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Abstract

et

Formulae of the relativistio general theory which express the cross sec-
tion and the polarization in terms of phase-shifts . can be of different.forms for
different definitions of the relativistic spin operator. However, in the rest system
of a particle its spin operators coincide. This allowa one represent the general
theory in a form which is the same for all equivalent detinitions of the spin.

Introduction

For the relativization of formulae which expréss the differential cross section and the polariza;
tion in terms of phaseshifts it is necessary to define relativistic operator of the particle spin and find
transformation functions from the representation in the momenta and spin projections into the represen-
tation involving conserved total angular momentum of participant particles. 1’12/ for the descriptibn
of particles with spin the representation of L. Foldy-Ju. Shirokov/3/ . is applied. The authors of/ 1/
obtained this representation starting from the definition of the spin as the internal angular momentum of
particle relative to its center of mass. However, there may be different relativistic definitions of the cen-
ter of mass coordinate ( see e.g./ 4,5/ )e In§2 of this paper we find ( and this is one of the results of
thé present work ) an ununitary representation of the inhomogeneous Lorentz group in which the operator
of the internal angular momentum differs from Pryce-Foldy- Ju. Shirokov’s spin. Other approches to the
relativistic spin definition are possible ( see e.g./ S and/®/ ).

To various spin definitions there may correspond various transformation functions and, respecti-
vely, expressions of various forms for the cross section and the polarization 1), In the present paper it
is shown that there exists a form of the general theory whose transformation functions and aforementioned
expressions are identical for all equivalent representations of the inhomogeneous Lorentz group. We as-
sume that the masses of all the particles are nohvcmishing and their spins are arbitrary.

Note that for describing the states of participant particles we should make use of wave functions
which transform just according to the inhomoger;eous_l..orentz group representation. The theory of inhomo-
geneous Lorentz group febresentations vields the description of such systems all the states of which can
be obtained from some fixed state by using displacements, rotations and Lorentz transformations ( and by'
superposing these states ), so, there exist no relativistically invariant differences between various states
ot the system/ 7/, The homogeneous Lorentz group contains no displcicements and can not therefore des-

1) Nevertheless one can show that in this case the angular correlations (é.g. azimutbal asymmetries in the
experiments on double and triple scattering ) will be the same ( though they may be expanded in various complete
sets of functions of angles ). )



cribe all the states of the free particles.

1. Spin in the Particle Rest System and General Theory

_ of Reactions

1. One may caracterize the state of a free particle with spin in the following manner: 1) one indi-
—ty
cates the momentum F of the particle ( e.q. in the c.m.s. of the reaction ); 2) in the Lorentz system

where the particle is at rest’one-indicates its s:pin state.

The spin operator §° of the particle in its rest system is equal to its total momentum I:i. (since
the orbital momentum in this systém is zero ), consequently all the spin operators coincide in the particle
rest system. The spin projection m is defined as an eigenvalue of the operator 3. =(§ en )={( M- R)
where T is unit vector parallel tcl the direction of ]_5 ( let us note that in . the rest system we can

point out the direction parallel to P )

2. The general reasoning of the formal theory of reactions is stated in/8/ , section 1, and in /9/ .

introduction..We have to express the elements:
o . - .
(mchpll,Sl..mamélb) (L)

of the S-matrix for reactions of the type a+b-—c+d in terms of phase-shifts 2) ( more exactly, in
terms of the elements of this matrix in the representation which includes total angular momentum ). It is im-
plied that we had already took into account the total momentum conservation; F/ and F are relative
momenta of particles, m  are the eigenvalues of the operators 22 of individual particles. In contrast
’to/ Y the spin functions by means of which the S-matrix element ( 1,1) is formed are considered to be
referred to the particle rest systems ( besides, in/9/ md zdenotes the eigenvalue of ‘( ﬁ’d.(—_’n)), and .
here my is assumed to be an eigenvalue of the operator ( Mdn' ) However, the total angular momen-
tum ( as a quantity which is common for initial and final state ) must be referred to one Lorentz system
only ( for convenience, to the c.m.s. of the reaction ) and of course, to one quantization exis Z. The ex-

pression of ( 1.1) interms of elements ( ¢ Dd ]75/ , So, Ao /\g /3.) referred to the c.m.s. of the
reaction must be of the form ’

(mcmdp"!S[}nqmz'F)ﬁ g*(me ma p') (e my 1S, | ma "’s’ﬁ)?lmabwp/. (1.2)

Since we deal with Lorentz transformations whose velocities are parallel to the momenta of particles
( see Appendix). ' '

2) " The invariance under four-dimeniional rotations can be expressed just as it has been already done by .S‘tapp/s/. but
the S-matrix unitarity may be expressed in a simple manner only by introducing phase-shift expansion.



So- matrix elements in ( 1.2 ) can now be expressed in terms of elements of the S, in the representa-
tion of a square and Z-projection of the operator f M M of the total angular momentum ( which
is a “spin” of the system of interacting particles in the c.m.s. of the reaction ); of the eigenvalues of
the ope_rafors Z‘ and 2,_ and E ( total energy ). The cormresponding transformation function has been
obtained in papers by Chou Kuang-chao/ 10/ and Jacob and Wick/9/ Its derivation ( see’/10/ , §2 ) does
not use any assumptions about the concrete représentation which describes interacting particles ( in
particular, even representations with zero rest mass are allowed ). By using the diagonality of S with
respect to the square J ( J+d ) and the projection M of the total angular momentum we have

(mcm,,//) IS Ma.h‘lJP) Z ,% (-:7"9 Ir- f}ﬁ (mcmdfl)

et md, M,
(e ma p' TM | Sy [ ma s pTM) g (e mep) @M e *ma' g9 0), (13

o~

Now if we introduce the matris 8S:

(mt 1§IEI ma) = 9*("‘: Pl)(mc ,Sojs/ma)¢(ma /0)

(1.4)

we perform in fact the transformation inverse to ( 1.2 ) i.e. S=S. Note that using the phase-shift ana-
lysis we can find only the product of all the fdctors in the right hand side of ( 1.4 ) but not each sepa-
rate factor.

The expressiori of the tensors of polarization of the reaction products in terms of elements of
(1.1) and in terms of the beam and target tensors is defined by non-relc_xtivistic formulas see e.g./ 11/ .
The elements ( m, my | sy [ ma my) can be introduced into these equations. In particular, in/9/ the
angular distribution and the polarization vector are expressed in terms of these elements. Of course, the
polarization vector, for example, is to be defined as a mean value of the spin vector of the particle in
its rest system. If it known originally in other Loorentz system, e.qg. in the Lab. syst. ( polarized beam )

then we need to find its expression in the rest system of a particle. In this case we may have need of a

concrete form of representation. In other respects the form of the general theory stated above ( which
differs only slightly from that discussed in detail by Jacob and Wick/" 9/ ) is the same for various repre-

sentations of particles possessing spin.

3. In the aforementioned general theory of reactions there arises one more problem the statement
and the solution of which will be illustrated by an example of the proton double scattering.

Let the proton polarization be found by means of the azimuthal asymmetry of the angular distribu-
bution of the scattering II and used for the phase-shift analysis of the scattering I. The asymmetry II
allows one to find the components P, 2 #2 ) Pxi of the polarization vector, respectively, along

the directions of the proton momentum ﬁ_ in the c.m.s. of II ( or in the lab. sys. since the



target II is atrest), along the perpendicular Yy, to the plane of the scattering 1 etc, referred
to the rest system K, of the proton , as to the Lorentz system. For the phase-shift analysis
2o
the c.m.s. of 1, and ort _‘/.4 []yz), referred to the rest system Kl ‘of the proton ( which differs from
‘<2 , see below ). By turning the components P, B,.

227 ¥z
’ '
get the componerits Pﬂ , lel , Pxs referred respectively to the orts  z, , Vi, X ( for detail

of I we rfeed the components P Py‘ , By (ort  Z, is parallel to the proton momentum P’, in

B, at the angle 'between Pzand ﬁ we

see/11/ . §3 )} but expressed in the same Lorentz system K, . In order to proceed from K, into
K M we have to perform the following Lorentz transformations: 1) from K, into the Lab.syst. Kp
* means of the velocity j—i' i F; ; 2)from K g into gm.s. of 1 by means of the velocity ./?2
parallel to the beam of the(scctter’ing 1; 3) from the c.m.s. of 1 into K, . The corresponding
velocity f—b: is calculated as a relativistic sum of the velocities /Z and - _a. The product of the-
se three transformations is a three- dimensional rotation, see/ 12{ § 22, /8/ and foot-note 5 in/1/.
So, the orths Z, Y X, 'with respect to space axes of K 2 have the oriéntation different form that
with respect to the K, “axes. The finding of the axis and the angle 2 of the rotation under
discussion is a puély kinematic problem. In particular Q is the angle between the velocities (7)
and &’ ( see Moller/ 12/ §22, Eqs.‘ (59) and (59') ). To find sinSL  we need only to per-

form a vector multiplication of the expressions for & and & v,

The results are given in the paper/ 1/, They are expressed in terms of the rotation of the
_spin vector with respect to unchanged space‘axes ( which is equivalent to the aforementioned rota-

tion of the Ki axes with respect tothe K 7 axes ).

4. So, the general theory of reactions can be represented in the form whose basis is Eq.(1.3)
which is the same for different ( but equivalent ) representations of the inhomogeneous Lorentz group
describing the particle with spin. . The Eq. ( 1.3 ) in its form concides with the corresbonding non - .
relativistic one. In the problems of phase-shift analysis  or of fin‘ding the angular correlation unlike
the non-relativistic case the polarization tensors al‘g to be subjected to some rotation of the relativis- '
tic origin. The axis and the angle of this rotation are the same for different representdtions of partic-

les with spin.

2. The Zxample of the Ununitary Representation of the

Inhomogeneous Lorentz Group

The principles -of the theory of representations of the inhomogeneous Lotentz group are as-
sumed to be known ( see, for example/ 13/ )

1. Let us express the generators M, of the infinitesimal rotations in the space-time in the

l‘
form -



Mus = Pppoprbrt w. | (2.1)

Here P/. are displacement generators - ( momentum 6peratqrs ), P/,, and .‘7/“ v are certain new

operators introduced instead of the six operators M v - They must obey simpler commutation rela-
tions thah M v, which should facilitate its detei‘mination. ' v

" The operators M ., themselves form a tensor'repres_entation of the Lorentz group { so called
infinitesimal representation; see/14/ § 44 and §76 ). In the representation of L. Foldy -

i /3/ _ ‘ . ’ .
Ju. Shirokov ]}w and f/. P,, /)V /DJ., taken separcxtelyﬂare not t?{};:l;s];f the second rank. Indeed,
using the direct Lorentz transformation we can test that _]' and P13 Pa are not space and

time components of the antisymmetric second rank tensor ( 2¢ is the rest mass ).
5

In order that .,‘T/.‘,, will be a tensor, we représent Mj«u in the form 'Zf_ fp, - ZuP/' + ‘;‘w
where 'Zju are such operators that S o

[7/,Zu]=0 i [7/5/ /aujz-[gfw - (2.2)

(it is implied that /l-: c=1 _mv=1234 Py= t'/Oo ). In accordance with the rea-
soning presented in §'lll/ we should assume for the four-vector *Z,, such covariant commuta-

— L. /
tions so that [Z) ? }D,, /C’y] =0 ( e.q. ['Z/“/ ID,,J: L(rS v +f’/4fu/‘}cz)
_ and ['Z/) z,]=¢ (Z/ P P/‘)/ch. It can be shown that 7 can be expressed in this
case interms of M o and PJ“ and called consequently the centre of mass coordinate. But the re-

sult concerning the spin operator turns out to be the same as for ( 2.2 ).

Unlike the paper/ 1/ the subsequent calculations can be made in a covariant form. From commu-

tations

[Ma, P2t o =2 0L, o] =0 (Po r = S0

and (2.2 ) follows that [ J-/uu , /’) ]-7 0 . The operator Z/‘ as a four-vector must have the same

commutations [M/w/ )= i(% S‘/M - 2., SW)) and therefore [.7‘/-“‘,, Zy]=0.

Further we make sure that the commutations [ J v, J:, <;] are of the same form as [M/w, MA&]-
By introducing the notation fJ}’ ]‘z, J; }: fj'zg , j:”’ Jz } and % = [/‘(/. they can be

rewritten in the form

(2.3)- |

['7:'; ‘].-I']=“£':'/'x J Yy [‘TL; K/]= L€k KK ’ [K‘} /9']1_“‘5"'/"“]‘: .



It is only these commutation relatio;ls which restrict the operators I v .The task is reduced to
their determination. The commutations ( 2.3 ) are caracteristic of the homogeneous Lorentz group whose
representations are known, see for excxmple/ 15/ , part II, § 2. .-7: 2. 121 and ( f Ka ) are
invariants of { 2.3 ) and they are simultaneously invariants of our inhomogeneous Lorentz group. But

besides them the inhomogeneous Lorentz group has one more invariant /™2 _ Z rrn

, |
Tpm g G Mty

F=Tpo-lKepl = i(Rp)=i3p.

(2.4)

We have to choose from all irreducible representations of the homogeneous group such representations
so that the matrix [™% in the basis of the functions ](e,,, of the representation ( €5, &, ) see/ 15/,

(m= -£)-5,.i, s ’ ? =€"/ &*1.-.’) be proportional to the unit one. To provide this it is necessa-
ry that

[fen= R (pRY (B3 e F2p2 ¢ pol FAT<KT) - plPLReT1)) fim =

= })—2 )[(,m (2.5)
~ 2
for any function 7({;,,, ( /"- is the value of the invaricmtEn the representation under consideration).
However by applying (F)'K)z and pr(P’[J'il('])f—[/;-[KxI]} : to fe,,, we

can get the functions f 224, m and J[e._t 2 m Let us consider, for example, the operator
,mo

Pe P1 i J. K -5 K, -K,Jy+ ;(135-/7; 3 which is independent of other operators. Demand that Ay fc,,’

would not contain }'eg;, m

stfmzfevez‘mz][e-flm‘”’ﬂg](em—Ce;l (e”'H/)(é'—md) e+d m. (26)

It is necessary for this that Ce =Le+s =0, Since (=t )/(e % foz)(ez"{cz/l/ ¢4 this can ’
be possible only for {=¢, , bed= ¢, I.e. only in the representations (&J &)=t £, €,+4) /M
will be invariant. In this case £ takes the only value =¥, and then _;46 =, see’/ 15/ .From

Egs. ( 3" in/15/ p. 11, § 2 it follows that K=-¢J ({ K= ¢F satisfies also the commutation

relations ( 2.3 ) of the homogeneous group and (2.5) ). From (2.5} we find that r"z,__/e,” =
= f"’g@}em =/ (fd).)clf(,,,, i.e. that the square of the spin, J* is Lorentz invariant. From ( 2.4 )
it follows that 2¢2 J . FF" l [/'5‘; Il + (/';/5‘ t.eJcan be expressed in terms of M/w

and ,OJu only and therefore J is conserved.

2. The representation

M:['—z‘xﬁ]-*j: ; /V":‘-:/’n "Zafg“']; [']l.';'g']:"&yk p (2.7)



is uninitary one and before using it for the description of the states of a particle it is necessary to define
the invariant norm (‘F, "V ). “One of the ways of doing this is doubling of the number of the wave func
tion components {doubling of the representation dimension).

In the followmg we will follow Ju.M. ShirokoV 's statement’ 13/

u o
If under f1n1te transformations the doubled Tf’ ( # ) is transformed by the operator ( o uf-j)
where 1‘ notes the Hermitian conjugation, then the corresponding infinitesimal operators are of the :

form ( 0 Mf) p for example. Since 'Z/u and ID/.L may be considered to be ‘Hermitian . ones
then in the doubled representation.only

j"d_ J __0 : and kz‘{.:(—ij 0/ ' (2.8)
Lo T ¢ 0 (Tt

change essentially.

‘ ) : 0 exp (d
As the metrix matrix }2 we can take any matrix of the form - and then

explid) 0

‘1-4 Kf-h: K and h—’f+lll = .T The operators }'I‘Td and /] Kd

are Hermitian and
(J')E(yf/‘fdz/f)sﬂfi;_f_’g %*{/‘]%ﬂ% | .(2.9)

is a real number.

Under the Lorentz transformation I/J'—; ?ng ?[f ! the mean value < J ) will change:

(T Y= h Ty )= (gt uth U T uzy) = (¥4 ') = (J') - (2a0)

' ‘ !
( The definition Ut AKM = h of the metrix matrix is here used.). In other words, by finding < f)
we may take the mean value-over the same functlons, but of the transformed operator f = 9" j‘ U=

=Qu» Ays Jra . Thus, (.T Y transforms as space components of the cmtlsymmetrl- ;
cal tensor, see /12/ 1993

(f’>=/<})+/§'(f—“<f))él—/}//gz +J»[/[{x.~<k.>]’ /:},—#{— (2.11)

i.e. in a different way as compared to the polarization vector in the Foldy-Shirokov’s representation,

see e.g, /1/ Appendix 2.

In particular, in various Lorentz systems <.T ) has dlfferent values (which does not contradict
the invariance of  J2 , since { I T2 LT ).
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3. Our aim was to show one possible ununitary representation of the inhomogeneous Lorentz
group. We shall not discuss many details of this representation. We make only sevefal remarks.

1) Ju.M. Shirokov has pointed out that it is possible to find the metnc matrix without doubling
the number of components (for example, for spin % h=-pP / + ( P f ) ). However then { ) is not
real in all the Lorentz systems, l.e. can not play the role of the operator of the physical quantity.

2) The Dirac spinors , which describe the states with positive and negative energy transform
cxccordmg to the doubled representation ( 2.7 ), ( 2.8 ) ( see/16/), ). However, the excess components
in the doubled representation can make another meaning. '

3) If we take as in (2.1) the operator . @ —-Z M, Pv see’13/) then we obtain
the representation (40 ) in/13/ in which the operators of the internal angular momentum Jx, I’ , WA
do  not commute as the Pquli matrices ( see commutations ( 3.6 ) in/4/ for the operator 2 ).

4) In the case of ununitary representations with metric matrix h , the S-matrix instead of
the unitarity property must possess the following property S=h ~ S +) ! /I- to provide the
norm- ( zlﬁ th ’f[f ) to be conserved in time.

In conclusion I wish to express my gratitude to Ju.M. Shirokov and L.V. Polubarinov for dis-

cussing the questions broached in  § 2.

Appendix

Spin Operator in the Rest System

Because '§° is equal to ﬁ in the rest }s:ystern, then [Sza, SJ”]= C“E‘;J-,( S:
These commutations define the repreSentation of the three- dimensional rotation group which may be
assumed to be umtctry/ 15/ and consequently 2 ‘May be considered as Hermitean matrices. In the
rest system I_' By M F =g , see { 2.4 ) and S0 /—'/p( . From here it follows that (3—7’)2
* equals to the Lorentz mvcxricmt ['_z/xz .

1f we do not consider the concrete representation we do not know the transformation of spin
functions when the Lorentz frame of reference changes. But for our general theory we need to know only
how the spin functions transform under Lorentz transformations A with velocities [3' parallel
to the particle momentum F)' . The operator = =(8°n)= T Jesel gl is invariant under
such transformation. Indeed let F pug P/P° oo < then

;2/({ -i (B r')3 /Z; )= 1
FIFF[GERG0 - rddlFL T
( the equality . Z J“/’J“

so that Y = WA .«9” i

= (0 s used ). Let us denote representation of transformation /\ by 7//'1
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We has showed that ¥/ = ?//A_'I SUs=3 ,. L-e. that [2, Z(A] = (), This means that
matrix U, is diagonal with respect to the eigenvalues of > and the state [F, m>» under trans-

formation /A transforms into
P ) G N MBS gl )

Let us show that the diagonal elements 7 (’" P} of the spin pcrrt of the trcmsformcrtron Z[A depend
only upon | Pl M generator is an opercrtor proportional to ( /0 N ) sothat MUy= frlﬂlf /)zZ‘Aﬁ(,D /V//-‘{
The operator ( P N ) is three-dimensional scalar and commutes therefore with the operators of three-
dimensional rotations ?’lR . Hence

Z/(RUA ’F;m>:uAuR lﬁ)m>@ or J)

[RAB, m) g(m )= |ARF,m) g (m RF) (A2)

It follows that q (”’,]3) = (;(f") ’ZF)E 9 (m, lF,)'

In conclusion we note that the proof of the equivalence of irreducible representations of the in-
homogeneous Lorentz group with the same J? and "% which has been preéenteci by Wigner/ 17/
can be considered apparently true not only for unitary transformations. Wigner has showed that any repre-
sentation is equivalent to the representation Zla which can be represented as the product of a repre-
sentation of a certain rotation in the space of the "little group”{ in the case of particle with finite mass
such a group contains three-dimensional rotations in the space of wave functiorts with P." =0 ) and
a representation of a Lorentz transformation N which concerns only the momentum variables (see (67)
and (67a) in /117 ). More exactly, under the transformation A (,3 ) from the rest system into other system
~ where the particle momentum is F ) Q,,,om/ (I_’;)A {F))=¢‘Sm,m’ . If some representation‘ U’ does not
satisfy this requirement, then we may point out an equivalent representation which will satisfy it. This
equivalent representation may be obtained by means of the transformation carrying function lf ( /—9., m)
into Z Q,,,'m/ ( {3:, ) A—’(P.)) e (f_’; m’) « Emphasize that this transformation is contained among ope-
ratorsn(’ which represent the transformations A ) of the representation U . So, for any 1epre-
sentation of the inhomogeneous Lorentz group we can indicate such an equivalence transformation
( which may be an ununitary one ) which allows one to reduce the given representation to the form

(67(1)/ 17/ , which is the same for all the representations.

— -
3) We fixe the phase-shifts of the states 'P, m) with different M  defining | P, m> as !P: m> =
'“Z ‘P n} $n m (P ). D (P} isthe spin part of L(R which depends upon Euler rotation angles
£ _7- Ty - ﬂ;’} , where 2 and f are spherical angles of the momentum [.) in a certain fixed system of axes
{ tbe pro;echons n are also quantized with respect to these axes ).

v Ug 1fimd =3 VR, 1) Bpyp (R) Dy (F) =5 IRE 2D D (RF) =
= IRF/ m>. |
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