+i 
tions see above. A<.cording to this formula the weight of four particles in their rest system is expressed by 
the double integral. 

In the analytical calculation~ according to ( 2.5 ) we have to obtain formulas for weights which 

are similar to the Block's formulas/9/. In calculating by the Monte-Carlo method the integration reqion is 

to be mapped into the cube (see ( 1.7)- ( 1.8,2) and (A ) ). 

( 
., ' 1 

2. The covariant model F:::. Z e1. ... e..,) leads to 
1 2.::. .,..a s .. (E) p) ~ ) ... )ct'rl\ -~ )d.~ll-i) ~~~-i . a_.- 1'1 CPn-1/M~-i) ~ e~i. ( 2.6) 

w -1 0 .,_, -
The integrand does not depend on q> i. as well as on ? i.. • As we have pointed out already 

(propert}(ftl) the limits of inteqration do not depends on cp i. 
1 

r; ~ too. The weight is therefore ex!J-
ressed by ( n - 2 )-dimensional inteqral 

\0\-1 -s. (E ,P) ~ S, ( M, o)" (2.1 l jp.cie, ~ Jp, .• de.-~ ~ ( 2. 7 ) 

where the limits e I( are calculated by means of the Eqs . ( 1.1 ), ( 1.3 ) 

( 2.81 ) 

Ml(~ :::: M~ + '- ') -
K-i m tt- :1. - c:... M k - i e..l( - 1. 

( 2.8,2) 
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cmd P' "- 1 / M n- i ( 1.5, 1 ) can be written in the form 

- l '1. 'L. ( 2. 'L.J2..] Y:~. [ l.J Pn-1 -.!. i - IJ m"_,+tU.n,+ m"_,-m" ::. _l_ n M L -1m +em) 
-- - 2.. ""' M 2.. M l. 2..M '1. n-t \I "-i " . ( 2.9 l M 11- 1 ,_, n-r E.~±i 11-1 

The expression ( 2. 7 ) is also obtained immediately from the recurrent formula of Srivastava-Sudarshan 
( 2 jl21 

5" (M) == 2:rr ) p~~ cle" S11 _ 1 ( ~M2. + m~-2-M £"•) ( 2.10) 

and the expression for s2. ( 2. 16 )* . For calculating with the use of the :,1onte-Carlo method 

it is convenient to take instead of ( 2. 7 ) 

S (M ) =- (~:Jir-i. t )~d. d. p .. _, "n-z- CMI(-mt():_ JW~ 
i. ..... ) ··· oii. '•• ~11-Z.. pl(-----"-

1'1 --=- · M 1 2M 0 0 11-i I< 

( 2.11 ) 

where 

el(,=m +-1 (MI(- m~)t- 1\A'l. 
K v_,IC J'''t< 

2...MK , 
M~, =(MI(- 011( )

1
( 1- <XK)+J~O:I( 

J ( 2. 12 ) 

or in other variables .. 
1\-1. ~ "cL d. .. -t. 

5 (M,)=- Tl ,~ .. J f>, ... f',., n(M~e-m .. -yt")R.(fv11(_,1m~e- r,MK)xR(M"_, 1tn 11 • 1, m~) " 2..M, 0 o M~ ... M11 _1 s. ( 2.13 l 

where 

M t<+l '::: r-1( + rK ( Ml(- ml( -JWJ 

Ra. =- [(t'11<-~ + m .. -.t):t-MK][(M~< - 1- mk-.tt-M~] 
( 2.14 ) 

In both formulas the integrand vanishes on the surface of the hyper-cube. Therefore, the number theoretical 

method of Korobo./12/ turns out to be extremely effective for c<Uculating the integral. It yields in these 

conditions the accuracy which can not be reached by the Monte-Carlo method. Besides, the Eq. ( 2.11 ) is 

simpler than the corresponding formula by Cerulus and Hagedorn/4/ for the Fermi' s weight, which has been 

used for calculating the production of fifteen particles. ( 2. 11 ) will allow one to go on. 

* It I" Interesting to n o t e t he o utwl\fd resemblance between ( 2. 7) and the e rroneou s formula 

o tJakovlev /10// 11/. 
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In calculating the ''eiaht of the system of n narticles Nith the total energy M 1. by means of 

the Eqs. (2.11 )-(2.13 ) we can obtain also for any subsystem the dependence of its weight on its energy 

( in the energy interval allowed for the given Ms. ) or any non-angular distributions and correlations/ 41 

So, the weight of the system of particles \.( , ... , n with the energy M I< is proportional to the 

sum of products of all those multipliers in ( 2.13 ) which do not depend on M 
1 1 

... 

1 

M K- i and for 

which Ml( is close to the given value. We shall not discuss this question in more detail. 

For the analytic calculations it is convenient to use Eq. ( 2.10 ) or its twice ( which is analo­
gouos to ( 2. 13 ) ) 

M"- rn" . _, elM 2. 

c {M ) =- 2!.._ ( S (M J .·IL(M -m )2.- M :t ](CM + m )1- M1 ) " - I ( 2-15) ;:>, ., a.. J ,._, "- \1~ " " .,_, ,._ .. h- 1 a M,. 
.;rt .. 

Of great number vf formulas following from ( 2.10), ( 2.13) we choose only those which can be used ir 
the group method: 

a.)The weight of the system of two particles is 

b) The weight of the system of three particles having the sa:Tae mass S(M 
1 
m

1 
tl"'J"n) with the 

error not qreater than 1.6 percent is represented hy the expression ( 11(. = h'l (M) 

¥2y )2 ( JT-2..f2:") $ (M,m,rn,m) = ~ Jl:tM2.(.1. +0
1
991«:l)(1-o<) \.i- .9ot1 

; 0
1
99=1::: 9 a..~[!" . ( 2.17) 

ln the derivation of this formula we find the increasing function oZ which would transform for o(..,.. 0 

and ot.- 1(3 into the ultra-relativistic and non-relativistic formulas respectively ( see Appendix B ). 

Now we pass to the calcu.tutwns using the qroup method. In ( 1.15 ) the covariance of the weight 

enable us to take away the ''~ " and integrate over the directions. The formula expressed in terms of 
the variables ( m I e. ) takes the form Ml(i-f F'l<+i 

M .. -fo.. e,. ""~x I 
SN (M,) ::: ~n)"-~J. .. JS~(m~)m~<dml( ~ pKclQ:"' .. . 

m,. I'Yll( -ml( ... , t 2. 1a ) _....., e 
M,._i. J .. - J. ,._,.,..,o.x 

. . . \ S •-• ( m ~.) m~, d.m,_ 1 1 p ,_ 1 d.e:,_, S. (V M: z 2.M,_1 e._.+ m :: ) . 



Thus, the weight of the system of N particles is expressed through the 2 ( n - 1 ) tiimcntional integ-

ral, n., being the number of groups of N par tides. In breaking up by pairs ( S.., from ( 2.16 )) 

the dir:Jensionolity of integral is N-2.- ( the some as in ( 2.11 )). However, if at least o part of 

particles possesses equal masses it is convenient to group them by three and use ( 2.17 ), this will 

decrease the dimensionality of the integral. 

So, 'in calculating the weight of the nine identical particles we can rio with the four-dir:Jensionol 

integral. 

A particular case of ( 2.18 ) is the <!~Plic:atio!:l formulC!.: Let the index of S denotes not 

the label of the group, but the number ot particles in it. '.'le break up N particles into two groups 

with the known dependences of their weights on the energy. Then ( 2.18 ) yields 

M,- ma. eJ. rnd.'J( 

S.(M._)= h } m, S, (m,)d.m, \ p, 5~-• ( JM~- ~M,e:,+ m~') d. e ... . 1 2.191 

"' mL mL 

The duplication formula proper is obtained when ~I ::::. 2 ~ 

If both groups are identical then to calculate S N we need to know the only function 

s N /! ( m~) . If in turn N {2.. particles can be broken up again into two identical groups then 

( 2.19 ) yields s N/2. if we know at least the only function stv/4 ( m) etc. In the most fa-
" · i. ., 

vourable case when all the particles are identical and their nulll+Jer N is 3-2. or 2. , we 

have only to calculate energy dependances of ( n-i ) weights 5, , S, 2. > S 1.-4 or 

S,.. , S8 1 S1" only (which is equivalent to the calculation of the n-i :Q.o~~JN{i) three-

dimensional integral$) . Thus , in using ( 2. 19 ) the labour-consur:Jing character of the calculation in-

crP.n~es very slowly i.e. logarithmically with the increasing number of particles. The calculation of pro­

babilities of the production of several tens of particles can be achieved with the modern computers* . 

If only a part of par tides has equal mosses then the skillful use of Eq. ( 2.19 ) will reduce cal-

Clllations . So, it is convenient to break up the system NN 8~ into two groups N4::rr and each of 

them into N .:rr and 3 :rt . For calculating the weight of N 3:rr we can use Eqs. ( 2.15 ) and 

There arl"•"• hc.wever, & 8Peolrlo dltfloulty: the calculated fun.,~lons Inc rease extremely r&pldly 
( for larae N · ) with the eneray. 
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( 2.17 ). It is only in that case when it is i:npossible to find a:nonq ~J particles two identical groups of 

roore than two particles that Eq. ( 2.19 ) will not yield si:npli!ications as corr.pared to ( 2.11 ). 

The duplication for:nula :night be useful for the Fer:ni :node! too. ln this case, however, the cal­

culation of SN ( E 1 P) through 51'1{2- ( E 1 P) is equivalent to the calculation of the five-dirr:ensional 

integral (instead of the three-dimensional one in ( 2. 19 ) ). 

Note that ( 2. 19 ) can be written more simply if one mark the dependance of S on masses of 

par tides together with the energy. 

3y comparing ( 2.19 ) with ( 2.10 ) we can write 

SN (.M.:~. ·, mH' . .. 'm~"' mu r . . 'rn2,f'l-)?) == 

1'1,- mu.- ... - m, N- "~ 

::a, \ S~(m~i·m11, ... , m~....,) gN-)?+i(M:~. ~ mj.,rnu , ... ,m~,N-Y) mid.m.s. . ( 2. 2o J 

We consider in brief the question on the construction of tables of random stars for the syste:ns 

with large number of particles. If all the particles are identical we have only to describe one of them ( if 

we are interested in the :nomentu:n and angular distribution), two of the'l1 if we need pair correlations etc. 

As to other particles, we can integrate over them. If in the syste'l1 there are two kinds of particles then WE 

can describe in the table one representative of each kind of particles ( if we need mor~enturr: and angular 

distributions and correlations between different particles ) and two representatives for r.;ore complicated 

spectra. 

So, the table for the system N ( n+ i..)Ji" can be obtained from the expression 

SN(nH):Jr (.M)::: 4 Jj"~ \ PN <L€:-N ~ PJT d.e3t snJi ( t\1 tl:Jr) 

(where 

if the function SP\Jl' is found preliminarily and then the usual method of picking random stars is 

used. 
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§ 3-'-~Il:l~ Us_e (_) r Important S_a!!JpJ t~~_!n SimulaUn.r 

The convergence of the procedure for calculating integral ( 2. 1 ) with the use of the :.1onte-Carlc 

method can be accelerated as the information on the integrand develops . So, the closer is 'P* ( p) to 

the Cf> (p) the more precise is S ( E > P) for the given computing tlme. The use of the density 

~ • ( p) close to ~ ( p) is called an important sanpling/7 I 

This characteristic feature of the probabilistic methods will lead to interesting results in the prob­

lem of simulating the process of multiple production. We denote by ~ ( p) the distribution density 

of p in the model which explains in all details the results of multiple production experiments ('exact 

·node!' ), and <P 1. (p) ) cp 2. (p) . . . are distributions in various approximate models. Let each subsequ• 

ent approximate model be closer to the precise model than the foregoing one. Let the table of random 

stars be obtained for the model ~ 1. • This means that each state ( set of momenta p ) is found 

in the table with the frequency proportional to its weight .Pi.. ( p) . Let now the models <p K ( p ) 
closer to q:> l p) be investigated. The calculation in these new models can then be made with improved 

accuracy if an important sampling with the density <J>"'(p):::: <+> .i(p) is used, i.e. if the computer is 

able to extract in consecutive order from the memory sets p and their weights <t>, ( p) , calculate 

C? ~ (p) and su:n up <PK (p) / <f>1. ( p) using ( 2. 1 ) or ( 2. 2 ). The same table of randon: stars 

( p J q:>J. ( p)) for the model <l>J. ( p) will simplify calculations for many models <f>t< ( p) 
i:r.proving cp -t ( p) . 

There arises an interesting situation: as the theory develops ( i.e. their predictions approach 

the experimental data), the calculations using the :.fonte-Carto method will not become complicated if we 

take as the 'fundamental model ' the r.1odel rather close to the 'exact' one. This situation resembles the 

perturbation theory. The latter can be considered as a way of finding the eigenfunctions of complicated 

;:Jer turbed syste11 by making use of the inforr:Jation about these functions obtained in s tudying a simple 

11 1n-per turbed system. 

'ly ~""alculatmq the dispersion of the statistical weight the machine itself can estimate whether the 

im·estigated model is close to the basic one. 

As such a 'fundar:Jental ' r.1odel we can now take the covariant model because it is c::lmole and 

their predictions are rather close to the experimental results/2,13 

For the ultra-relativistic particles we do not need to commit in memory the corresponding table. It 

can be reproduced using the following procedure. It Is known/7,6/ that to obta!n the set p distributed1 

in (a, b) v:ith the density q>*- (p) we have to take for p the set of solutions of the equation 

b 
o( J cp*(p) <lp 

p 

~ <?~ ( ?) d.p 
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where cJ.. is the set of numbers unifor:nly distributed over (0, l ). For the systems of ultra-relativistic 

particles one can calculate the integrals in ( 3.1 ) ( Appendix B I ). '.'/e consider a system of such partic­

les. Let the mor:lenta of particles 1,2, ... , 1"1- v -1 be picked somehow and the :nomenturn of (n-v)-th 

particle is to be picked. The distribution over the ( n- v )-th particle mor:lenta in the rest syste:n 
of particles 1"1-v , ... , n is 

( 3.2) 

where 

( 3.3 ) 

Since the particles are ultra-relativist)c, then ( 3.2 ) is proportional to 

d. - - M 2.(~-a) 
e.,_v . Q."'_..; .,-)1~1. ( 3.4 ) 

where 

( 3.5 ) 

Instead of the e,_'\1- distribution we find the M t\-)1+l distribution using ( 3.5 ). It is propor-

tional to 

( 3.6) 

( 3.6) should be substituted into ( 3. 1 ). For the ratio 

(·3.7 ) 

we have the equation 

y "V - i 
(-v-i) t \1 - ')) t y + ol..::: 0 . ( 3.8) 

~OW 

e. = .L M (i-t-») n•'i> 2.. .,.-v 
( 3.9) . 
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or finally ( M1.- is the energy of the system as a whole 

M :: M 1 ( t ~ tY+.i. ... -ch-i 
"-)1+1 ' 

) Y2 

1 ( '12. ( ) 
e.n-Y::: "'['Mi. t'Y+i t\>+2. ... t.,_:~.) i-t-.,~ ( y ~2) 

( 3.10) 

_ _ 1 ( t )v~ e"'_1 - e.,..- aM, t, ... ,.._1 

Thus, if we choose randomly ( n- 2 ) random numbers 0(. uniformly over ( 0.1 ), solve ( n -2 ) 

equatiOnS ( 3.8) for V frOffi n -1 tO 2 (fig. l ) and then Calculate ei'\-Y USing ( 3.10) 1 

then el'l-v will be distributed with the density ( 3.4) presented by the covariant model. 

We note that this density depends only on the number of particles but not on their energy ( which 

is natural for particles without mass) . 

Let us take the concret example n = 6. Then, we have to calculate 

- 1 
ei.:::. 2.. ( i- t 5 ) 

- -i .~ e2. = 2. (i-t~) 'l t 5 

- ~ e3 = - (i-t~)~ t t ' a. ~ 5 

~::: ~ (i-t,)~t~ t~c ts' 

e~:. e.G~ ~ ~ tl. t~ t 4 ts
1 

where 4 t~- 5t~ + ol5 :::: 0; 

where 3 t 1- -4 t ~ + "'4 =- 0 ·, 

where 2. t: -3 t~ + <X3 = o 1 

where t~ - 2.. t2. -t o(t = 0 ; 
( 3.10') 

Bypicking ( fl~< ,<;pK ) ( k ~ 5) from ~- 1 , +1 ),( 0,2:Ji ) and 9&;: -rJs 1 ~6 = .1l'+~s 
we get the complete description of one case of the production of six ultra-relativistic particles which 

corresponds to the covariant model. For any other, more precise mo~el with the square of the matrix ele­

ment F the weight of the sys tern of n ultra-relativistic particles can be easily determined using 

the Eq. ( 2.1 ). 

S,. (E 1 P) - I· t 'l!t 
- l iYl -L:g:'. 

1(.-.oo 7ft 1 

~., e.1. ... e, 
( 3.11 ) 

( where Q ~ are obtained by making use of ( 3.10 ) ). 
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( 3.11 ) is true, of course, for an arbitrary syster.: of particles too, but in this case the co~puter 
Is not able to obtain i:nmediately sets ( el< ) ?I(. ~K ) and it will have to work out these sets before­
hand ( in the covariant model ) and put them in rr:er.tory. 

§ 4. The Calculation of the :'tlulUple Production on 
~ =--= ==-- -=- ~ -=- -

In preparinq exper iments on the accelerators the question ari ses about the rr.-:>r.tenturn and angul ar 

spectru,, o! secondary particles ( for exaiT'nlP. in calculating antiproton or meson channel s or in calcu­

I:Jtinq the rr.ul tiple pro1uction on the er::ulsion nuclei). 

'Ne outline a scher.te for obtaining such a spectru:n. '.'/e restrict oursel ves to the ccse when the 

incident proton in the nucleus interac t s only with one nucleon of the nucleons. The generalization o: the 

scher.1e stated below to the case of the successive interaction of proton with several nucleons of the 
nucleus ( cascade calculations ) is quite obvious. 

1. The sampling of the direction and the energy of the nucleon of the nucleus. The calculation of 
the energy of !he syster~ p N in the c .:n.s . 

2. The picking for !he nucleon the state p or n . The picking of the react ion. ( We res­

trict oursel ves to the :nost important reactions , all these rP.act ions have equal probability) . 

3. The choice of the charge state of the syste:n o f secondary particles . ( It is better instead of 

this to attr ibuate to secondary par tic les the weights W which express the probability of thei r appea­
rance in the qh:en reaction) . 

4. The so:-np!inq ( if it is necessary ) of the :nass o f the bound state Jt N or 'Jt Jf follow­
ing the '3reit-'!/iqner formula. 

5. fhe sar.:plinq of the n;omenta !or the ::-todel following the formulas of the paragraph 1. The cal-

culation of the welqht cp of the picked state. The sa11plinq of the decay of the isobar or unstable 

particle, if it is necessary. The t ransition into the L ab.sys. The sor ting of particles ( we are interested 

in ) hy 11c:nenta and angles etc . taking into account their weights W . According to the results of 

sorting -
1
he sending q> with the weight w in the corresponding cells of rr:e:nory. 

6. Tbt> return to I. A£ter Se\·eral hundreds of sa:nplings hove been made we can al ready estima­

te roughly the probabilites o£ sorr:e reactions, after this in ( 2 ) we can use an important sampling for 

choosing the reactions ; due to the application of the procedure l -6 the distributions necessary will be 
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occurr.ulated in the memory of the machine. 

We see that this scheme includes easily all such effects ( the motion of the particle-target; the 

change of the mass, s econdary decays ) which are omitted in usual analytic calculations due to the 

fact that their influence is difficult to take into account or these effects are estimated approximately. 

Here they are taken into account, in principle, accurately; the accuracy is limited only to the computer 

calculation time. That small accuracy which is necessary for spectra in preparinq experirr.ents can be 

thereby achieved at several hours of the work of the co~puter. 

In the covariant model we can simplify considerably the choice of the reaction ( point 2 ) and 

the samplmg of the momenta ( point 5 ) if we have the dependence S.., ( M ... ) beforehand. The sampl· 

ing of the momenta should be performed in this case as indicated at the end of the paragraph 2. 

Conclus ion s 

In describing the system of n particles iUs convenient to specify the momentum of the 

particle \<. ( k:::: 1,2, .. . , n. -1 ) in the rest s ystem of particles K l k "T 1 , .. . , n. · In 

this case nothing restricts the direction of the momentum, and the magnitude of the momenta is res-

tricted only to the energy conservation requirement. This facilitates the calculation of statistical weights 

and the determination of momenta allowed by kinematics in simulating the process of multiple production. 

If in the model of multiple production studied by us the fracttbn of particles is assumed to be non­

interacting with other particles the preliminarily calculation of statistical weights of independent groups 

facilitates the simulating of the system as a whole. 

The table of random stars cons tructed for the given model F 1 can be used for studying 

other models F K too. In constructing hystoarams 1t should only to attribuate to each star from the 

table the weiaht cpK / cp i. instead of 1. The maximum efficiency of constructing the table is achi· 

eved in the covariant model ( the ultra-relativistic case ). 

The Monte-Carlo method is suitable for the wide class of functions F , for any masses and 

energies of particles, it is able to give complicated hystograms and is rather convenient for taking into 

account the bound states ( ~ N , 3\~ ) and the decay of unstcble particles. It is therefore belie-

ved to be more suitable for s tudying the .n ultlp!e production than the usual analytic methods. 

The author takes an opportunity to thank B.:'-1. Valujev, L.G. Zastavenko, I. V. Polubarinov for 

useful advice. 
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. .\ppendix ·\ 

7he k!r.er.:atics o• the sys'er. ot par'1cies with ·: 1r!able;:; rr:oss. 
1
'/c de• erMine t~e boundaries ln •.:t.l::n the kine: 1 1ti ~ ChJr,Jcteristks of t:Je Hh group - e i. J m L 

1 
p~ ­

change under the assu11ption that :he ~hara::'cristics of othN 'Jroups are not :::pecified. Let for the sake of 

def!nlteness L ..:: 1 and the syste:n as a v:ho lc rests ( P = 0 ). 

·::e s •art with the b:~its b~ the effective rnus:- m 1.. : 

( AI ) 

~Jecessarity of these conditions is obvious. m1 reaches ito lower bounrlary when the parcides of the 

qroup 1 n:ovP w!th equal velocities and the upper one when all other particles :nove in a sirr:ilar :nanner. 

'3oth these states are poss!ble physically, lu:.·nce 1oUows sufficiency of ( Al ). 

Let mi. be now fixed. ]:,hen ~he IL:rl's tor e 1. !11'" 

~ ~ "'t 
M,+m~-j'-1, 

a. Mi 
( c\2 ) 

The lo·.ver lir"u' is reached when the group l does not ~ .. oveo, the upper one when tbe qroup I an::i other 

particles .nove in opposite directions and have e:tu':ll r::omenta, 11ll particles of the groups L. =f. i. havinq 

identical velo=ities. The fact that ( .A.2 ) is necessary fellows fror- the •.veil known theore:n of Stern­
hei:r.er. 

The region in which e.i. I m.i. ) clla·h}(';' if r0presentc,J in n'j. 2 by the curvilinear trianq· 

le ...\ '1C. On the planes ( Y\1 .1 , p :1. ) ond ( p 4 , e. i. ) thi.> sa:ne reqion f) :1.. 'Nill be obtained 
by si11ple rccolculotion. The coorctinatef l\ ,n,c are 

I'YlA-::.Q.A =mi.) pA=pP.. ::: O 
me. = eP.> = M,- _r;\1 , ( A3) 

..-..J 't. "" 4 ""1. 
m,:::. m:1. ; Q.c.:::. ~ m, - J~. 

< M, 

I: ·he effec'ive :nasses cf the oroups 2,3, .. . , 1"\. ar0 1'xej then in these equations the 

corresponding ~err::s in ~~ = m, + m 3 1-... + m., should l·e rer 1 rd by m ~ ) m 3 , ... ) m ,.., . 

~ A '1C transfor:ns :n th:s cJse !ntc A -\ "3 2. C 
2 

> .. • , ( v:e 1et 'he latter when the 
masses of all other groups are fixed 1 • 
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'1y ~1sinq this F'iq. it is easy to write <mother pairs of li:nits : 

(es. ,rr1,) 
m , ~ e.i ~ M,- ~~ 
m, ~ h1 , :::- e i ·. ( el fe,c.~; 
m < < ( ' a. ....... ~ 2.M M" , .·d)\, e:~. ; e.,~ e., ,, m .=M -t ,e,- , 

m1., 1 "111'1 r·· 

( A4) 

(m, , p~ ) m~~ m,~M,-J1, ·, 0~~,6 p,~;" (e,~ct"-m~ }Y: ( AS) 

{ p~ , rn ~~ 
o ~ p < p · Yn1 {"""'2. t.m2 ::M~+ti1 - "M (01...,. M_t )Yl . 

I ' I C. I I "- 1 1 II ' I W~O.)I: I J · J '-. I r 1 J. · I 1 
( A6) 

(?~,ei) 
0 

I II 

~p.~pc~e,~ei~e, i 

I ( 'l. '"""'2)'12 " M ( 1. ,.__z.)Y2. 
€.1 ::: p, + YYl, J e. I ::::. I - p, + )'11 

( !\ 7 ) 

le,, pi.) 

'V ~ • '1. "' 2. 'h m, ~ ei. ~M ,- _f,, o~ p,~ (e.,-m,) 

o ~ p, ~ ~(M,-e,t-F~ 

( e, ~e., c) 

( e 1 ~e., c) . 

( A8) 

"le consirler a special case when either 'he qroup l consists of one particle or all groups L =f i ore 

reduced to one particle. In the first cose m:~..""mH , B and C coincide, 8 1 is reducerJ 

to the arc AC . In the second one m," mi. ~ M, - mH ~ by fixinq m:~.. we fixe thereby the 

masses of both groups; this :neons that the e nerny is fixed as v:ell: e.1. =-(M~+m-:--m;. )/2-M:~o., 
and ~ABC is re<iuced to the arc BC . 

o\p pe n dlx n 

Covariant s tatistical weiohls 

!he weiqht of the syste:n of n ultrarelolivistic particles/10/ is obtained by substituting 

S (M ) = Q M 2
"-6 in ( 2.15 ). Hence 

..,_, ., _ 1 1\ - 1 h -l 

a.., _, 
(l"::: 2.Ji ( 2n- 4)(2. n -2.) 

fro· n where 

In PT. 

tivist 

roxi r'1 

sn 

In pm 

The·, 

m 

$,.,~ 

~" 
'I" 

~2 
~= 

and 

The •. 

into 

$3(E 

We de 



( A4) 

( AS} 

( A6} 

( A7} 

( A8} 

tps L'f-i are 

~ i. is red uceri 

thereby the 

l~)/2-M~, 

· substituting 
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S, ( M.,) ~ 

( 3 .1 } 

The wei'Jhl of t:1;c> ~ystem of h non-rela-

t!vistlc particles is obtained frorr. the Fer-ni weiq~ t if one takes into account the fact that in this app ---- .1 
roxi rr.ation !=":. 2.-"'(m, . .. m'"')- : 

1 5 ...... ., __ 
y; "' 2. 4 

_ 01 -!Cr~-i)[ m, ... m, J 2 (M ., -L:>"nt.) 
S.(M.),a (2:rr) (M,+ • .,.)'j rn(•-i)) 

sl..:. {2 n ~ [ m, tYIJ. 11 l . 53= :rr3 ,{r-~-m-, Wl_ .1._ m_3 __ , , 2, . 

V7!n ,-tm2.)~ 1 
2.. V(tn,-tm

2
t-m

3
)' ' 

----~ 

( 32} 

In particular, 

T 
y2. 

I •.. 

The 'A'elght of the systen: of 11 ultra-relativistic particles anl one particle with an arbitrary r:ass 

m is obtained fro:n ( 2. 10 } and ( 3 1 ) and equals - ------

( 33} 

s~(e.-2k)oL hl'\-2.. 
--o<c ol.. 

t-2.k ( '34 ) 

and sh 0 ol. / 0 ::: <X./ ~ · 

The wei,Jht of the syster.: of three particles 'Nith arbitrary r.Josses is obtained by substituting ( 2. 16 ) 
----~----

.nto(2.15) 

E-m! ~ 

S3(E): ;;_, ~ {[M1-(rn,-m2-tJ[ M~(m,+m~Y][(t= - m3)t__M"][{E+m~Y-M~} ~ . ( 
3

.
5

) 

m~+m~, 

'.'le denote 
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Ml.=~ i a,= (m ,- m~.Y ~ <l:t=(m,+m2.Y ) Q.3= (E -m~)'- j a4 = (r=. +m3)' ; ( 16) 

then a , ~ a~ ~ ~ ~ a~ ~ Q.4 , 

Q.) 

S3(E) 'i:e r ~ Tv(~ -ai)(~-Q,)(Q,-~)( u.-~) 
a a. 

which is reduced to ell :ptic integrals by the reploce:nent ( I 141, p. 47 ) 

Q - Q1 . l. - ____.}......__ 
S1n ';9 - Q~ - Q.t. 

»- - O.z. 

~- o.J.. 
'..'le ho·;e 'Yz. 

S/2. Y2. 2.. 1. 'l. .ri k2. . 1 :rrl. (0.3-<1,) (a~c-a2) (a4 -a,) ~ si" p c.os ~ " - s,., <j 5 (E) =-.:.....:............;....._...:...._;___;,~-
3 2E

2 a,(a.3 - a~ ) a. (rn+sil'11 p )(n+si"1.<f) 

where 
0 

( '3 7 ) 

( '3 8 ) 

( 3 9) 

d.~ I 

k'l. a. ::a.- a..t. a.~- a~ i a~-aJ. a.. 1,., I >/ml :::.1 , 
3 10 

> - ~ . < . ..,.. ~ - · n:::_ .... _ . , - J"' ) .. , , 
~-a~ a.3 - a.J a.~-a.:l- a..1. lnk1/ >/mk1/ >i . 

Th.,. inlegr::Il in ( '3 9 ) can be broken up into the su;.; of four integrals 
. 4 . 

where 

~ =- I n~J~ 
~ 

.,(2. 

~ £Lp 
'Jlf2. 

) 
d..lj 

J - . .. ..., 
' 1 ... j (rt~+ si,1 Cf )J- {i-k1si"1.~ v 

To deten"'ine l)l. we have first to ca!culate 

( '3 11 ) 

; (J::' , 2,~· ( 3 12) 

A=rn(i+m)(i+k1.m) ; B=d.-~~IY1+2k1m+3k1m1 ; (::: i-+k 1 +3k1~ 
( 3 13) 

and then to obtain D ~ fro:n the formulas 

ji. 
in terrr 

J= ,._ 

):: 
1 

( 
'J3 

']3 

J-4 
So, the 

from Eq 

prefer tl 

( B 7) 

s?( 

-[ 
In partie 

s~ 

~ 



( '3 6 ) 

( '3 7 ) 

( ] 8) 

( '3 9 ) 

( '3 :o ) 

{ '31i) 

( !3 12) 

~ 3 13) 
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A 
D~ ~ m- n. 

D = 1)3 + c 
2. m - n J Dj. = l<2

- D2 . ( B 14 ) 

j i and j2. ( B 12 ) are complete elliptic integrals of the 3-d kind and expressed ( /15/ p. 71 ) 

in terms of complete and incomplete integrals of the first and second kind: 

J~: -/n{K(f<.) t J<u, --:;~<~,.-a .)' [K(l)E(f<,9 .. )-E(f4F( k,t1.)J} 
r-----~-. ( 3 15 ) 

'J1= ~ [K[ l)+~~·,i ~(a, -~:~<~:- (lJ [K(k)E(~.B.)-E(fz)F(fi.,e.)jJ 

( 
c 0 l e - C\.'1 - Ch c< 0 l. 8 = ~ Si n 2 e ) ~ I 11 - I ;>I 1'1 II 0 tt- • 

m ~- a.1 2. 

'J3 and J 4 are expressed in terms of Jz.., and 1((~), E ( ~) ( /14/, p. 59 

_ B J i+~2.m K( 1 l~ - 2..A ~- 2..A k) + a.A E ( k) ( 3 16) 

J ::: 3 B j - c. J + _i R_2-K(~) 
-4 4 A 3 2.. A a. -4A · 

So, the weight is to be calculated by using ( !3 9 ) where instead of the integral one calculates ( 311 , 

from Eqs. ( 3 10 ) - ( 3 16 ). ~ue to the sr.;alJ accuracy of the tables of elliptic integrals we should 

prefer the numerical integration with the use of the sinple r::q. ( 3 7 ) to all these for";'lulas . r: rn~ = 0 
( 8 7 ) is reduced to elementary functions 

c. (E o) =E._ s (11. + Uz. +2.E2. \fQ + f<i:Ch Ez.a.rsh a. va. a2.Q 1 -

~3 ' m, ' m.t, a.Ez l ~ 0 ""1 2- (az.-a,) E} 
( 3 17 ) 

2.~ 1· Q = (E1
- a,) (£2- az.). a2.- Qr , 

In particular ( o(. = m I E ) 

( 3 18) 

( '3 19 ) 
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The approximate formulas for the weiQht of three particles with equal mass 

We rewrite the non-relativis tic expression for 53 ( 8 2 ) so as to obtain S..., ( 8 1 ) 

as the ultra- relativistic limit. With the accuracy up to T 2 ~e have ( T -kinetic energy) 

m,-r ma..+m~ · = M~T, m1 = 
M3 + m, - tYh - I'YI 3 

a.. 
4. t c .. . 

T = M~ - ( m,+m~+m3Y· ::. 
2.(rn ,+ rn~+ m3) 

~ ~-( rn , + ~: + "' ' j'j 
I 

5 :: L K MQ.. r 1 -(_ m + VY1~4- I')'\~ ~ 2. 1 
3 2. ..[[ & ?> L \ M3 ) ~< 

~ * )( (i- -m,+mt,;+nt,)(i .:.. m, - m1+m3)(i - n\+ m1.- lr\3 )] 
M~ M3 M 3 · 

( 8 20) 

( 8 21 ) 

( 8 22) 

For m, I m2, m,.--+ 0 Eq. ( 8 .22) differs from s ~ ( 81) by a factor jj /().off~ i . We introduce 

therefore instead of fl /2fi' the factor 

i. Tt- 2..ff ( m, -+ m1 -+ 1!13 )2. 
+ ~a:- M?. • ( 8 23 > 

We obtain for m,=m.t=m3~m ( 2 .17) . The difference between S~ (M~) ( 2.17) and the exact 

expression ( 8 7 ) does not exceed anywhere 1,6%. 

l ·-

1 .-

·' 
,! 
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Add endum 

In some oases we took the quantities M.k (2 . 1J) ,(J . 6) as the integration 

variables . A successive use of them outlines some new ways of calculations. We intro-

duoe instead of Ml< the kinetic energy ~K of the system of particles 

in their rest system 
k , .. . , n 

(1) 

This determines uniquely the energy ~k-i of the particle k-1 from (1 . 4) . By 

comparing with (l.l),it is easy to obtain the form of the region D in the variab­

les "t' K (instead Of eK-i. ) 

ii ~ ... ~ iK ~ 't><-r1. ~ . .. ?:1:..,_1 ~ 0 

D has now plane boundaries. ( 1. 6) passes into rt-i n 

5n(E1 ,PJ " ~1 \GL-t,\\LLil1 . . \d-t"_ 1 \\ ct1l"_z\\cLfL,. 1 S ~P~ ~el(, 

(2) 

(J) 

and instead of stretching D into a cube it i s possible , having chosen ( n-2 ) random 

numbers in (0 11) , to take the largest one as ~z /1:
1 

, the next by the magnitude 
as T.l/~1 etc. 

Thi s ensures hitting the cube. In the calcula tions by the Monte- Carlo method 

it is necessary to introduce the factor (_J___)' into the s um of random numbers cpfcp~ h-a. 
(2.1) . 

Since the region D is independent of m1 , •• • , m.., , E , but depends 

only upon rt , then the important sampling for m, , ... ,m~:.O , may turn out to be valid 

in the wide range of mo<,E .Considering (J.lOJ as formula for .:r n-v• i and calcula­

ting P~ , ... , f>~ by (1 .4) , (l . J) , (1 . 11') one can make calculations of di fferent 

react ions for different energies by (J.ll) , Thus , the reserve in the last phrase of § J 
falls out. 

Further , in the group method it is also possible to restrict the region 8
1 

by 
the pla ne s 

- <. ~ t 0 ~ "tz -.. L~- 1 

(4) 

if group 1 i s s e t by the quantities 1:-l.~rn , -m, ,T:t.=M.t- )\{1 ,~1 J ~L instead of the 

quantities m, , .e,, ?1., <9~ _. Th~ ctuplication formula becomes now s.rmmetrioal 
~. 'tci., 

M, s n~v ( M ,) = 4 :rr ~ cL-£1 ~ d. t,_ . m, s., (rn ,) pi m~ S) m2) . (5) 

Q 0 
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