JOINT INSTITUTE FOR NUCLEAR RESEARCH
 Laboratory of Theoretical Physics

F. Kaschluhn

ON THE ASYMPTOTIC AND CAUSALITY CONDITIONS IN QUANTUM FIELD THEORY II

$$
\begin{aligned}
& \text { F. Kaschluhn } \\
& \text { E-485 }
\end{aligned}
$$

ON TYIE ASYMPTOTIC AND CAUSALITY CONDITIONS IN QUANTUM FIELD THEORY II

Abstract

The conclusions reached in a recent paper on the connection between the interacting field operator approach to quantum field theory of Lehmann, Symanzik and Zimmermann and the functional derivative approach to quantum field theory of 3ogolubov are established in more details. Especially it is shown that Bogolubov's causality condition is a necessary integrability condition for the retarded and advanced solutions of the inhomogeneous KleinGordon equation. Associated with this the fact is investigated in some detail (related to Haag's theorem) that the transformation operator which connects the interacting field operator with the incoming or outgoing free field operator can only be unitary up to a positive renormalization constant smaller than one for real interactions. Further we discuss the differences existing between both approaches with respect to the extrapolation of the reduced S-matrix elements off the mass shell. Concluding we show that it is without any importance for the analytic behaviour of the reduced S-matrix elements in the interacting field operator approach considered in the theory of dispersion relations wether the causality condition for the interacting field operator in the comnutator form is fulfilled or not.

INTRODUCTION

In a recent paper ${ }^{\prime 1 *}$ we have stitudied (on a preliminary stage) the connection between the in-

* In the following quoted as 1 .
teracting field operator approach to quantum field theory as worked out by Lehmann, Symanzik and Zimmer. mann $/ 2 /$ and the functional derivative approach to quantum field theory as proposed by Bogolubow $3 /$. The equivalence between these two is in general not obvious since both approaches start from the consideration of a general field theory (S-matrix theory) in which are derived reduction formulae for the S-matrix elements using quite different mathematical tools: the former makes use of interacting field operators as retarded or advanced solutions of the inhomogeneous Xlein-Gordon equation together with the employment of the asymptotic condition whereas the latter avoids these completely and works only with a siven S-matrix as a functional of incoming or outgoing free field operators and its functional derivatives with respect to these free field operators. The causal field theories are then considered as special cases of the general theory restricted by the causality requirement. However, the causality condition assumed in the first approach in the conventional form that the commutator of the interasting field operator is to vanish for space-like distances of the corresponding space-time points is formulated in the second approach as follows: the current operatcr (2) constructed from the S-matrix and its functional derivative with respect to the incoming or outgoing free field operator is to have the retarded or advanced properties (8), (8) as for its functional derivative with respect to the incoming or outgoing free field operator respectively. The latter condition (in contrast to the former) involves obviously also a time distinghuishing causality condition for time-like distances of the corresponding space-time points which should be required for a definition of 'causality', from a physical point of view. On the other hand, the conventional causality condition for the interacting field operator in the commutator form presumes the existence of the latter as retarded or advanced solutions of the inhomogeneous Klein-Gordon equation, and the explicit absence of a time distinghuishing causality condition for time-like distances might be overcome by the fact that the interacting field operator constructed in the above manner exists only for field theories which are causal in the Bogolubov sense (at least, if
we require the commutator condition for the interacting field operator). Iowever, it will be come cleat from the investigations of the present paper that really the commutator condition for the interacting field operator - in contrast to Bogolubov's condition - cannot be considered as a condition on the reduced S-matrix elements which is important for their analytic behaviour as studied in the theory of dispersion relations (as it is hitherto generally believed).

The present paper is devoted to a thorough investigation of the conclusions reached in I that 1) the interacting field operator approach holds only for causal field theories (in contrast to the assumption in ${ }^{2 /}$) and 2) the causality condition for the interacting field operator in the commutator form might not be sufficient for a general approach to quantum field theory as needed in the theory of dispersion relations. First we show that Bogolubov's causality condition is a necessaty integrability condition for the retarded or advanced solutions of the inhomogeneous Klein-Gordon equation (section 2). In this sense the interacting field operator approach presumes Bogolubov's causality condition and, if the latter is taken into account, we expect also no principal difficulties for an application of the asymptotic condition (compare als64/ and section 4). In connection with this we discuss in some detail the fact (related to Haag's' theorem) that the transformation operator which connects the interacting field operator $\varphi(x)$ with the incoming or outsoing free field operator $\varphi_{\text {int }}(x)$ can only be unitary up to a positive renormalization constant smaller than one for real interactions of the conventional local type. Its consequences for the commutation relations of the free field operators are pointed out. Further we discuss the differences existing between the interacting field operator approach and the functional derivative approach with respect to the extrapolation of the reduced 5 -matrix elements off the mass shell (as considered in the theory of dispersion relations; section 3) Concluding we show that it is quite unimportant for the analytic behaviour of the reduced S-matrix elements in the interacting field operator approach considered in the theory of dispersion relations wether the causality condition for the interacting field operator in the commutator form is fulfilled or not (section 4). This means that the commutator condition for the interacting field operator cannot be interpreted as a condition on the reduced S-matrix elements which has some analytic consequences in the theory of dispersion relations but that the causal properties of the interacting field operator are a priori assumed in the derivation of the reduction formulae(obviously by the use of the asymptotic condition). In this sense we have to understand the indication 2 in 1.

2. CAUSALITY CONDITION AS INTEGRABILITY CONDITION OF THE KLEIN-GORDON EQUATION

[^0]\[

$$
\begin{equation*}
\left(\square-m^{2}\right) \varphi(x)=j(x) \tag{1}
\end{equation*}
$$

\]

where
1(12),

$$
\begin{equation*}
j(x)=i S^{+} \frac{\delta S}{\delta \varphi_{\text {in }}(x)}=i \frac{\delta S}{\delta \varphi_{\text {out }}(x)} S^{+} \tag{2}
\end{equation*}
$$

is the current operator. The S-matrix is considered as a general operator in the .Wilbert space of the incoming or outgoing free particle states and allows therefore the representation / 1 (4), 1 (11)/

$$
\begin{equation*}
S=\sum_{n=0}^{\infty} \int d x_{1} \ldots d x_{n} f\left(x_{1}, \ldots, x_{n}\right): \varphi_{\text {int }}\left(x_{1}\right) \ldots \varphi_{\text {in }}\left(x_{n}\right): \tag{3}
\end{equation*}
$$

wit'?

$$
\begin{gather*}
S S^{+}=S^{+} S=1 \tag{4}\\
\left(\square-m^{2}\right) \varphi_{\text {out }}(x)=0^{\text {out }}\left[\varphi_{\text {ont }}(x), \varphi_{\text {out }}(y)\right]=i \Delta(x-y) \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\varphi_{\text {ont }}(x)=S^{+} \varphi_{\text {int }}(x) S \tag{6}
\end{equation*}
$$

It is evident (compare also the discussion in ${ }^{\prime 2}$) that the functional derivatives in (2) cannot be determined from the S-matrix (3) in a unique manner since the expansion functions $f_{\Omega}\left(x_{1}, \ldots, x_{n}\right)$ are not completely determined by the expansion (3). The reason is that because of (5) the Fourier transforms of $f_{n}\left(X_{1}, \ldots, x_{n}\right)$ contribute only on the mass shell in (3) in contrast to the situation in (2), ie. in general (2) depends on the extrapolation off the mass shell in a completely arbitrary nannet*. Of course, as to their contributions on the mass shell the expansion functions $f_{n}\left(x_{2}, \ldots, x_{n}\right)$ have

[^1]\[

$$
\begin{aligned}
& \left.\quad f_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n!}<0\left|\frac{\delta^{n} S}{\delta \varphi_{\text {in }}\left(x_{1}\right) \ldots \delta \varphi_{\text {int }}\left(x_{n}\right)}\right| 0\right\rangle \\
& \left.\left.=\frac{1}{n!}<0\left|S^{+} \frac{\delta^{n} S}{\delta \varphi_{\text {int }}\left(x_{1}\right) \ldots \delta \varphi_{\text {int }}\left(x_{n}\right)}\right| 0\right\rangle=\frac{1}{n!}<0\left|\frac{\delta^{n} S}{\delta \varphi_{\text {ont }}\left(x_{1}\right) \ldots \delta \varphi_{o n t}\left(x_{n}\right)} S^{+}\right| 0\right\rangle
\end{aligned}
$$
\]

(7) may easily be checked on the ground of the expansion (3). In the second line of (7) we have made use of the stability of the vacuum (putting the arbitrary phase factor equal to unity).

If we define a causal field theory by / 1 (17) 1 (17) /

$$
\begin{array}{ll}
\frac{\delta_{j}(x)}{\delta \varphi_{i n}(y)}=0 & \text { if } y \geq x \\
\frac{\delta_{j}(x)}{f}=0 & \text { if } y \leqslant x
\end{array}
$$

and use the definition (2) then it is possible to write (7) in the form

$$
\begin{equation*}
f_{w}\left(x_{1}, \ldots, x_{w}\right)=\frac{(-i)^{n}}{w!}\langle 0| T_{j}\left(x_{1}\right) \ldots j\left(x_{n}\right)|0\rangle \tag{9}
\end{equation*}
$$

(compare $1(34) * /$. Since (8), (8^{\prime}) involves no conditions for $x_{0}=y_{0}$ the expressions (9),

* This formula, bowever, contains a misprint: the first expression is missing a minus sign.
(11) and (11) are only determined up to contributions arising from quasilocal operators*. We remark
* For the definition of the latter seef5/; they lead to terms of the form
where $P\left(\frac{\partial}{\partial x_{i, \mu}}\right)$ is a covariant polynomial with respect to $\left.\frac{\partial}{\partial x_{i}, \mu}\right) \delta\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-\dot{x}_{n}\right)$ with constant coefficients.
the important point (compare also the discussion in ${ }^{\prime 2 /}$) that (8), (8^{\prime}) is in general a condition for the Fourier transforms of the expansion functions $f_{w}\left(x_{1}, \ldots, x_{w}\right)$ on the mass shell in (3) as well as on their extrapolation off the mass shell in (2). Nlowever, the last cannot be of principal importance
in an S-matrix theory: every causality condition is equivalent to (8), (8') provided it has the same consequences for the 'physical' S-matrix (3), i.e. for the contributions of the expansion functions $f_{w}\left(x_{1}, \ldots, x_{w}\right)$ on the mass shell.

If one is concerned only with the case of two incoming or two outgoing particles in the S-matrix elements then the expansion functions $f_{w}\left(x_{1}, \ldots, X_{n}\right)$ can be represented as vacuum expectation values of advanced or retarded products of the current operator respectively

$$
\begin{equation*}
f_{n}^{(i)}\left(x_{1}, \ldots, x_{n}\right)=\frac{-i}{w!}\langle 0| A\left(x_{1} ; x_{2}, \ldots, x_{n}\right)|0\rangle \tag{10}
\end{equation*}
$$

$$
\left.f_{\Omega}^{(f)}\left(x_{1}, \ldots, x_{n}\right)=\frac{-i}{n!}<0 / R\left(x_{1} ; x_{2}, \ldots x_{n}\right) / 0\right\rangle
$$

where (compare also $/ 2 /$ (27))

$$
\begin{align*}
& A\left(x_{1} x_{2}, \ldots, x_{n}\right)=\frac{\delta^{n-1} j\left(x_{1}\right)}{\delta \varphi_{\text {out }}\left(x_{2}\right) \ldots \delta \varphi_{\text {out }}\left(x_{n}\right)}=(-i)^{n-1} \sum \theta\left(x_{n}-x_{n-1}\right) \ldots \theta\left(x_{2}-x_{1}\right) x \tag{11}\\
& \left.R\left(x_{1} x_{2}, \ldots, x_{n}\right)=\frac{\delta^{n-1} j\left(x_{1}\right)}{\delta \varphi_{i n}\left(x_{2}\right) \ldots \delta \varphi_{i n}\left(x_{n}\right)}=\left[(-i)^{n-1} \sum \theta\left(x_{1}-x_{2}\right) \ldots \theta\left(x_{n}\right), j\left(x_{1}\right)\right] \ldots x_{n}\right)\left[\ldots\left[j\left(x_{1}\right)_{1 j}\left(x_{2}\right)\right] \ldots j\left(x_{n}\right)\right]
\end{align*}
$$

(10) corresponds to the case of two incoming particles and (10') to that of two outgoing particles and the summation in (11) and (11') is taken over all permutations of the $(n-1)$ coordinates
$x_{2}, \ldots, x_{n} / 1$. These formulae may be easily proved by the performances made in sections 2 (relations (80), (81)) together with an employment of the causality condition (8) or (8) in (11) or (11 ') respectively.

Now we proceed to the discussion of the retarded or advanced solutions of the inhomogeneous KleinGordon equation (1). We write them in the form

$$
\begin{align*}
& \varphi(x)=\varphi_{t}(x)-\int_{t}^{\infty} \Delta_{\text {ret }}(x-y) j(y) d y \quad \text { for } x_{0}>t \tag{12}\\
& \varphi(x)=\varphi_{t}(x)-\int_{-\infty}^{t} \Delta_{a d v}(x-y) j(y) d y \quad \text { for } x_{0}<t
\end{align*}
$$

where $\varphi_{t}(x)$ is the solution of the homogeneous Klein-Gordon equation

$$
\begin{equation*}
\left(\square-m^{2}\right) \varphi_{t}(x)=0 \tag{13}
\end{equation*}
$$

which coincides with $\varphi(x)$ for $x_{0}=t$

$$
\begin{equation*}
\varphi(x)=\psi_{t}(x) \quad \text { for } x_{0}=t \tag{14}
\end{equation*}
$$

We shall be especially interested in the limits $t \rightarrow-\infty$ in (12) and $t \rightarrow+\infty$ in (12)

$$
\begin{align*}
& \varphi(x)=\varphi_{i n}(x)-\int_{-\infty}^{+\infty} \Delta_{\text {ret }}(x-y) j(y) d y, \varphi_{i n}(x)=\ell_{t \rightarrow-\infty} \varphi_{t}(x) \tag{15}\\
& \varphi_{t}(x)=\varphi_{\text {ont }}(x)-\int_{-\infty}^{+\infty} \Delta_{a d v}(x-y) j(y) d y, \varphi_{o n t}(x)=\lim _{t \rightarrow+\infty} \varphi_{t}(x)
\end{align*}
$$

which, of course, make necessary the implication of an adiabatic conception. On the other hand, we can make use of the invariance properties of the wave equation (1) assuming that the extrapolation off the mass shell in (2) is performed in a Lorentz invariant (and, of course, finite) manner. Expecially from the translation invariance follows the existence of the energy-momentum operator ρ_{μ} as a displacement

$$
\begin{equation*}
\frac{\partial}{\partial x_{\mu}} \varphi(x)=i\left[P_{\mu}, \varphi(x)\right],\left[P_{\mu}, P_{\nu}\right]=0 \tag{16}
\end{equation*}
$$

so that there exists with respect to the time-coordinate the relation

$$
\varphi(x)=e^{i \rho_{0}\left(x_{0}-x_{0}^{\prime}\right)} \varphi\left(x_{0} x_{0}^{\prime}\right) e^{-i \rho_{0}\left(x_{0}-x_{0}^{\prime}\right)}
$$

For the free field operator (13) we have in a quite analogous manner

$$
\frac{\partial}{\partial x_{\mu}} \varphi_{t}(x)=i\left[P_{\mu}^{0}(t), \varphi_{t}(x)\right],\left[P_{\mu}^{0}(t), P_{v}^{0}(t)\right]=0
$$

where $P_{w}^{0}(t)$ is the energy-momentum operator of a free particle system corresponding to the initial condition at time t and expecially it is

$$
\begin{equation*}
\varphi_{t}(x)=e^{i \rho_{0}^{0}(t)\left(x_{0}-x_{0}^{\prime}\right)} \varphi_{t}\left(\vec{x}, x_{0}^{\prime}\right) e^{-i \rho_{0}^{0}(t)\left(x_{0}-x_{0}^{\prime}\right)} \tag{19}
\end{equation*}
$$

For $t \rightarrow \mp \infty$ (18) and (19) go over to the corresponding relations for the incoming or outgoing fields respectively (compare (15), (15^{\prime})), for instance,

$$
\varphi_{\text {int }}(x)=e^{i P_{0}^{0}, \text { in }_{\text {ont }}\left(x_{0}-x_{0}^{\prime}\right)} \varphi_{\text {in }}\left(\overrightarrow{\text { ont }_{1}}, x_{0}^{\prime}\right) e^{-i P_{0, \text { in }}^{0}\left(x_{0}-x_{0}^{\prime}\right)}, P_{0, i_{\text {in }}^{0}}^{0}=\lim _{t \rightarrow \mp \infty} P_{0}^{0}(t)
$$

For the following we assume, for simplicity, the equality between the eigenvalues of ρ_{μ} and $p_{\mu}^{*}(t)$ *

* Thereby assuming that no bound states appear (for the possibility of a conventional treatment of the latter case
combined with a modified adiabatic conception see f).

$$
\begin{gather*}
\rho_{\mu} \psi_{m}=\rho_{\mu}^{(n)} \psi_{n}^{n} \tag{20}\\
\rho_{\mu}^{0}(t) \psi_{n}^{\circ}(t)=\rho_{\mu}^{(n)} \psi_{m}^{\circ}(t) \tag{21}
\end{gather*}
$$

and require the existence of a state with lowest
energy-eigenvalue, the vacuum ψ_{0} or $\Psi_{0}^{0}(t)$ respectively $\left(P_{0}^{(0)}=0\right.$). Equation (21) is indeed possible for arbitrary t because there exists a unitary transformation between $\rho_{\mu}^{\circ}(t)$ and $P_{\mu}^{\circ}\left(t^{\prime}\right)$ which will be shown in the following (see (37)). (20) and (21) together imply the existence of a unitary transformation which
connects Ψ_{h}^{-}with $\Psi_{n}^{0}(t)$

$$
\begin{equation*}
\psi_{n}=U(t) \psi_{n}^{0}(t), \quad U(t) U^{+}(t)=U^{+}(t) U(t)=1 \tag{22}
\end{equation*}
$$

The operator $\mathcal{U}(t)$ which operates in the inilbert space of the free particle states $\psi_{n}^{0}(t)$ may be represented as an expansion with respect to the normal products of the free field operator $\varphi_{t}(x)$ (compare (3))

$$
\begin{equation*}
U(t)=\sum_{n=0}^{\infty} \int d x_{1} \ldots d x_{n} g_{n}\left(x_{1}, \ldots, x_{n} ; t\right): \varphi_{t}\left(x_{1}\right) \ldots \varphi_{t}\left(x_{n}\right): \tag{23}
\end{equation*}
$$

If one takes into account the well known fact that the free particle states $\psi_{w}^{0}(t)$ may be built up from the vacuum state $\psi_{0}^{0}(t)$ by means of repeated application of the creation operator

$$
\begin{align*}
& a_{t}^{*}(\vec{q})=\frac{i}{(2 \pi)^{3 / 2}} \int d \vec{x}\left\{\varphi_{t}(x) \frac{\partial}{\partial x_{0}} \frac{e^{-i q x}}{\sqrt{2 q_{0}}}-\frac{\partial}{\partial x_{0}} \varphi_{t}(x) \frac{e^{-i q x}}{\sqrt{2 q_{0}}}\right\} \tag{24}\\
& \text { where }(\text { compare } 1(6), 1(7))
\end{align*}
$$

$$
\begin{equation*}
\varphi_{t}(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{q}}{\sqrt{2 q_{0}}}\left\{a_{t}(\vec{q}) e^{-i q x}+a_{t}^{*}(\vec{q}) e^{i q x}\right\}, q_{0}=+\sqrt{m^{2}+\vec{q}^{2}} \tag{25}
\end{equation*}
$$

and

$$
\begin{align*}
{\left[a_{t}(\vec{q}), a_{t}^{*}\left(\vec{q}^{\prime}\right)\right]=} & \delta(\vec{q}-\vec{q}),\left[a_{t}(\vec{q}), a_{t}\left(\vec{q}^{\prime}\right)\right]=0 \\
& a_{t}(\vec{q}) \psi_{0}^{0}(t)=0 \tag{26}
\end{align*}
$$

it is obvious in view of (23) that the left expression (22) represents then the expansion of the states $\psi_{n} \quad$ with respect to the free particle states $\psi_{n}^{0}(t)$. For $t \rightarrow \mp \infty$ we get from the above relations the corresponding for the incoming or outgoing free field operators. We remark already the important fact (see appendix) that the operators $P_{0, i n}^{0}$ and P_{0}^{0}, out have to be identified with
itself itself

$$
\begin{equation*}
P_{0, \text { iu }}^{0}=P_{0, \text { out }}^{0}=P_{0} \tag{27}
\end{equation*}
$$

so that we have (up to some phase factor)

$$
\begin{equation*}
U_{u_{v}}=u_{o w t}=1 \tag{28}
\end{equation*}
$$

Now we perform (17) with $X_{0}^{\prime}=t$ in the following way

$$
\begin{equation*}
\varphi(x)=U^{t}\left(x_{0}, t\right) e^{i P_{0}^{0}(t)\left(x_{0}-t\right)} \varphi(\vec{x}, t) e^{-i P_{0}^{0}(t)\left(x_{0}-t\right)} \eta\left(x_{0}, t\right) \tag{29}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta l\left(x_{0}, t\right)=e^{i P_{0}^{0}(t)\left(x_{0}-t\right)_{e}-i P_{0}\left(x_{0}-t\right)} \tag{30}
\end{equation*}
$$

where obviously

$$
\begin{equation*}
U\left(x_{0}, t\right) U^{t}\left(x_{0}, t\right)=U^{+}\left(x_{0}, t\right) U\left(x_{0}, t\right)=1 \tag{31}
\end{equation*}
$$

Using (14) and (19) we may write (29) in the form

$$
\begin{gather*}
\varphi(x)=U^{t}\left(x_{0}, t\right) \varphi_{t}(x) U\left(x_{0}, t\right)=\varphi_{t}(x)+U^{t}\left(x_{0}, t\right)\left[\varphi_{t}(x)\right. \\
\left.U\left(x_{0}, t\right)\right] \tag{32}
\end{gather*}
$$

From (30) it follows

$$
\begin{equation*}
e^{-i P_{0}^{0}(t)\left(x_{0}-t\right)} U\left(x_{0}, t\right)=\mathcal{U}^{t}\left(t, x_{0}\right) e^{-i p_{0}^{0}\left(x_{0}\right)\left(x_{0}-t\right)}\left(=e^{-i p_{0}\left(x_{0}-t\right)}\right) \tag{33}
\end{equation*}
$$

and from this using (31)

$$
\begin{equation*}
P_{0}^{0}\left(x_{0}\right)=V\left(t, x_{0}\right) P_{0}^{0}(t) U\left(x_{0}, t\right) \tag{34}
\end{equation*}
$$

Interchanging x_{0} and t in (33) yields on the other hand

$$
\begin{equation*}
P_{0}^{0}(t)=U\left(x_{0}, t\right) P_{0}^{0}\left(x_{0}\right) U\left(t, x_{0}\right) \tag{35}
\end{equation*}
$$

(34) and (35) together with (31) imply

$$
\begin{equation*}
U^{t}\left(x_{0}, t\right)=U\left(t, x_{0}\right) \quad U^{t}\left(t, x_{0}\right)=U\left(x_{0}, t\right) \tag{36}
\end{equation*}
$$

Thus (34) may also be written in the form

$$
\begin{equation*}
P_{0}^{0}\left(x_{0}\right)=U^{t}\left(x_{0}, t\right) P_{0}^{0}(t) U\left(x_{0}, t\right) \tag{37}
\end{equation*}
$$

which gives the connection for the equation (21) for different t.
Using (19), (14), (32), (37) and (31) we may now further conclude

$$
\begin{align*}
& \varphi_{t}(x)=e^{i P_{0}^{0}(t)\left(x_{0}-t\right)} \varphi_{t}(\vec{x}, t) e^{-i P_{0}^{0}(t)\left(x_{0}-t\right)} \\
= & e^{i P_{0}^{0}(t)\left(x_{0}-t\right)} U^{+}\left(t, t^{\prime}\right) \varphi_{t},(\vec{x}, t) \|\left(t, t^{\prime}\right) e^{-i \rho_{0}^{0}(t)\left(x_{0}-t\right)} \tag{38}\\
= & U^{+}\left(t, t^{\prime}\right) e^{i P_{0}^{0}\left(t^{\prime}\right)\left(x_{0}-t\right)} \varphi_{t^{\prime}}(\overrightarrow{x, t}) e^{-i P_{0}^{0}\left(t^{\prime}\right)\left(x_{0}-t\right)} U\left(t, t^{\prime}\right) \\
& =U^{+}\left(t, t^{\prime}\right) \varphi_{t^{\prime}}(x) U\left(t, t^{\prime}\right)
\end{align*}
$$

and applying this formula a seconit time we find

$$
\begin{equation*}
U\left(t, t^{\prime \prime}\right)=U\left(t^{\prime}, t^{\prime \prime}\right) U\left(t, t^{\prime}\right) \tag{39}
\end{equation*}
$$

Using the well known addition theorens for exponential operators we may write (30) in the form
where

$$
\begin{equation*}
U\left(x_{0}, t\right)=U_{t}\left(x_{0}, t\right)=\exp _{+}\left\{-i \int_{t} \rho_{0}^{i}\left(t^{\prime}, t\right) d t^{\prime}\right\} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
p_{0}^{i}\left(t^{\prime}, t\right)=e^{i P_{0}^{0}(t)\left(t^{\prime}-t\right)} P_{0}^{i}(t) e^{-i P_{0}^{0}(t)\left(t^{\prime}-t\right)}, P_{0}^{i}(t)=P_{0}-P_{0}^{0}(t) \tag{41}
\end{equation*}
$$

The + -syinbol prescribes the chronological ordering of the operators in an expansion with respect to $\rho_{0}^{i}\left(t^{\prime}, t\right)$. The index t in $U_{t}\left(x_{0}, t\right)$ is in the following to relate to the t-dependence of $p_{0}^{i}(t, t)$ and the argument t to that of the integral limit (see also (43)). In general $U_{t}\left(x_{0}, t\right)$ is the solution of the differential equations

$$
\begin{equation*}
\frac{\partial U_{t}\left(x_{0}, t\right)}{\partial x_{0}}=-i p_{0}^{i}\left(x_{0}, t\right) \mathcal{U}_{t}\left(x_{0}, t\right), \quad \frac{\partial U_{t}\left(x_{0}, t\right)}{\partial t}=i U_{t}\left(x_{0}, t\right) p_{0}^{i}(t) \tag{42}
\end{equation*}
$$

with the initial condition

$$
U_{t}\left(x_{0}, t\right)=1 \quad \text { for } x_{0}=t
$$

$$
\begin{align*}
& \text { or of the integral equations } \\
& \mathcal{U}_{t}\left(x_{0}, t\right)=1-i \int_{t}^{x_{0}} \rho_{0}^{i}\left(t^{\prime}, t\right) U_{t}\left(t^{\prime}, t\right) d t^{\prime}=1+i \int_{x_{0}}^{t} U_{t}\left(x_{0}, t^{\prime}\right) \rho_{o}^{i}\left(t^{\prime}, t\right) d t^{\prime} \tag{43}
\end{align*}
$$

In (42) only the differentiation with respect to the argument t is meant (compare (43)). The unitarity relation (31) now reads

$$
\begin{equation*}
U_{t}\left(x_{0}, t\right) U_{t}^{+}\left(x_{0}, t\right)=U_{t}^{+}\left(x_{0}, t\right) U_{t}\left(x_{0}, t\right)=1 \tag{44}
\end{equation*}
$$

from which in connection with (43) the important relation follows

$$
\begin{equation*}
U_{t}\left(x_{0}, t\right)=U_{t}^{+}\left(x_{0}, t\right) U_{t}\left(x_{0}, t\right) U_{t}\left(x_{0}, t\right)=U_{x_{0}}\left(x_{0}, t\right) \tag{45}
\end{equation*}
$$

${ }^{\text {because of }} U_{t}^{+}\left(x_{0}, t\right) \rho_{0}^{i}\left(t^{\prime}, t\right) U_{t}\left(x_{0}, t\right)=\mathcal{U}^{+}\left(x_{0}, t\right) e^{i \rho_{0}^{0}(t)\left(t^{\prime}-t\right)} P_{0}^{i}(t) e^{-i \rho_{0}^{0}(t)\left(t^{\prime}-t\right)} \mathcal{U}\left(x_{0}, t\right)$
$=U^{+}\left(x_{0}, t\right) \mathcal{U}^{+}\left(t, t^{\prime}\right) P_{0} U\left(t, t^{\prime}\right) U\left(x_{0}, t\right)-P_{0}^{0}\left(x_{0}\right)=U^{t}\left(x_{0}, t^{\prime}\right) P_{0} U\left(x_{0}, t^{\prime}\right)-P_{0}^{0}\left(x_{0}\right)$
$=e^{i \rho_{0}^{0}\left(x_{0}\right)\left(t^{\prime}-x_{0}\right)} \rho_{0}^{i}\left(x_{0}\right) e^{-i \rho_{0}^{0}\left(x_{0}\right)\left(t^{\prime}-x_{0}\right)}=\rho_{0}^{i}\left(t^{\prime}, x_{0}\right)$
where we have made use of the first equation (40), (41), (30), (36), (37) and (39). Using (45) we may now conclude for $U_{t}\left(x_{0}, t\right)$ from (36)*
${ }^{*}$ The relation $u_{t}^{+}\left(x_{0}, t\right)=U_{t}\left(t, x_{0}\right)$ may also be concluded froa (43).

$$
\begin{equation*}
U_{t}^{+}\left(x_{0}, t\right)=U_{x_{0}}\left(t, x_{0}\right)=U_{t}\left(t, x_{0}\right) \tag{47}
\end{equation*}
$$

and from (39)

$$
\begin{align*}
U_{t}\left(x_{0}, t\right) & =U_{t}\left(t^{\prime}, t\right) U_{t^{\prime}}\left(x_{0}, t^{\prime}\right)=U_{t^{\prime}}\left(t^{\prime}, t\right) U_{t^{\prime}}\left(x_{0}, t^{\prime}\right) \\
& =U_{t}\left(x_{0}, t^{\prime}\right) U_{t^{\prime}}\left(t^{\prime}, t\right)=U_{t}\left(x_{0}, t^{\prime}\right) U_{t}\left(t^{\prime}, t\right) \tag{48}
\end{align*}
$$

where we used in (48) in addition (.44) together with (47) and

$$
\begin{equation*}
u_{t^{\prime}}^{+}\left(t, t^{\prime}\right) u_{t^{\prime}}\left(x_{0}, t^{\prime}\right) u_{t^{\prime}}\left(t, t^{\prime}\right)=u_{t}\left(x_{0}, t^{\prime}\right) \tag{49}
\end{equation*}
$$

which is obvious in view of (43), (44) and (46).
Now going to the limits $t \rightarrow \mp \infty$ in (32) we get*

```
* Seefortbis also the discussion at the end oftbis section. We remark that because of (45) we may perform the limit \(\rightarrow \mp \infty\) in (32) also in such a way that \(U_{i n}\left(x_{0}, 7 \infty\right)\) is replaced by \(U_{x_{0}}\left(x_{0}, \mp \infty\right)\) in (50).
```

$$
\begin{align*}
\varphi(x) & =U_{\text {in }}^{\text {out }}\left(x_{0}, \mp \infty\right) \varphi_{\text {int }}(x) U_{\text {oun }}\left(x_{0,} \mp \infty\right) \\
& =\varphi_{\text {out }}(x)+U_{\text {ount }}^{+}\left(x_{0}, \mp \infty\right)\left[\varphi_{\text {ount }}(x), U_{\text {iu }}\left(x_{0}, \mp \infty\right)\right] \tag{50}
\end{align*}
$$

with (compare (19) and (40), (41))

$$
\begin{gather*}
\varphi_{\text {out }}(x)=\lim _{t \rightarrow \mp \infty} e^{i \rho_{0}^{0}(t)(x-t)} \varphi(\vec{x}, t) e^{-i \rho_{0}^{0}(t)\left(x_{0}-t\right)} \tag{51}\\
\operatorname{Uim}_{\text {out }}\left(x_{0}, \mp \infty\right)=\lim _{t \rightarrow \mp \infty} U_{t}\left(x_{0}, t\right)=\exp _{+}\left\{-i \int_{\mp \infty}^{x_{0}} \rho_{0}^{i} \dot{u}_{\text {out }}\left(t^{\prime}\right) d t^{\prime}\right\}, P_{0, \operatorname{lin}_{\text {out }}^{i}}^{i}\left(t^{\prime}\right)=\lim _{t \rightarrow \mp \infty} \rho_{0}^{i}\left(t^{\prime}, t\right) \tag{52}
\end{gather*}
$$

It is easy to see that in such cases where $p_{o}^{i}(t)$ depends only on the field operator $\varphi_{t}(\vec{x}, t)=\varphi(\vec{x}, t)$ and not on its time-derivatives p, in (t^{\prime}) is nothing else but $\rho_{0}^{i}(t)$. expressed by the incoming or outgoing fields at time t^{\prime}. In general (52) allows expansions with respect to normal products of incoming and outgoing free field operators respectively (compare (3) or (23)) so that, using a performance as in 1(21), we may write (50) in the form
or

$$
\begin{align*}
& \varphi(x)=\varphi_{i_{\text {int }}}(x)+i \int d y \Delta(x-y) U_{i n}^{+}\left(x_{0}, \neq \infty\right) \frac{\delta U_{\text {int }}\left(x_{0}, \neq \infty\right)}{\delta \varphi_{i_{i n t}}(y)} \tag{53}\\
& \varphi(x)=\varphi_{\text {in }}(x)+i \int d y \Delta(x-y) u_{i u}^{+}\left(x_{0}, \mp \infty\right) \frac{\delta U_{\text {in }}\left(x_{0},-\infty\right)}{\delta \varphi_{\text {in }}(y)} \tag{54}\\
& \varphi(x)=\varphi_{\text {ont }}(x)-i \int d y \Delta(x-y) \frac{\delta U_{o n t}\left(+\infty, x_{0}\right)}{\delta \varphi_{\text {out }}(y)} U_{\text {out }}^{+}\left(+\infty, x_{0}\right) .
\end{align*}
$$

Equation (54') which is more appropriate for the following results if one starts (using (47)) from the Ilermitian conjugated equation (29).

The comparison of (54), (54') with ($\mathbf{c}^{\prime} 15$), (15') requires necessarily the retarded or advanced properties

$$
\begin{array}{ll}
\frac{\delta U_{\text {in }}\left(x_{0},-\infty\right)}{\delta \varphi_{\text {in }}(y)}=0 & \text { if } y_{0}>x_{0} \\
\frac{\delta \mathcal{U}_{\text {ont }}\left(+\infty, x_{0}\right)}{\delta \varphi_{\text {out }}(y)} & \text { if } y_{0}<x_{0}
\end{array}
$$

We shall call (55), (55') the 'proper causality condition' which, from the mathematical point of view, has the meaning of a necessary integrability condition for the retarded or advanced solutions of the intomogeneous Klein-Gordon equation.

From (55), (55') it follows further using the definition (2)

$$
\begin{align*}
& i U_{\text {in }}^{+}\left(x_{0},-\infty\right) \frac{\delta u_{\dot{u}}\left(x_{0},-\infty\right)}{\delta \varphi_{i w}(y)}=i \theta(x-y) S^{+} \frac{\delta S}{\delta \varphi_{i n}(y)}=\theta(x-y) j(y) \tag{56}\\
& i \frac{\delta U_{\text {out }}\left(+\infty, x_{0}\right)}{\delta \varphi_{\text {out }}(y)} U_{\text {ont }}^{+}\left(+\infty, x_{0}\right)=i \theta(y-x) \frac{\delta S}{\delta \varphi_{\text {ont }}(y)} S^{+}=\theta(y-x) j(y)
\end{align*}
$$

with (compare (48) which we also use for infinite $t \quad *$)

$$
\begin{equation*}
S=S_{\text {int }}=U_{\text {int }}(+\infty,-\infty)=U_{\text {ont }}\left(+\infty, x_{0}\right) U_{\text {ont }}\left(x_{0,-\infty}\right) \tag{57}
\end{equation*}
$$

where, of course, it is $S=S_{\text {in }}=S_{\text {ont }}$ according to (49) and (4) (compare also (3)). For we have (using the unitarity relation (44) also for infinite $t *$)

[^2]\[

$$
\begin{align*}
\dot{y}(y)=i S^{+} \frac{\delta S}{\delta \varphi_{i n}(y)} & =i U_{i u}^{+}\left(x_{0},-\infty\right) U_{i u}^{+}\left(+\infty, x_{0}\right) U_{i n}\left(+\infty, x_{0}\right) \frac{\delta U_{i n}\left(x_{0},-\infty\right)}{\delta \varphi_{\text {in }}(y)} \tag{58}\\
& =i U_{i \mu}^{+}\left(x_{0},-\infty\right) \frac{\delta U_{i n}\left(x_{0},-\infty\right)}{\delta \varphi_{i n}(y)} \text { for } y<x_{0} ; \\
\dot{y}(y)=i \frac{\delta S}{\delta \varphi_{\text {out }}(y)} S^{+} & =i \frac{\delta U_{\text {ont }}\left(+\infty, x_{0}\right)}{\delta \varphi_{\text {out }}(y)} U_{\text {out }}\left(x_{0},-\infty\right) U_{\text {out }}^{+}\left(x_{0},-\infty\right) U_{\text {out }}^{+}\left(+\infty, x_{i}\right) \\
& =i \frac{\delta U_{\text {ont }}\left(+\infty, x_{0}\right)}{\delta \varphi_{\text {out }}(y)} U_{\text {out }}^{+}\left(+\infty, x_{0}\right) \text { for } y_{0}>x_{0}
\end{align*}
$$
\]

Ilene we have also made use of the fact that $U_{\text {in }}\left(+\infty, x_{0}\right)$ cannot depend on $\varphi_{i n}(y)$ for $y_{0}<x_{0}$ because of (55') and $U_{\text {ont }}\left(x_{0},-\infty\right)$ not on $\varphi_{\text {out }}(y)$ for $y_{0}>x_{0}$ because of (55) (we remark that, for instance $U_{\text {ont }}\left(x_{0},-\infty\right)=S^{+} U_{i n}\left(x_{0}-\infty\right)$ according to (49) or to (6) and an expansion with respect to normal products of incoming or outgoing fields respectively; from the latter the above statements follow immediately). The Θ-functions in (56), (56^{\prime}) follow from the proper causality condition (55) (55').*).

* The equality between the expressions on the left-band-side and on the night-band-side of (56). (56') may also be concluded by direct comparison between $(54),\left(54^{\circ}\right)$ and $(15),\left(15^{\prime}\right)$ and the definition (2) of the current operator is
obvious in view of $1(21)$. obvious in view of 1 (21).

Now we get from (56), (55') using the proper causality condition (55), (55)

$$
\begin{array}{ll}
\frac{\delta j(y)}{\delta \varphi_{u_{1}}(z)}=0 & \text { if } \quad z_{0}>x_{0}>y_{0} \\
\frac{\delta j(y)}{\delta \varphi_{\text {out }}(z)}=0 & \text { if } z_{0}<x_{0}<y_{0}
\end{array}
$$

From (59), (59') we may now conclude Bogolubov's causality condition (8), (8^{\prime})* since we may | choose x_{0} very close to y_{0} in |
| :---: |
| $*$ Write here only y instead of x and z instead of y |

(59), (59'). The symbol ~ in (8), (8^{\prime}) in addition is a simple consequence from the requirement cf covariance. Thus we have shown that the causality condition (8), (8^{\prime}) is a necessary integrability condition for the retarded or advanced solutions of the inhomogeneous :Klein-Gordon equation (15),(15) to which the relations (54), (54') are equal under the assumption (55), (55') according to (56), (56^{\prime}). From these considerations it is also very obvious that we have no prescription for $X_{0}=y_{0}$ in (8) , (8^{\prime}) which leads to the possibility of adding quasilocal operators to (8), (8^{\prime}).

The above considerations can be generalized to the case where translation invariance need not be assumed (ie. to the case of open systems). We start from the relations (12), (12') where we quanttize the free field operator $\varphi_{t}(x)$ according to (compare (25), (26))

$$
\begin{equation*}
\left[\varphi_{t}(x), \varphi_{t}(y)\right]=i \Delta(x-y) \tag{60}
\end{equation*}
$$

where the right-hand-side is independent on t, i.e. on the special initial condition (that is a well known property of the solutions of the homogeneous Klein-Gordon equation; compare l/(22)). But from (60) the existence of a unitary transformation follows, such that

$$
\begin{gather*}
\varphi_{t}(x)=U^{+}\left(t, t^{\prime}\right) \varphi_{t^{\prime}}(x) u\left(t, t^{\prime}\right) \tag{61}\\
U\left(t, t^{\prime}\right) \mathcal{U}^{+}\left(t, t^{\prime}\right)=u^{+}\left(t, t^{\prime}\right) \mathcal{U}\left(t, t^{\prime}\right)=1 \tag{.62}
\end{gather*}
$$

According to (14) we get from (61) for $x_{0}=t$ writing t instead of t^{\prime}

$$
\begin{equation*}
\varphi(x)=\psi^{t}\left(x_{0}, t\right) \varphi_{t}(x) U_{(}\left(x_{0}, t\right) \tag{63}
\end{equation*}
$$

Thus we arrived at relations of the type (38) and (32) which may be handled as above.
We remark that the causality condition for the interacting field operator

$$
\begin{equation*}
[\varphi(x), \varphi(y)]=0 \quad \text { if } \quad x \sim y \tag{64}
\end{equation*}
$$

is then fulfilled in a trivial manner since we have according to (63), (62) and (60)

$$
\begin{equation*}
[\varphi(x), \varphi(y)]_{x_{0}=y_{0}}=\left.U^{+}\left(x_{0}, t\right)\left[\varphi_{t}(x), \varphi_{t}(y)\right] U\left(x_{0}, t\right)\right|_{x_{0}=y_{0}}=0 \tag{65}
\end{equation*}
$$

and for the reason of covariance (65) has to hold also for $x \sim y$.
For the above considerations it was assumed that the operator $\mathcal{U}_{t}\left(x_{0}, t\right)$ (or $\mathcal{W}_{x_{0}}\left(x_{0}, t\right)$) has a well-defined limit for $t \rightarrow \mp \infty$ and that also the unitarity condition (44) holds in these limits (it is obvious that (44) must be right for finite t and X_{0} in view of (30) and (40)). Alowever, as it is well known, in going to the limits $t \rightarrow \mp \infty$ we have to adopt a special adiabatic con-: ception (in order to get mathematically well-defined results) and the limiting process nay influence the unitarity property for the operators (52)*. That this is indeed the case may be seen as follows.

[^3]\[

$$
\begin{equation*}
p_{0}^{i}\left(t^{\prime}, 0\right) \rightarrow e^{-\varepsilon / t^{\prime} /} p_{0}^{i}\left(t^{\prime}, 0\right) \tag{68}
\end{equation*}
$$

\]

where $\mathrm{e}^{-\varepsilon\left|t^{\prime}\right|}$ is a damping factor in the sense that, after the calculation is performed, the limit $\mathcal{E} \rightarrow 0$ is to be taken*.

* For anotber possibility of defining the limiting process see ${ }^{8 /}$

Then we get from the right equation (43)

$$
\begin{equation*}
U_{0}\left(x_{0}, t\right)=1+i \int_{x_{0}}^{t} U_{0}\left(x_{0}, t^{\prime}\right) p_{0}^{i}\left(t^{\prime}, 0\right) d t^{\prime} \tag{69}
\end{equation*}
$$

and from this putting $x_{0}=0$ and $t=\mp x_{0}$

$$
\begin{gather*}
U_{0}(0, \mp \infty) \psi_{w}^{0}(0)=\left\{1+i \int_{0}^{\mp \infty} d t^{\prime} e^{-\varepsilon / t^{\prime}} e^{i\left(\rho_{0}-\rho_{0}^{(n)}\right) t^{\prime}} \rho_{0}^{i}(0)\right\} \psi_{w}^{0}(0) \tag{70}\\
=\left\{1+\frac{1}{\rho_{0}^{(n)}-\rho_{0} \pm i \varepsilon} \rho_{0}^{i}(0)\right\} \psi_{w}^{0}(0)
\end{gather*}
$$

where $\psi_{n}^{0}(0)$ is given by (21) and we have made use of the relation (compare (66), (67)).

$$
U_{0}\left(0, t^{\prime}\right) P_{0}^{i}\left(t^{\prime}, 0\right)=e^{i P_{0} t^{\prime}} P_{0}^{i}(0) e^{-i P_{0}^{0}(0) t^{\prime}}
$$

From (70) we conclude using the right equation (67)

$$
\begin{equation*}
\left(P_{0}-P_{0}^{(n)}\right) U_{0}(0, \mp \infty) \psi_{n}^{0}(0)=0 \tag{72}
\end{equation*}
$$

i.e. the states

$$
\begin{equation*}
\psi_{n}^{(\pm)}=\mathcal{U}_{0}(0, \mp \infty) \psi_{w_{\infty}}^{0}(0) \tag{73}
\end{equation*}
$$

are eigenstates of the energy operator P_{0} of the total system (compare (20)) corresponding to the free particle situation $\psi_{n}^{0}(0)$ at $t=\mp \infty$.

Now we show that either $\boldsymbol{U}_{0}(0, \mp \infty)$ is not unitary or there is no interaction between two particles. The proof is in two parts: first we show that a unitary $U_{0}(0, \mp \infty)$ cannot have any influence on the stable states of the system and then conclude from this that there cannot be any interaction between two particles.

For the first part we choose $\Psi_{n}^{0}(0)$ as a stable state $\Psi_{S}^{0}(0)$ (vacuum or one-particle state) and get from (70)

$$
\begin{equation*}
\Psi_{s}=U_{0}(0, \mp \infty) \psi_{s}^{0}(0)=U_{0} \psi_{s}^{0}(0)=\left\{1+\frac{1}{p_{0}^{(s)}-\rho_{0}} p_{0}^{i}(0)\right\} \psi_{s}^{0}(0) \tag{74}
\end{equation*}
$$

since the fixing of the singularity is unnecessary in this case. However, we have

$$
\begin{equation*}
\frac{1}{p_{0}^{(s)}-p_{0}} p_{0}^{i}(0) \psi_{s}^{0}(0) \approx \Lambda \psi_{s} \tag{75}
\end{equation*}
$$

where the operator Λ projects off the state $\Psi_{S}^{0}(0)$ and in view of (74) it is then clear that a unitary operator U_{0} cannot have any influence on the stable states $\psi_{S}^{0}(0)$ (otherwise: if $\psi_{S}^{0}(0)$ is a normalized state, the state ψ_{5} cannot be a normalized one). To prove (75) we proceed as follows: from (compare (20), (21))

$$
\begin{gather*}
P_{0} \psi_{s}=P_{0}^{(s)} \psi_{s} \quad P_{0}^{0}(0) \psi_{s}^{0}(0)=\rho_{0}^{(s)} \psi_{s}^{0}(0) \tag{76}\\
P_{0}=P_{0}^{0}(0)+\rho_{0}^{i}(0)
\end{gather*}
$$

and

$$
\begin{equation*}
\psi_{s}=C_{s} \psi_{s}^{0}(0)+\Lambda \psi_{s} \tag{77}
\end{equation*}
$$

where C_{S} is a normalization constant, it follows

$$
\begin{align*}
P_{0} \psi_{s} & =P_{0}\left(c_{s} \psi_{s}^{0}(0)+\Lambda \psi_{s}\right)=c_{s}\left(P_{0}^{(s)}+\rho_{0}^{i}(0)\right) \psi_{s}^{0}(0)+P_{0} \wedge \psi_{s} \tag{78}\\
& =\rho_{0}^{(s)} \psi_{s}=P_{0}^{(s)}\left(c_{s} \psi_{s}^{0}(0)+\Lambda \psi_{s}\right)
\end{align*}
$$

and from this

$$
\begin{equation*}
\left(\rho_{0}^{(s)}-P_{0}\right) \wedge \psi_{s}=c_{s} P_{0}^{i}(0) \psi_{s}^{0}(0) \tag{79}
\end{equation*}
$$

i.e. our statement (75) (because of the stability of $\psi_{S}^{0}(0)$ the operator $\left(\rho_{0}^{(s)} P_{0}\right)$ has a unique inverse in (79)).

Now we show in the second part of our proof that there cannot be any interaction between two particles provided that a unitary operator $U_{0}(0, \mp \infty)$ has no influence on the stable states. We consider the general S-matrix element for two incoming particles

$$
\text { with } \left.<n|R| q_{1}, q_{2}\right\rangle_{\text {ont }}=\frac{-i}{(2 \pi)^{3 / 2}} \int d x \frac{e^{-i q_{1} x}}{\sqrt{2 q_{1,0}}}<n / j(x)\left|q_{2}\right\rangle_{\text {ont }}=\frac{-i}{(2 \pi)^{3 / 2}} \int d x \frac{e^{-i q_{1} x}}{\sqrt{2 q_{1,0}}} x
$$

$$
\left.+\frac{-i}{(2 \pi)^{3}} \int d x d y \frac{e^{-i q_{1} x-i q_{2} y}}{2 \sqrt{q_{1} q_{2,0}}} \text { out } x\left|\frac{\delta j(x)}{\delta \varphi_{\text {nut }}(y)}\right| 0\right\rangle ; q_{i_{1} 0}=+\sqrt{m^{2}+\vec{q}_{i}^{2}} \text { ont } \quad x<n \cdot a_{\text {ont }}^{*}\left(\overrightarrow{q_{2}}\right) j(x)|0\rangle
$$

reduced in the functional derivative approach to quantum field theore by means of commutation relations of the type $1(8), 1(32)$ (where we have chosen in (80) the states $\left\langle q_{1}, q_{2}\right\rangle,|n\rangle$ as outgoing states in order to make use of the definition (2) for the current operator in connection with the stability property of the one-particle states after the first reduction; $|0\rangle$ is as in (7) the state vector of the incoming or outgoing particle vacuum). Using 1(19) we set for a causal theory up to contributions from the corresponding quasilocal operators

$$
\begin{align*}
& \operatorname{outh}_{n\left|R / q_{1}, q_{2}\right\rangle_{\text {out }}=\frac{-i}{(2 \pi)^{3 / 2}} \int d x \frac{e^{-i q_{1} x}}{\sqrt{2 q_{1,0}}}<\text { out }^{n} / a_{\text {out }}^{*}\left(\overrightarrow{q_{2}}\right) j(x) \mid 0>}^{+\frac{1}{(2 t)^{3}} \int d x d y \frac{e^{-i q_{1} x-i q_{2} y}}{2 \sqrt{q_{1,0} q_{2,0}}} \theta(y-x)<n /[j(x), j(y)]|0\rangle ; q_{i, 0}=+\sqrt{m^{2}+\vec{q}^{2}}}
\end{align*}
$$

In the interacting field operator approach (82) takes the form (compare also section 4)

$$
\begin{align*}
\langle n| R\left|q_{1}, q_{2}\right\rangle_{\text {iu }} & =\frac{-i}{(2 \pi)^{3 / 2}} \int d x \frac{e^{-i q_{1} x}}{\sqrt{2 q_{1,0}}}\left(a_{x}-m^{2}\right)_{\text {out }}\left\langle n / a_{o u t}^{*}\left(\overrightarrow{q_{2}}\right) \varphi(x) \mid 0\right\rangle \tag{83}\\
1 & e^{-i q_{1} x-i q_{,} y},
\end{align*}
$$

$+\frac{1}{(2 \pi)^{3}} \int d x d y \frac{e^{-i q_{1} x-i q_{2} y}}{2 \sqrt{q_{1,0} q_{2,0}}}\left(\square_{x}-m^{2}\right)\left(\square_{y}-m^{2}\right) \theta(y-x)_{o q t}<n /[\varphi(x), \varphi(y)]|0\rangle ; q_{i, 0}=+\eta_{1, m^{2}+\dot{q}_{i}^{2}}$
The first expression on the right-hand-side in (81), (82) and (83) vanishes unless one of the momenta in the final state $|\mathrm{w}\rangle_{\text {out }}$ is equal to $\overrightarrow{q_{2}}$ and vanishes identically if $\left./ \mathrm{n}\right\rangle_{\text {ont }}$ is a two-particle state because of (90), (91). First we consider the second expression in (83) which

$$
\begin{align*}
& \frac{1}{(2 \pi)^{3}} \int d x d y \frac{e^{-i q_{1} x-i q_{2} y}}{2 \sqrt{q_{1,0} q_{2,0}}}\left\{\left(\square_{x}-m^{2}\right) \theta(y-x)\left(\square_{y}-m^{2}\right)\langle n / \varphi(x) \varphi(y) / 0\rangle\right. \\
& \left.-\left(\square_{y}-m^{2}\right) \theta(y-x)\left(\square_{x}-m^{2}\right)_{o u t}\langle w / \varphi(y) \varphi(x) / 0\rangle\right\} ; q_{i, 0}=+\sqrt{m^{2}+\vec{q}_{i}^{2}}
\end{align*}
$$

where we have made a partial integration (see, for details, also the next section). We expand the matrix elements of the field operators in (83') with respect to a complete set of incoming or outgoing particle states $\left|w^{\prime}\right\rangle_{\text {out }}$, for instance,

$$
\begin{equation*}
\left.\langle\omega / \varphi(x) \varphi(y) \mid 0\rangle=\sum_{n^{\prime}}\langle n| \varphi(x)\left|n^{\prime}\right\rangle_{\text {int }} \operatorname{sint}_{\text {out }} n^{\prime}|\varphi(y)| 0\right\rangle \tag{84}
\end{equation*}
$$

and consider the matrix element in $^{i q^{\prime} y} w^{\prime} / \varphi(y)|0\rangle$ which we perform as follows

$$
\begin{aligned}
\operatorname{iu}_{\text {out }}\left\langle n^{\prime} / \varphi(y) / 0\right\rangle & =e^{i q^{\prime} y}\left\langle n^{n^{\prime}} / \varphi(0) \mid 0\right\rangle \\
& =e^{i q^{\prime} y^{\text {iut }}\left\langle\psi_{n^{\prime}}^{0}(0) / U_{0}^{t}(0, \mp \infty)\right.}\left\langle\varphi_{0}(0) \mathcal{U}_{0}(0, \mp \infty) / \psi_{0}^{0}(0)\right\rangle=e^{i q^{\prime} y}\left\langle\psi_{n}^{\prime}(0) / \varphi_{0}^{0}(0) \mid \psi_{0}^{0}(0)\right\rangle
\end{aligned}
$$

where we have made use of the translation invariance $\left(q^{\prime}\right.$ is the energy-momentum vector of the state $\left|n^{\prime}\right\rangle \dot{m}_{o u t}$), expressed all quantities in the usual interaction representation (which is possible since $U_{0}(0,7 \infty)$ is assumed as unitary; compare for details the appendix, especially (A.6), (A.7) and (A.8)) and in the last step used our assumption that $U_{0}(0, \mp \infty)$ or $U_{0}^{+}(0, \mp \infty)$ respectively has no influence on the stable states $\psi_{s}^{0}(0)$ (the fact that with $U_{0}(0, \mp \infty)$ also $U_{0}^{+}(0, \mp \infty)$ cannot have any influence on the stable states follows simply from the unitarity condition $\left.U_{0}^{+}(0, \mp \infty) u_{0}(0, \mp \infty) \psi_{S}^{e}(0)=1 \psi_{S}^{0}(0)\right)$. Ilowever, from (85) we conclude that (83^{\prime}) vanishes identically since according to (85) only the oneparticle states contribute in (83') and the application of the corresponding mlein-Gordon operators yields zero. By the same argument it is immediately seen that also the first term in (83) vanishes identically.

This completes our proof*.

* It is easy to show that our proof can be extended to the case of more than two incoming particles (where one bass to deal with Taproducts; compare (9)) which, however, has no immediate physical interest. Mathematically it would then complately prove that an unitary transformation between $\varphi(x)$ and $\varphi_{i n}(x)$ is only possible in the free field case.

Thus we have shown that the operator $U_{0}(0, \mp \infty)$ cannot be unitary for real interactions and the same must be true for the operator $U_{\text {out }^{\prime}}(0, \mp \infty)$ because we have, for instance, according to (49) $U_{0}(0, \mp \infty)=U_{i_{\text {out }}}^{t}(0 \mp \infty) U_{\text {out }}^{\text {out }}(0, \mp \infty) U_{\text {in }}(0, \mp \infty)$. Since, however, according to the assumption $(20),(21) \Psi_{n}$ and $\Psi_{n}^{0}(0)$ are connected by a unitary transformation the operator $U_{0}(0, \mp \infty)$ which transforms between them must then correspondingly unitary up to a general finite (re-)normalization constant (related to the constant \mathcal{Z} of the following).

It is also very instructive to discuss this situation by studying the commutation relations. From (32) or (63) it follows using (42) and (60)

$$
\begin{align*}
& {[\varphi(x), \varphi(y)]=}
\end{align*}
$$

if we assume in the last step that $\rho_{0}^{i}(t)$ depends only on the field operator $\varphi_{t}(\vec{x}, t)=$ $=\varphi(\vec{x}, t) \quad$ itself and not on its time-derivatives (according to (41) and (ing) $P_{0}^{i}\left(x_{0}, t\right)$ can then only depend on $\varphi_{t}\left(x_{,}^{\prime \prime} x_{0}\right)$ such that

$$
\left[p_{0}^{i}\left(x_{0}, t\right), \varphi_{t}(x)\right]=0
$$

is fulfilled*). However, (86) cannot hold if $\varphi(x)$ is of the form (15), (15') where the free

[^4]field operators $\varphi_{\dot{u}_{u t}}(x)$ obey (5) in connection with the stability requirement for the one-particle states. For then we must have ($|0\rangle$ is as in (7) and (81) the state vector of the incoming or outgoing particle vacuum)
\[

$$
\begin{equation*}
\left.\langle 0 \mid[\varphi(x), \varphi(y)] / 0\rangle\right|_{x_{0}=y_{0}}=-i \overbrace{}^{-1} \delta(x-\vec{y}) \tag{87}
\end{equation*}
$$

\]

where*

$$
\chi^{-1}=\int d w^{2} \rho\left(\mu^{2}\right) \geqslant 1
$$

—. We exclude the singular case $2=0$. It would mean that the solution of the inhomogeneous Klein-Gordon equation cannot exist in the form (12), (12') or (29) in quantized field theory since the quantization (93) for the free field operator $\varphi_{t}(x)$ makes no sense. On the other band, (15), (15') is the limiting case of (12), (12') (notice also that the limiting solutions (15), (15') can always be brought into the form (12), (12') with

$$
\varphi_{t}(x)= \begin{cases}\varphi_{\text {in }}(x)+\int_{-\infty}^{t} \Delta(x-y) j(y) d y & \text { for } \\ \varphi_{\text {oust }}(x)-x_{0}>t \\ \int_{t}^{\infty} \Delta(x-y) j(y) d y & \text { for }\end{cases}
$$

which obviously obey (13) and (14)). It would further mean that we cannot exclude the case that because of (87) (which is more singular than a δ-function) the quasilocal operators appearing, for instance, in (108) have infinite coefficients (probably also the explicitly written term in (108) will then not make'sense).
$\rho\left(\mu^{2}\right)$ is the well-known spectral function of Ktllèn/9/ and Lehmann /10/ which follows from an expansion of the left-hand-side of (87) with respect to a complete set of incoming or outgoing partic. le states (compare (84)). For really interacting fields it must be

$$
\begin{equation*}
z^{-1}>1 \tag{89}
\end{equation*}
$$

because

$$
Z^{-1}=1
$$

results already from the contribution of the stable one-particle states $\left(\rho\left(\mu^{2}\right)=\delta\left(\mu^{2}-m^{2}\right)\right)$. In general (89^{\prime}) would be equivalent to the case that $U_{0, i, m_{1}}(0, \mp \infty)$ has no influence on the stable states (compare the considerations (84) ff) which we have to exclude according to the considerations (84) If. Only for the contribution of the intermediate one-particle states in (87) the operator U0, i, ($0, \mp \infty$) is without any influence according to (compare (15), (15'), (25) and (26))

$$
\begin{equation*}
\langle 0| \varphi(x)|\vec{q}\rangle=\langle 0| \varphi_{\text {out }}(x)|\vec{q}\rangle=\frac{1}{(2 \pi)^{3 / 2}} \frac{e^{-i q x}}{\sqrt{2 q_{0}}} ;|\vec{q}\rangle=a_{\substack{u \\ \text { out }}}^{*}(\vec{q})|0\rangle \tag{90}
\end{equation*}
$$

since it is

$$
\begin{equation*}
\langle 0 / j(x) \mid \vec{q}\rangle=0 \tag{91}
\end{equation*}
$$

$$
s
$$

(91) follows from the stability condition

$$
\begin{equation*}
\langle\vec{q} / s / \vec{q}\rangle=1 \tag{92}
\end{equation*}
$$

(to show this use the commutation relation 1(8)).
From the above considerations we conclude that the free field operator $\varphi_{t}(x)$ for finite t has really to be quantized according to *

[^5]in contrast to (60) (and consequently we have to put the same factor into (26)) or the limiting value for
$$
\left[\varphi_{\dot{u}_{\text {out }}}\left(x_{1}\right), \varphi_{\text {out }}(y)\right]=i \Delta(x-y)
$$
(93) and (93') show evidently that the operator $\mathbb{H}_{x_{0}}$, in $_{0 \text { ut }}\left(x_{0}, \neq \infty\right)$ which connects the interacting field operator $\varphi(x)$ with the incoming or outgoing free field operators $\varphi_{\text {out }}(x)$ can only be unitary up the constant Z. Thus the employment of the solutions (15), (15') where the free field operators $\varphi_{\text {lu }}(x)$ obey (5) together with the stability condition (92) or, more generally spoken, the requirement of compatibility between the commutation relations (quantization) on the one hand and the properties of the mass spectrum and state vectors (Hilbert space) on the other makes necessary a redefinition of the quantization prescription for the free field operator $\varphi_{t}(x)$ for finite t^{*}

Abstract

* The problem of the existence of a unitary operator $U_{0}\left(O_{1}-\infty\right)$ was first discussed by R. Haag/11/. We have adoptad the following point of view: whereas (93) and (93') show that really no unitary transformation between the free field operator $Y_{t}(x)$ or - because of $\varphi_{t}(x)=\varphi(x) \quad$ for $x_{0}=t \quad, \quad t b e$ interacting field operator $\psi(x)$ and the incomeing or outgoing. free field operators φ the (x) can exist it still exists according to (93) and (93') betweentibe unrenor- then correspondingly bold only up to a renormalization factor which, of course, is unimportant for the study of integrability conditions for the solutions (15). (15') of the wave equation (1). However, it should also be remarked that it is quite unclear wether the quantization (93), (93') (which makes the theory consistent only subsequently) can lead to a theory which is consistent at all (and probably it can only be consistent up to the renormalization factor $2^{-1 / 2}$). For instance: if we take into account (93), (93°) in the relations (50) ff there the free wave part mist be multiplied by the renormalization factor $Z-1 / 2$ (and also $j(x)$ in (58), (58), both in contrast to our assumption for the discussion in (86) if which again has to be modified subsequently by considerations analogously to (86) If (which can be repeated ad infinitum). Furthermore, it should always possible to replace $U \sum_{i n t}\left(x_{0}, \mp \infty\right)$ by $\left.U X_{0}\left(x_{0}, \mp\right)_{0}\right)($ compare the footnote for (50$)$) but these two operators. cannot be identical according to (45) if one takes into account (93), (.93'). We add the remark (which is quite evident from the above considerations) that we are always only concerned with the equivalent ordinary representations of the commutadion relations for which vacuum states exist and which are connected by unitary transformations considering the whole question as a renormalization problem with respect to the constant Z connected immediately with the adiabatic conception (compare (93), (93°)) which yields only weakly convergent results.

b

3. THE EXTRAPOLATED S-MATRIX ELEMENTS

We study first the situation connected with the problem of an extrapolation of the reduced S-matrix elements off the mass shell in the functional derivative approach to quantum field theory. If we write 1(16) in the form

$$
\begin{equation*}
\frac{\delta j(x)}{\delta \varphi_{i n}(y)}=-i[j(x), j(y)]+\frac{\delta j(y)}{\delta \varphi_{i n}(w)} ; \tag{94}
\end{equation*}
$$

multiply this equation by $\theta_{1}(x, y)$ and add on both sides the term $\theta_{2}(x, y) \frac{\delta_{j}(x)}{\delta \varphi_{i n}(y)}$, where $\theta_{1}(x, y)$
and $\theta_{2}(x, y)$ obey the relation

$$
\begin{equation*}
\theta_{1}(x-y)+\theta_{2}\left(x_{1}, y\right)=1 \tag{95}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\delta j(x)}{\delta \varphi_{m}(y)}=-i \theta_{1}(x, y)[j(x), j(y)]+\theta_{1}(x, y) \frac{\delta j(y)}{\delta \varphi_{i n}(x)}+\theta_{2}(x, y) \frac{\partial j(x)}{\delta \varphi_{i n}(y)} ; \tag{96}
\end{equation*}
$$

The commutation relation 1(32) appears then in the form

$$
\begin{align*}
& \quad\left[a_{i_{n}}(\vec{q}), j(x)\right]=\frac{1}{(2 \pi)^{3 / 2}} \int d y \frac{e^{i q y}}{\sqrt{2 q_{0}}} \frac{\delta_{j}(x)}{\delta \varphi_{i n}(y)}= \tag{97.}\\
& = \\
& \left(\frac{1}{(2 \pi \mid 3 / 2} \int d y \frac{e^{i q y}}{\sqrt{2 q_{0}}}\left\{-i \theta_{1}(x, y)[j(x), j(y)]+\theta_{1}(x, y) \frac{\partial_{j}(y)}{\delta \varphi_{i n}(x)}+\theta_{2}(x, y) \frac{j_{j}(x)}{\delta \varphi_{i m}(y)}\right\} ;\right. \\
& \text { If we choose } \theta_{1}(x, y) \text { as the usual step function } \quad q_{0}=+\sqrt{m^{2}+\vec{q}^{2}}
\end{align*}
$$

$$
\begin{equation*}
\theta_{1}(x, y)=\theta(x-y) \tag{98}
\end{equation*}
$$

such that according to (95)

$$
\begin{equation*}
\theta_{2}(x, y)=1-\theta(x-y)=\theta(y-x) \tag{99}
\end{equation*}
$$

we get for a causal theory from (97) according to (8)

$$
\begin{equation*}
\left[a_{m}(\vec{q}), j(x)\right]=\frac{1}{(2 \pi)^{3 / 2}} \int d y \frac{e^{i q y}}{\sqrt{2 q_{0}}}\{-i \theta(x-y)[j(x), j(y)]\} ; q_{0}=\sqrt{m^{2}+\vec{q}^{2}} \tag{100}
\end{equation*}
$$

with $[j(x), j(y)]=0 \quad$ for $x \sim y$ (compare $1(18)$), up to terms resulting from the corresponding quasilocal operators. Of course, we may also work in this case with the more general representation (97) and the important point is now that this is also possible (without introducing any modification) if we extrapolate (97) off the mass shell according to 3ogolubov's original idea

$$
\begin{equation*}
m^{2} \rightarrow \tau \tag{101}
\end{equation*}
$$

as the starting point for the analytic continuation of the corresponding matrix elements of (100) with respect to $q_{0} / 3 /$. The reason is that (96) itself is assimple identity (which is not only valid on the mass shell in (97), ie. the choice of the θ-functions has no influence on the extrapolated relations.

In the interacting field operator approach to quantum field theory we meet a quite different situation. :here the causal properties of the field theory are expressed by *

[^6]$$
\left[a_{i n}(\vec{q}), j(x)\right]=\frac{1}{(2 f)^{\frac{3}{2}}} \int d y \frac{e^{i q y}}{\sqrt{2 q_{0}}}\left(\square_{y}-m^{2}\right)\left\{-i \theta_{w e}(x, y)\left(\square_{x}-m^{2}\right)[\varphi(x), \varphi(y)]\right\} ; q_{0}=+\sqrt{m^{2}+\vec{q}^{2}} \quad \text { (102) }
$$
the function $\theta_{\text {ret }}(x, y)$ can only be determined by the boundary values
\[

\lim _{y, 7 \infty} \theta_{ret}(x, y)=\left\{$$
\begin{array}{l}
1 \\
0
\end{array}
$$\right.
\]

with vanishing derivatives $\frac{\partial}{\partial y_{0}} \theta_{z e t}(x, y)$ at these limits ${ }^{*}$. If, however, we extrapolate (102) off the

mass shell according to (101) there appear additional terms depending on $\theta_{\text {ret }}(x, y)$ which make an analytic continuation of the corresponding matrix elements of (102) with respect to q_{0} in general imposesidle.
. We may study this as follows. First it is clear that according to (103) we may add to a given function $\theta_{\text {ret }}(x, y)$ in (102) an arbitrary additional function $\theta_{a}(x, y)$ obeying the boundary condition

$$
\begin{equation*}
\lim _{y_{0} \rightarrow \mp \infty} \theta_{a}(x, y)=0 \tag{104}
\end{equation*}
$$

with vanishing derivatives $\frac{\partial}{\partial y_{0}} \theta_{a}(x, y$) at these limits. The reason is that on the mass shell the relation

$$
\begin{equation*}
\left(\nabla_{y}-m^{2}\right) e^{i q y}=0 ; \quad q_{0}=+\sqrt{m^{2}+\vec{q}^{2}} \tag{105}
\end{equation*}
$$

is valid*. :Iowever, if we extrapolate off the mass shell according to (101) the relation (105) takes
\# Strictly speaking this is only right if we replace the plane waves in (102) by the corresponding wave group solus-
ions of positive energy; compare the performance 1 (27).
the form

$$
\begin{equation*}
\left(\square_{y}-\tau\right) e^{i q y}=0 ; \quad q_{0}=+\sqrt{\tau+\vec{q}^{2}} \tag{106}
\end{equation*}
$$

and the contribution resulting from the function $\theta_{a}(x, y)$ leads correspondingly to the additional term

$$
\begin{equation*}
\left(\tau-w^{2}\right) \frac{1}{(2 \pi)^{13 / 2}} \int d y \frac{e^{i q y}}{\sqrt{2 q_{0}}}\left\{-i \theta_{a}(x, y)[j(x), \varphi(y,]\} ; q_{0}=+\sqrt{\tau+\vec{q}^{2}}\right. \tag{107}
\end{equation*}
$$

in the extrapolated relation (102).
If we choose in (102) $\theta_{\text {ret }}(x, y)$ as the usual step function we obtain

$$
\begin{equation*}
\left[a_{i n}(\vec{q}), j(x)\right]=\frac{1}{(2 \hbar)^{3 / 2}} \int d y \frac{e^{i q}}{\sqrt{2 q_{0}}}\{-i \theta(x-y)[j(x), j(y)]\} ; q_{0}=+\sqrt{m^{2}+\vec{q}^{2}} \tag{108}
\end{equation*}
$$

with $[j(x), j(y)]=0$ for $x \sim y$ (compare (64)), up to contributions from some quasilocal operators. (108) is equivalent to the relation (100). If the extrapolation off the mass shell is carried out the analytic continuation of the corresponding matrix-elements of (108) can be performed as usually /3/. However, the use of other θ-functions leads to the appearance of additional terms of the form (107) which in view of the condition (104) make in general impossible an analytic continuation of the matrix elements
*. Jut since according to (107) these non-

[^7]analytic contributions lead to zero contributions on the mass shell (and we are only interested in the final result for $\tau \rightarrow m^{2}$) they are really spurious, we have no need to continue the .n analytically.

Thus we have shown that both approaches give in general rise to different extrapolations of the reduce S-matrix elements off the mass shell: that part which can be analytically continued is essentially determined by Bogolubov's causality condition and corresponds to a special choice of the θ fundton in the interacting field operator approach.

4. CAUSALITY CONDITION IN THE INTERACTING FIELD OPERATOR APPROACI

Concluding we show that the causality condition for the interacting field operator in the commutator form is without any meaning for the analytic behaviour of the reduced S-matrix elements in the interacting field operator approach as studied in the theory of dispersion relations. For this purpose we consider the S-inatrix element for elastic scattering (compare (80), (83))

$$
\begin{equation*}
{ }_{\text {out }}\left\langle q_{3}, q_{4} \mid q_{1}, q_{2}\right\rangle_{\text {um }}=\tilde{\delta_{q_{3}, q_{4}} i q_{1}, q_{2}}+\left\langle_{\text {ont }} q_{3}, q_{1}\right| R\left|q_{1}, q_{2}\right\rangle_{\text {out }} \tag{109}
\end{equation*}
$$

with

$$
\begin{aligned}
& { }_{\text {out }}<q_{3}, q_{4} / R / q_{1}, q_{2}>{ }_{\text {ont }}=\frac{1}{(2 \pi)^{3}} \int d x d y \frac{e^{-i q_{1} x-i q_{2} x}}{2 \sqrt{q_{1,0} q_{2,0}}}\left(a_{x}-m^{2}\right)\left(\Delta_{y}-m^{2}\right) \\
& \times \theta_{a d v}(x, y) \leq q_{3}, q_{4} /[\varphi(x), \varphi(y)] / 0>; q_{i, 0}=+\sqrt{m^{2}+\vec{q}_{i}^{2}}
\end{aligned}
$$

where the function $\theta_{o d v}(x, y)$ has only to fulfill the condition (103) for interchanged limits (past and (future). Let us assume that the field operator $\varphi(x)$ is a noncausal one, ie.

$$
\begin{equation*}
[\varphi(x), \varphi(y)] \neq 0 \quad \text { if } \quad x \approx y . \tag{111}
\end{equation*}
$$

Now we choose the function $\theta_{a d v}(x, y)$ such that it vanishes for space-like separated points

$$
\begin{equation*}
\theta_{\text {adv }}(x, y)=0 \quad \text { if } \quad x \sim y \tag{112}
\end{equation*}
$$

This choice is quite generally computable with the condition (103) for interchanged limits since the space like region $(x-y)$ vanishes for $y_{0}=7 \infty$ (such points $(x-y)$ which can contribute on the planes $y_{0}=\mp \infty \quad$ lie asymptotically on the light cone; they have infinite values of the points \vec{x} or \vec{y} in ordinary space where in addition the field operator $\varphi(x), \varphi(y)$ itself vanishes**). For time-like

[^8]points $(x-y)$ we choose $\theta_{a d v}(x, y)$ such that it is equal to one in the backward light cone and equal to zero in the forward lisht cone in ($x-y$)-space which again is in accordance with (103) for interchanged limits. This shows that it is always possible to bring (110) in such a form that it represents the Fourier transform of a function $f(x, y)$ which is different from zero only in the backward light cone of ($x-y$). But this property involves all what we need from a causality condition in the theory of dispersion relations.

Of course, we do not believe that the relation (110) derived from an application of the asymptotic condition makes any sense in a non-causal field theory *. It seems evident that the causal character of

[^9]the theory is a priori assumed in the derivation of? (110). If one makes a first reduction in (109) according to the relation (compare 1(21))
\[

$$
\begin{equation*}
a_{\text {in }}(\vec{q})=a_{\text {out }}(\vec{q})+\frac{i}{(2 \pi)^{3 / 2}} \int d x \frac{e^{i q x}}{\sqrt{2 q_{0}}} \dot{y}(x) \tag{114}
\end{equation*}
$$

\]

one sees immediately that one has to solve for a further performance in (110) the wave equation (1). In a second reduction there is assumed that the solution $\varphi(y)$ has a well-defined asymptotic behaviour for $y_{0} \rightarrow+\infty$ and it seems very unlikely that $\varphi(y, \quad$ can be another solution as an advanced one which assumes Bogolubov's causality condition (8^{\prime}) as a necessary integrability condition according to section 2.

In any case, the causality condition (64) cannot be interpreted as a condition on the reduced S-mat rix element (110) which is important for its analytic behaviour as studied in the theory of dispersion relations. If one wants to investigate the consequences of a possible non-causal structure of quantum field theory (which is a very important physical problem also within the theory of dispersion relations) one has to use reduction formulae for the S-matrix elements derived' in the functional derivative approach.

I would like to thank very much Akademician Bogolubov and Dr. Wedvedev and also Drof. Lehmann and Dr. Symanzik for valuable discussions which have strongly influenced the present paper. I am also very grateful to Drof. Drell for his great interest in the preceding paper to this one:

APPENDIX

We derive some relations valid for a representation at arbitrary t. We perform

$$
\begin{equation*}
\left.\left\langle n^{\prime}\right| S|n\rangle_{i n}={\underset{\text { out }}{ }}_{\left\langle n^{\prime}\right.} \dot{S}_{j}^{\prime} n\right\rangle_{\text {out }}=\left\langle\Psi_{n^{\prime}}^{0}(t) / S_{t} \mid \psi_{n}^{0}(t)\right\rangle \tag{A.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{n}^{0}(t)=U_{\text {out }}^{t}(t, \mp \infty) / n>_{\text {out }}^{\prime} \tag{A.2}
\end{equation*}
$$

and (compare (3) and (4))

$$
\begin{equation*}
S_{t}=\sum_{n=0}^{\infty} \int c_{1}^{\prime} x_{1} \ldots d x_{n} f_{n}\left(x_{1}, \ldots, x_{n}\right): \varphi_{t}\left(x_{1}\right) \ldots \varphi_{t}\left(x_{n}\right): ; S_{t} s_{t}^{+}=s_{t}^{+} s_{t}=1 \tag{4.3}
\end{equation*}
$$

with (compare (38))

$$
\begin{equation*}
\varphi_{t}(x)=U_{\text {out }}^{+}(t, \mp \infty) \varphi_{\text {out }}(x) U_{\text {our }}(t, \mp \infty) \tag{A.4}
\end{equation*}
$$

We remark that because of (45)*

[^10]\[

$$
\begin{equation*}
\mathcal{U}_{\text {int }}(t, \mp \infty)=\mathcal{U}_{t}(t, \mp \infty) . \tag{A.5}
\end{equation*}
$$

\]

For the matrix elements of $\varphi(x)$ we write

$$
\begin{equation*}
\operatorname{in}_{\text {int }} n^{\prime}|\psi(x) / u\rangle_{\substack{i n \\ \text { ont }}}=\left\langle U_{t}(t, \mp \infty) \psi_{n^{\prime}}^{0}(t) / \varphi(x) / u_{t}(t, \mp \infty) \psi_{n}^{0}(t)\right\rangle \tag{A.6}
\end{equation*}
$$

since according to (A.2) and (A.5)

$$
\begin{equation*}
\mathcal{U}_{t}(t, \mp \infty) \psi_{n}^{0}(t)=/ n>\min _{0 \omega t} \tag{A.7}
\end{equation*}
$$

and where we may use on the right-hand-side of (A.6) employing (32) and (17)

$$
\begin{equation*}
\varphi(x)=u_{t}^{t}\left(x_{0}, t\right) \varphi_{t}(x) \dot{u}_{t}\left(x_{0}, t\right)=e^{i P_{0}\left(x_{0}-t\right)} \varphi(\vec{x}, t) e^{-i P_{0}\left(x_{0}-t\right)} \tag{A.8}
\end{equation*}
$$

as the interacting field operator corresponding to the t-representation. According to (21) we have for (A:7)

$$
\begin{aligned}
& \therefore P_{0, i n}^{0} U_{t}(t, \mp \infty) \psi_{n}^{0}(t)=P_{0}^{(n)} U_{t}(t, \mp \infty) \psi_{n}^{0}(t) ; P_{0}^{i}(t) \psi_{n}^{0}(t)=P_{0}^{(n)} \psi_{n}^{0}(t) \\
& \text { out }
\end{aligned}
$$

$$
\begin{equation*}
P_{0}^{0}(t)=u_{t}^{t}(t, \mp \infty) P_{\substack{0, \dot{c} \\ \text { out }}}^{0} U_{t}(t, \mp \infty) \tag{A.10}
\end{equation*}
$$

- For $t=0$ (conventional interaction representation $*^{*}$) (A.9) reads
** For this case see also ${ }^{12}$

$$
P_{0, \dot{u}}, W_{0}(0, \mp \infty) \psi_{n}^{0}(0)=P_{0}^{(n)} U_{0}(0, \mp \infty) \psi_{n}^{0}(0)
$$

(A.11)

Comparing this with (72) we arrive at the result that $P_{0, \dot{m},}^{0}$, have to be identified with P_{0} itself which was stated in (27).

Concluding we derive the causality conditions valid in the t-representation. For finite $t(54)$, (54')
reads ${ }^{*}$

* For a quantization according to (93) the integral terms in (A.12). (A.12) have to be multiplied by Z^{-1}. Since this factor is unimportant for the study of integrability conditions for the solutions (12), (12°) of the wave equation (1) we drop it as in section 2.

$$
\begin{align*}
& \varphi(x)=\varphi_{t}(x)+i \int a y \Delta(x-y) u_{t}^{+}\left(x_{0}, t\right) \frac{\delta u_{t}\left(x_{0}, t\right)}{\delta \varphi_{t}(y)} \text { for } x_{0}>t \tag{A.12}\\
& \varphi(x)=\varphi_{t}(x)-i \int d y \Delta(x-y) \frac{\delta u_{t}\left(t, x_{0}\right)}{\delta \varphi_{t}(y)} u_{t}^{t}\left(t, x_{0}\right) \text { for } x_{0}<t \tag{A.12'}
\end{align*}
$$

As in section 2 we now conclude the 'proper causality condition'

$$
\begin{array}{ll}
\frac{\delta u_{t}\left(x_{0}, t\right)}{\delta \varphi_{t}(y)}=0 & \text { if. } \quad y_{0}>x_{0}>t \\
\frac{\delta u_{t}\left(t, x_{0}\right)}{\delta \varphi_{t}(y)}=0 & \text { if } \quad y_{0}<x_{0}<t \tag{A.13'}
\end{array}
$$

and the causality condition

$$
\begin{align*}
& \frac{\delta j(y)}{\delta \varphi_{t}(z)}=\frac{\delta}{\delta \varphi_{t}(x)}\left\{i u_{t}^{t}\left(x_{0}, t\right) \frac{3 u_{t}\left(x_{0}, t\right)}{\delta \varphi_{t}(y)}\right\}=0 \quad \text { if } z_{0}>x_{0}>y_{0}>t \tag{A.14}\\
& \frac{\delta j(y)}{\delta \varphi_{t}(x)}=\frac{\delta}{\delta \varphi_{t}(x)}\left\{i \frac{\delta u_{t}\left(t, x_{0}\right)}{\delta \varphi_{t}(y)} u_{t}^{t}\left(t, x_{0}\right)\right\}=0 \quad \text { if } x_{0}<x_{0}<y_{0}<t
\end{align*}
$$

as necessary integrability conditions for the retarded or advanced solution (12), (12').
We note also the formula

$$
\begin{align*}
& j(x)=i \int^{+} \frac{\delta S}{\delta \varphi_{i n}(x)}=i \frac{\delta S}{\delta \varphi_{\text {out }}(x)} S^{+} \\
& \quad=i U_{t}(t,-\infty) S_{t}^{t} \frac{\delta S_{t}}{\delta \varphi_{t}(x)} U_{t}^{+}(t,-\infty)=i u_{t}^{t}(+\infty, t) \frac{\delta S}{\delta \varphi_{t}(x)} S_{t}^{t}\left(\mathcal{U}_{t}(+\infty, t)\right)^{\prime} \tag{A.15}
\end{align*}
$$

which is evident in view of (3), (A.3) and (1.4). For the operator

$$
\begin{equation*}
j_{t}(x)=i S_{t} \frac{\delta S_{t}}{\delta \varphi_{t}(x)}=i \frac{\delta S_{i}}{\delta \varphi_{\bar{i}}(x)} S_{\bar{t}}^{+} \tag{A.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{\bar{t}}(x)=S_{t}^{+} \varphi_{t}(x) S_{t}, \quad S_{t}=S_{\bar{t}} \tag{A.17}
\end{equation*}
$$

(compare (A.3)) we conclude from (8), (8') and (A.3) and (A.4) the causality condition

$$
\begin{array}{ll}
\frac{\delta j_{t}(x)}{\delta \varphi_{t}(y)}=0 & \text { if } y \geqslant x \\
\frac{\delta j_{t}(x)}{\delta \varphi_{t}(y)}=0 & \text { if } u \leqslant x
\end{array}
$$

which one has to use if one derives reduction forinulae for the S-matrix in the t-representation.

REFERENCES

1. F. Kaschluhn. Nuovo Cimento 12, 541, (1959).
2. H. Lehmann, X. Symanzik and W. Zimmermann. Nuovo Cimento 6, 319, (1957).
3. N.N. Bogolubov, B.V. Aledvedev and M.K. Polivanov. Problems of the Theory of Dispersion Relations
(Hoscow 1958); abridged translation in German in Fortschr. d. Phys. 6; 169, (1958).
4. Y. Okabayashi. Suppl. Nuovo Cimento 9, 599, (1958).
5. N.N. Bogolubov and D.V. Shirkov. Usp. Fiz. Nauk 55, 149, (1955); German translation in Fortschr. d. Phys. 3. 439, (1955), p. 458.
6. F. Kaschluhn. Nuclear Physics (in press).
7. C.N. Yang and D. Feldmen. Phys.Rev. 91, 972, (1950).
8. :1. Gell-Mann and M.L. Goldberger. Phys. Rev. 91, 398, (1953).
9. G. Kăllèn, Helv. Phys. Acta 25, 417, (1952).
10. II. Lehmann. Nuovo Cimento 11, 342, (1954).
11. R. Maag, K. Danske Vidensk Selsk. mat.fys. Aledd. 29, No. 12, (1955), see for refinement D. Hall and A.S. Wightman, X. Danske Vidensk Selsk. mat-fys. Medd. 31, No. 5, (1957) and also O.W. Greenberg. Phys.Rev. (L) 3, 159, (1959).
12. S.S. Schweber. Nuovo Cimento 2, 397, (1955).

[^0]: We show (after some introducing remarks) that Bogolubov's causality condition is a necessary integrability condition for the retarded or advanced solutions of the inhomogeneous klein-Gordon equation

[^1]: We remark that the performance of the functional derivation of the S-matifx (3) with respect to the free field operators φ in (x) or $\varphi_{\text {out }}(x)$ in the conventional manner makes a prior necessary an extension in the definition of the S-matrix since no regard is pall at this to the fact that the free field operators have really to satisfy the equations (5). Thus to obtain (2) we have to go beyond the 'physical' S-matrix 13) where the fields $\psi_{\dot{4}}(x)$ or $\psi_{i n t}(x)$ obey (5) to an 'extrapolated" S-matrix which is a functional of the fields $\varphi_{\text {in }}(x)$ or Y ont (x) considered as arbitrary classical functions (see also 3 3/. espcially the footnote on p. 180 in the German translation). It is obvious that such an extrapolation is arbitrary since the expansion functions $f_{n}\left(x_{1}, \ldots, x_{n}\right)$ are not uniquely determined by (3) and (5) and the same is then true for the result of the functonal derivation which finally is considered as a functional of the field operators $\varphi_{\text {in }}(x)$ or $\varphi_{\text {out }}(x)$ obeying (s) and ordered in normal product form.
 to fulfil some conditions, especially the unitarity condition (4) and the requirement of invariance with respect to the inhomogeneous Lorentz group. Beyond it in a causal field theory they have to obey the calsalty condition which will be discussed in the following. Generally they may be expressed by vacuum expectation values of the functional derivatives of the S-matrix and if we are only interested in matrix elyments of S between states where all momenta of the outgoing particles differ from those of the incoming (which we also assume for (9), (10) and (10')) we may use the simple representation

[^2]: * See for this the discussion at the end of this section.

[^3]: * We do not discuss here the situation where bound states have to be considered (see $6 /$).

 We consider first the operator (compare, (40), (41) and (30))
 where

 $$
 \begin{equation*}
 U_{0}\left(x_{0}, t\right)=\exp P_{+}\left\{-i \int_{t}^{x_{0}} P_{0}^{i}\left(t^{\prime}, 0\right) d t^{\prime}\right\}=e^{i P_{0}^{0}(0) x_{0}} e^{-i P_{0}\left(x_{0}-t\right)} e^{-i P_{0}^{0}}(0) t \tag{66}
 \end{equation*}
 $$

 $$
 \begin{equation*}
 P_{0}^{i}\left(t^{\prime}, 0\right)=e^{i P_{0}^{0}(0) t^{\prime} i} P_{0}^{i}(0) e^{-i p_{0}^{0}(0) t^{\prime}}, p_{0}^{i}(0)=P_{0}-P_{0}^{0}(0) \tag{67}
 \end{equation*}
 $$

 It is obvious in view of (66) that $U_{0}\left(x_{0}, t\right)$ is unitary for finite t and x_{0}. Now we introduce ex-
 plicitly the adiabatic conception in the plicitly the adiabatic conception in the form

[^4]: * (86) holds, of course, also in more general cases, for instance, if $P_{0}^{2}(t)$ depends in addition on the first timederivative of the field operator in first order. We have always in mind only the conventional local interactions for which (86) can be performed.

[^5]: * We remark that (93) (as well as (60)) yields (61). (62). We have no reason to conclude that $U(t, t)$
 is not unitary $) ~$ $U\left(t, t^{\prime}\right)$ since now the factor Z^{-1} appears also in (86).

 $$
 \begin{equation*}
 \left[\varphi_{t}(x), \psi_{t}(y)\right]=i Z^{-1} \Delta(x-y) \tag{93}
 \end{equation*}
 $$

[^6]: * We assume here that (64) is really a condition on the formalism which is important for the analytic behaviour of the. reduced S-matrix elements.

 $$
 \begin{equation*}
 [\varphi(x), \varphi(y)]=0 \quad \text { if } \quad x \sim y \tag{64}
 \end{equation*}
 $$

 and it was shown in 1 that in the reduction formula 1 (29) determined from an application of the asymplotic condition*

[^7]: *We remark that the extrapolated relations 1 (28), 1(29) (between ubich we cannot distinghuish a prior differ also from each other by terms of the form (107).

[^8]: ** Strictly speaking wa have for this to replace always the plane waves by wave packet solutions of positive energy (for $\varphi(x)$ we assume an expansion of the form 1(25), really understood for wave group solutions). Only in the final results we go then over to the limiting case of plane waves (compar el/,. We remark further for the case of possible singularities in space-like regions that it is as usual assumed that the integral over them with a finite \mathcal{G}-function in (110) is defined.

[^9]: * Otherwise dispersion relations would be valid for causal as well as non-causal field theories whicb contradicts the results of the functional derivative approacb. The conclusion that the contributions from space-like regions of the commutator (111) cannot make any sense in the reduction formulae of the interacting field operator approacb may also be reacbed from the requirement of covariance (an argumentation used in 1).

[^10]: * For $U_{t, i n}(t, \mp \infty)$ we may also bave in mind representations of the form (3) or (23) for which (45) is trivial
 account this fact.one has always to replace $\varphi_{t}\left(x_{l}\right)$ by , ${ }_{2} /{ }_{2} \varphi_{t}\left(x_{i}\right)$ or to drop the Z. factor in (93) and to normalize the states $\Psi_{R}^{\circ}(t)$; see also the footnoteat the end of section 2).

