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The conclusions reached in a recent paper on the connection between the interacting 
field operator approach to quantum field theory of Lehmann, Symanzik and Zimmermann and 
the functional derivative approach, to quantum field theory of '3ogolubov are established in 
more details. Especially it is shown that Bogolubov's causality condition is a necessary 
integrability condition for the retarded and advanced solutions of the inhomogeneous Klein
Gordon equation. Associated with this the fact is investigated in some detail (related to 
Haag's theorem) that the transformation operator which connects the_ interacting field opera
tor with the incoming or outgoing free field operator can only be unitary up to a positive re
normalization consta11t smaller than one for real interactions. Further we discuss the dif
ferences existing between both approaches with respect to th'e extrapolation of the reduced' 
S-matrix elements off the mass shell. Concluding we show that it is without any importance 
for the analytic behaviour of the reduced S-mattix elements in the interactin:~ field operator 
approach considered in the theory of dispersion relations wether the causality condition lot 
the interacting field operator in the commutator form is fulfilled or ,not. 

INTRODUCilON 

In a recent pape! 1/* we have s'tbdied(on a preliminary stage) the connection between the in-

* ln the following quoted as 1, 

teracting field operator approach to quantum field theory as worked out by Lehmann, Symanzik and Zimmer· 

~ani121 and the functional derivative approach to quantum field theory as proposed by Bogolubov'31, Th-e 

equivalence between these two is in general not obvious since both approaches start from the considera-

tion of a general field theory (S-matrix theory) in which are derived reduction formulae for the S-matrix 

elements using quite different mathematical tools: the former makes use of interacting field operators as 

retarded or advanced solutions of the inhomogeneous IGein-Gordon equation together with the employment 

of the asymptotic condition whereas the latter avoids these complet{lly and works only witl1 a given S-mat

rix as a functional of incoming or outgoing free field operators and its functional derivatives with respect 

to tl1ese free field operators. The causal field theories are then considered as special cases of the general 

theory restricted by the causality requirement. llowever, the causality condition assumed in the first appro

ach in the conventional form that the commutator of the interacting field operator is to vanish for space-lik~ 

distances of the corresponding space-time points is formulated in the second approach as follows: the cur

rent operator ( 2) constructed from the S-matrix and its functional derivative with respeci to the incomin~ , 

or outgoing free field operator is to have the retarded or advanced properties ( 8 ), ( 8') as for its functio

nal derivative with respect to the incoming or outgoing free field operator respectively. The latter con'dition 

(in contrast to the former) involves obviously also a time distinghuishing causality condi.tion for time-like 

distances of the corresponding space-time points which should be required for a definition of 'causality~ 

from a physical point of view. On the other hand, the-conventional causality condition for the interacting 

field operator in the commutatorJorm presumes the existence of the latter as retarded or advanced solutions 

of the inllomogeneO!fS ~{lein-Gordon equation, and the explicit absence of a time distinghuishing causality 

condition for time-like distances might be overcome by the fact that the interacting field operator COllstruc-

ted in the above manner exists only for field theories which are causal in the !logolubov sense (at least, if 
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we require the commutator condition for the interacting field operator). :Iowever, it will be come clear 
' . 

from the investigations of the present paper that really the commutator condition for the interacting field 

operator- in contrast to Bogolubov's condition - cannot be considered as a condition on the reduced 

. S-matrix elements which is important for their analytic behaviour as studied in the theory of dispersion 

relations ( C!S it is hitherto -generally believed). 

The present paper is devoted to a thoroug_h investigation of the conclusions reached in I that 

J) the interacting field operator approach holds only for causal field theories· (in contrast to the assump

tion. ;r/21) and 2) the causality condition for the interacting field operator in the commutator form 

might not be sufficient for a general approach to ·quantum field theory as needed in the theory of disper

sidn relations. First we show that Bogolubov's causality condition is a necessary integrability condition 

for. the retarded or advanced solutions of the inhomogeneous Klein-Gordon equation (section 2). In this 

sense the interacting field operator approach presumes Bogolubov's causality condition and, if the latter 

is taken into account, we e!'pect also no principal difficulties for an application of the asymptotic condi

tion· (compare als641 and section 4 ). In connection with this we discuss in some detail the fact (rela

ted to :Iaag;sf theorem) that the transformation operator which connects the interacting field operator 

t.f (X) with the incoming or outgoing free field operator fu., ( ~) can only be unitary up to a po-
. 011/1; . 

sitive i'enormalization constant smaller than one for real interactions of the conventional local type. Its 

consequences for the commutation relations of the free field operators are pointed out. Further we discuss 

the differences existing between the interacting field operator approach and the functional derivative 

approach with re.spect to the extrapolation of the red~ced S-matrix elements off the mass shell (as consi· 

dered in the theory of dispersion relations; section 3) Concluding we show that it is quite unimportant 

for the analytic behaviour of the reduced S-matrix elements in the interacting field operator approach 

considered in the theory of dispersion relations wether the causality condition for the interacting field 

operator in the commutator form is fulfilled or not ( sectio~ 4). This means that the commutator condi

tion for t~e interacting field operator cannot be interpreted as a condition on the reduced S-matrix ele

ments which has some analytic consequences in the theory of dispersion relations but that the causal 
. . . 0 

properties of the interacting field operator are a priori assUmed in the derivation of the reduction formu· 

lae(obviously by the use of the asymptotic condition). In this sense we have to understand the indica

tion· 2 in 1. 

2. CAUSALITI' CONDITION AS INTEGRABILITY. CONDITION OF TIIE KLEIN-GORDON 

EQUATION 

We show (after some introducing remarks) that Bogolubov's causality condition is a necessary in

tegrability condition for the retarded or advanced solutions of the inhomogeneous I([ein-Gordon equation 

{ o- m.t) <f (x.) =j (x) ( 1) 
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'1(12), 

( 2) 

is tJw current operator. The S-:natrix is considered as a tieneral operator in the :lilbert space of the 

incoming or outgointi free particle states and allows therefore tl1e representation /1 ( 4). 1 (11) I 

Oo s =- z 
n=o 

wit.'1 

and \ 
\ 

( 3) 

( 4) 

(5) 

(6) 

It is evident (compare also the discussion in/21) that the functional derivatives in ( 2) cannot be 

determined from tl1e S-rnatrix ( 3) in a unique manner since tl1e expansion functions fl\. (x11 ... 1 X n,) 
are not completely determined by tl1e expansion ( 3 ), The reason is that because of ( 5) the Fourier 

transforms ofjn,(X1 , ... , Kn.) contribute only on t!1e mass shell in ( 3) in contrast to tl1e situation in 

( 2 ), i.e. in LJeneral ( 2) depends on tile extrapolation off the mass sllell in a co'llpletely arbitrary .nan· 

net*. Of course, as to t!Jeir contributions on the mass shell the expansion functions /n {x1 , .. , Xn.) have 

, 0 * IV e remark that the performance of the functional derivation of the S·matrlx ( 3 ) with respect to the free field opera· 
tors 'f'in. (K) or 'fo~tt (lC.) in the conventional manner maAes a tJriorl n11crssary an utension In the de/l11ilion of the s.matrix 
since no regard is paid at this to the fact that the fru field operators hat•fl really to satisfy the tquations ( $ ), Thus to obtain 
( 2) we hat•e to go beyond the '/Jhysical' S·matrlx (3) where the fields 9U. (IC} nr oft..£ (I() obey ( $) to an 'extrapolated' 
$.matrix ruhich is a functional of the fields 'f,it, (!C) or V'~~t.f (I() cOn5ldtred as arbitrary clauicalfunctions ( see al5of3/, espe. 
cia/ly the footnote on /J• 180 In the German translatinn), It is obvious that such an .xtrapolatlon is arbitrary since the upansion 
/unctions f,.. (lC£ 1 "·• Xn.) are not uniquely ddermlned by ( 3) and ( ') and the same is then true /or the result of the fum·· 
tiona/ d~r~vation which finally i1 conlidered as a functional of the /leld operators ft.n, (") or 'f'M;t (") obeying ( $) and 
ordered 1n normal product form, , 

to fulfil so'lle conditions, especial.ly the unitarity condition ( 4) and the requirement of invarianco witl1 

respect to the inhomogeneous Lorentz group •. '!Jeyond it in a causal field theory they have to obey tlle cau

sality condition whicl1 will be discussed in the_following, Generally they may be expressed by \'acuwn o:.:

pectation values of the functional derivatives of tl1e S-matrix and U we are only interested in matrix ele

ments of S between states where all momenta of tl1e outgoing particles diller from tl1ose of the incoming 

(w!Jich we also assume for ( 9 ), ( 10) and ( 10') ) we may use tl1e simple representation 
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J ! I ~~s . 
"'(xt····,xtt.)= IV! <. 0 j 0 :> 

O'fin (x1 ) ••• S'fi~t (xn.) 
ott.#: ow~ 

=-4<ofs+ sits / - L / on,s ~7> 
n.. ofpt-(t1 ) ... arOin-(x~~,) 0)-11/!<0 t~o .. .L(x) c:co (x·)S/0> 

011/t l 011t · I C1~ ~ ••• CJ 1 o~i: n 

( 7 ) maJ' easily be checked on the ground of the expansion ( 3 ). In the second line of ( 7) we have 

made use of the stability of the vacuum (putting the arbitrary phase factor equal to unity). 

If we define a causal field theory by I 1 ( 17 ), 1 ( 17') I 

~- (t.) -
5'f.M (j) -0 

if j ~X (8) 

~i (x) 
If =- 0 

~ c.fofd; 

if J ~X ( 8') 

and use the definition ( 2) then it is possible to write ( 7) in the form 

f ( (-i)W I . . . I 
111 xi, ... ,xw)=- 1 <O Td{>< 1) ... J(x"') 0> 

111. 
(9) 

(compare 1 ( 34 )* /. Since ( 8 )1 ( 8') involves no conditions for )(0 :: ~0 the expressions (.9 ), 

*This formula, however, contains a misprint: the first expreS$ion is missing a minus sign. 
----

( 11 ) and ( 11') are only determined up to contributions arising from quasilocal operators*. :Ve remark 

----.- p;,-,1,; definltio~~/i/;;lati;,---;;;751; they lead to terms of the form 
L.---·---------· 

, d . . 

. a ) p ( <>xi.,«.-) b (x 1 -x~J·· 0 (xi -l<"') 
where P ( ()Xlfo is a covariant polynomial with respect to ·d with constant coel/iclents • 

. · . a xl,.M-

tll'fJ important point (compare also the discussion in/21) that ( 8 ), ( 8') is in general a condition for 

tl1e Fourier transforms of the expansion functions Jw (X1 , ... J Xw) on the mass shell in (3) as well 

as on their extrapolation off the mass shell in ( 2 ). llowever, tl1e last catmot be of principal importance 

in an S-matrix theory: every causality condition is equivalent to ( 8 ), ( 8') provided it lws th~ sam: 

consequences for the 'ph.vsical' S-matrix ( 3 ), i.e. for the contributions of the expansion functions 

fw {xJ., ... , X"'). on the mass shell. 

If one is concerned only with the case of two incoming or two outgoing particles in the S-matrix 

elements then the expansion functions f w (xi'"" J X,.,) can be represented as vacuum expectation value~ 
of advanced or retarded products of the current operator respe~tively 

(i) . 

fn- (lC1 , ... ,Xn.)= ~~ <O/Il(xi;X~, ... ,_~,.,)/0> (10) 
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. ( 10') 0 

where (compare also/2/ ( 27)) 

A<•i ·~, ... ,t.J ~ ~r-t~~~J~<f ( >=(-t)nliB(xn-xll_,). .. G{"~i.x1)· r 11) 

oul: .t oul: Xrt [j·( ) (: 0 

n-1. . • J ~~ ... LJ (ta),J ( 1l1 )J...J . 
R("i x~ ..... ~"')= ~ ;'(JC1.) - {; n·:t ( . . ' ll . ··)r fit. • .· l11' J 

• . ~<{J,,(x,.) ... ~f~MC"n)=c") ~e .t:t-":, ... e,~-~·tn t"'Vl:<!),j (xa)J...J(tnh 
( 10) corresponds to the case of two incoming particles and ( 10') to that of two outgoing particles and 

. ·~ ' 

the summation in ( 11) and ( 11') is taken over all permut~tions of the ( n- 1) coordinates 
··' :· :• . 

X t, ... , t. n. f 1 These formulae may be easily proved.by the performances made in sections ~ . 

(relations ( 80 ), ( 81 ) ) together with an employment of the causality condition ( 8' ) or ( 8 ) in ( 11 ) - ' or ( 11' ) respectively: 

Now we proceed to the discussion of the retarded or acf,vanced solutions of the inhomogeneous Klein-

Gordon equation ( 1 ). TVe write tlzem in the form ' 

f (xJ ·f. (~J- j : •. t (•-yJj (rJd; f•~ x. ,t 
t . ·' 

( 12) 

. . 6 

f (x)~ ft (x)- I llat/v (x-y)J {yJc/y fot. Xo < l . (12') 

-Oo 
where {Jt, (I(} is the solution of the lzomogeneous Kleiri-C}ordon equation 

(a-m/') <pi: 0

( x} ""- 0 ( 13) 

which coincides with· <{J ( l(} for X 0 =- -1: 

(14) 

We shallbe especially interested in the limits t--eo in ( 12) · and t-+eo in ( 12') 

f (<). f;. (<)- f ::d ( x-y) J( yJ "'~' if., .( )() = e"" <fi, {x) 
-oo . t:--Oo . ( 15) 

+00 .. 

f' (x) = f, .. t (•J-} Aodv (x-~Jj ( yJ Jy, '{' ... /•) ~ l.i.. '{, M 
. -~ . ( 15') 
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wl1ich, of course, make necessary the implication of an adiabatic conception. On the other hand, we can 

znalce use of the invariance properties of the wave equation ( 1) assuming that the extrapolation off the 

':Z,ass shell in ( 2) is performed in a Lorentz invariant (and, of course, -ii"m.te) manner. Expeciaiiy from 

· · tl1e translation. invariance follows the existence of the energy~momentum operator . !}, as a 

· displacement d operator in t~e sense 

f (X) = l- L ').., 'f ( )()] J [ /)v' pv} =- 0 ( 16 ' 

so that there exists with respect to the time-coor_dinate the relation_ 

iPo (xo-x:J cf) (x- ') -iPo (x .. -x~), f (x) =- e 1 , xo e . . ( 17) 

For the free field operator ( 13) we have in a quite analogous manner 

.. l- cO (1() = i, fp., (t}, cl(JC)l (~ {lJ,P: (t)]=O ( 1BJ 
cr X~ Te . Lfo /; 'J'. 

where e::, ( t) is the energy·momentum operator of a free particl_e systljim corresponding to the initial 

condition at time t and expeciaiiy it is 

,f) , ) _ i~0 (t)(x.,-x;) tO ( .... ') _,·poo(t)(xo-x;) 
l t l ", - e r-~; x' x o e . r 19 J 

For t _,..;; oo ( 18) and ( 19) · go over to the cod-esponding relations for the incomin.g or outgoing 

fields respectively (compare ( 15 ), ( 15' )), for instance, , •.. 
. /. p• . (K -X 1) 'p•. ( I 

tf () o,~... ~ 0 f r-· ') -L o,t..n Xo-X) o e· po (_L) 
,;,, l( = e .,.,.... Lit 1( )( e ant 0 . p . = l..m . 0 "t; 
..., ) D ' J 0"' 

owf; on.t. 'old; t - + oo 

( 19') 

For the following we assume, for simplicity, the equality between the eigenvalues of 

~ (t). ~ 
~ and 

* Thereby assumin8 that no bound states af!£ear (for the possibility of a conventional treatment of the latter case 
combined with a modified adiabatic conception see/' I ), . 

0 tU (tt.) yw T11- = ~ lfn-

~ {t} lfno {t} ~ ~(rt} ~o ( t) 
(ZJ) 

( 21) 

and require the -existence of a- state with lowest energy·eigenvalue, the vacuum .lfo 
or 'fl". 0 (f.) respectively ( p:•J -::. 0 ). Equation { 21) is indeed possible for arbitrary t because 

there e:ists a unitary transformation between P_;'v (t) and ~;:_ (t'} which wiii be shown in th~ follow· 

ing (see ( 37) ), ( 20) and ( 21 ) together imply the existence of a unitary transformation which 
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connects f, with tf,l0 ( 1:.) 

. + f 

U {t;) U {l) .. lJ {~;) U{t) = L 
( 22) 

Tile operator U (l:) wllich operates in the Ililbert space of the free particle states ~ 0 
( t.} may be re

presented as an expansion with respect to the normal products of the free field operator ft. (IC) 
(compare (.3)) oo . . 

U {t}= ~0 jdx~. ... dxn. 9n (K 1 , ••• ,Xnjt): ft (x1) .•• cf~. (x,.,): (23) 

If one takes into account the well known fact that the free pf1tticle states '(," (i) may be built up from 

the vacuum state 'f/ (t) by means of repeated application .of the creation operator 

0:: (f). l:tr)V. j dX { ft (.)a; -~-:-:~-- i!;ix, ft (x} -:;;; } 
where ( compare 1 (6), 1 (7) ) 

and 

fe (<)= ~~~)% ]:f. {a.~.(f!e-'9;a:(f)ei¥Y,~,=t~ 

[~(f), Q,: (f')]= g(f-i'), [~(f). ~t (f'J]= 0 

a,t (f) roo (f) :0 

( 24) 

( 25) 

( 26) 

it is obvious in view of ( 23) that the left expression ( 22) represents·then the expansion of the states 

Vn, with respect to the free particle states ~o ( t) . Fort-:;: Do we get from the above rela

tions the corresponding for the incoming or outgoing free field operators. We remark already the impor-
po " tant fact ( see appendix) that the operators " ~... and P ou+ have to be identified with 
, , wv _o J 1" 

itself 

so that we have (up to some phase factor) 

with 

Uuv ~ Uowt: = 'i . 
Now we perform ( 17) with )( 

1 
: -{; 

0 
in the following way 

( 27) 

( 28) 
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l£ (xo, t)= e iPuo{t)(xo-t)e-i~ (xo-1:) 
( 30) 

where obviously 

. . f. f 

U {xo,l:) U (X.o,t)= U {xo.t)U (x,Jt)=i. 
( 31) 

Vsin{J ( 14) and (19) we may write ( 29) in the fortn 

t{J(x):Uf (x.,):) eft (x)U (xoJt) = ~{K}+Uf-(xo,f}[<ft (x), 

U { Xo, t)). ( 32) 

From ( 30 ) it follows 

-L·~o(t}(xo~i) 1-( ) -i~"(xo)(xo-l)( -L·R..{x.,-i)) 
e U(xo,-t) ... U (xoe =e. ( 33) 

and from this using ( 31 ) 

fo~~ (xo)"' U (t, Xo) ~ 0 (t} Z/ (xo,l:), (34) 

Interchanging X 0 and t in ( 33) yields on the other hand 

po• (t): U (xo,t) ~o (xo)U{t,Xo) ( 35) 

( 34) and ( 35) to{Jether with ( 31 ) imply 

t . . f 

U (Xo,t)= U(b,xo) U {f.xo)~ U (xo,t). 
~ 

(36) 

Thus ( 34) may also be written in the form 

~" (xo):U
1
(xo,t)fr{t)U (x")t) 

( 37) 

which gives the connection for the equation ( 21 ) for different -/;. 

Usin!J ( 19 ), ( 14 ), ( 32 ), ( 37) and ( 31) we may now fur.ther conclude 
tO ') iP.,o{i){Xo-i) _,. -t'~o{t){Xo~i} 
1t (x -: e ~. (x, t) e 
"'e i P.'(t){i;t) U f (f.:~ 'ft, (X: t) U (t, +.'} ~ -: P; (t)( x,-l) 

= U + ( t, t J e i P.,o {i')(Xo-t) ft' (t;f) e -t P., (l:j(t.,-1;) U ( f:, t J 
: ~~ 

1 
(tJ t') <ft' (x) U {t, t') 

( 38) 



I 11 

and applying this for:nula a seco:;.' time we find 

u (t, {; If) = u ( ( t II) u ( tJ t '), ( 39 ) 

Using the well known addition'theore,-ns for exl-'onential operators we may write ( 30) in the form 
. t.., 

U (xo,t)-=1tr- (Xo_,t)=£xp_{-i ;~~{i:;t)clt'} (40) 

+ t 

The + -symbol prescribes the chronological ordering of the-operators in an expansion with respect to • I . 

8,' (t, t). The index t in Ut-lxo,t} is in the following to relate to the -(; -dependence of 

~ t'( t: {;) . and the argument t to that[]} the integral limit (s~e also ( 43 )). In general U~; (Xo 
1 
f) 

is the solution of the differential equations 

with the initial condition 

or of the integral equations f: 

U
1

(xoJ)=t-i j~"i((l) Ut {t;t}dt'=i+ij Ut(xo,!:'}~i (('t)o£!:
1
• 

t Xo 

In (42) only the differentiation with respect to the argument t is meant (compare ( 43) ). 
tarity relation ( 31 ) now reads 

.f + ut (xoJ t) uf. (xo) )= ~tt (xo,l:) ut (x~,.l:}-== i 

from which in connection with ( 43) the important relation follows 

Ut(x,, /;)" u: (x,, t) U< (x., l) U< ( x,, t)" U,. (x.;t) 

becauseof · f iP.,"{t}{t~t) · -t"P"{t){t'-t) 
ut+ (x.J:) P.,' (t,'-L) Ut (Xo,tJ= U ('<o, t) € Por,we " U ( Xt>, t} 

= U+{X 0 , t} U(t,£) B, U (fJ fJ U (xo, {; )-R," (x.) = Uf(>f., t') f?. 'l{ (X "J t J- po• ( ~o) 
:: i P; (Xo)U

1

-){o)ni( ) -iP,"(xo)(t'-_1,}_ pi (t 1 ) e {':' x. e _ o x" 
' 0 J 

( 42') 

( 43) 

Tlw uni-

( 44) 

( 45) 

( 46) 
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where we have made use of th.e first equation ( 40 ), ( 41 ), ( 30 ), ( 36 ), ( 37) and ( 39 ). Using ( 45) 

we may now conclude for Ut (Xo,t} from ( 36 )* 

* The relation u;(to,t )= U.1: ( 1:, )(.,) may also be concluded fro:~1 ( 43 ). 

+ 
Z~t {xo,t )= Ux 0 {t,xo)= U: (t)xo) 

and from · ( 39 ) 

. U~; (Xo,t}=- u~ ((t) Ue (Xo,i'}= Ut·(~; 1:) ul:' (xo,t') 

"'Ut (xo, i') U:' (t; t) = U~, (xo, t') Ut (t~ t) 

where we used in ( 48) in addition (.44) together with ( 47) and 

Z~t~ (t,t) Ut' (xo,t)U~:' (t~t')"'Ut: (xo1 f'J 
which is obvious in view of ( 43 ), ( 44) and ( 46 ). 

Now going to the limits t- t= co in ( 32) we get* 

( 47) 

( 48) 

( 49) 

*See for. this also the discussion at the end of this section. We remark that because of ( 45) 
we may perform the limit t ~:;: Oo in ( .32) also in such a way that Uc:., (Xo 'f-oo) is replaced 
by l.( "• (Xo, ~ oo) in ( 50 ). oJVt 

1 

c 0 ( x) -= U ~~ ( J( o 1 + oo) <f 1M ( x) U ~ ( x o + 0o) 
1 olilt ow(; · ou-t ' 

~fu, (x}tU~~ (Xo,+~J[fUt,· (t.),U,'u {xo,:t=c..)] 
OUtt ol.j,i; olllt ou-t 

(50) 

with (compare ( 19' ) and ( 40 ), ( 41 ) ) 41 

f ~ (x) ~ tUu e c P: (t){x-t) 1.~ • -i Po" (1:) (Xo-t) · 
ostt t - + oo f ll(, t) e (51) 

Xo 

Uw 
old 

( { ·f l ( I r' L 1 /) L I ) 
Ko/foo):lun Ut (xo,t)= exP.r -1- P0, ~ t)oltj, f{,~t. (i:} = ~im- Po (t) 

t.-:;:oo . 1=0. ou-t out, -l:~:;:oo (52) 

·It is easy to see that in such c~ses ~here p·: {t) dep~nds only on tfe field operator f.Jt;t}:::cf{?;-1:} 
and not on its time-derivatives ei~ (f ') is nothing else but ~ ( !:) . expressed by the in com~ 

1 'u11t · 
ing or outgoing fields at time t . In general (52) allows expansions with respect to normal 

products of incoming and outgoing free field operators respectively (compare ( 3) or ( 23)) so that, 

using a performance as in 1( 21 ), we may write ( 50 ) in the form 
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or 

b lP.· 
1Ln 

(53) 

(54) 

(54') 

Equation (54') which is more appropriate for the following results if one starts (using ( 47)) from the 

aermitian conjugated equation ( 29 ). 

The co:nparison of (54'), (54') with (i-!5 ), ( 15') requires necessarily the retarded or advanced 
properties 

5' U in (X.,,- oo) = O 

S''fin ry) 
~ UoJd {-tOo J Xo) 

b'fo~ (1J)· 

if (55) 

(55') 

We shall call (55), (55') the 'proper causality condition' which, from the matlwmatical point of view, 

has the meaning of a necessary integrability condition for the retarded or advanced solutions of the inho
mogeneous Xlein-Gordon equation. 

From ( 55), ( 55' ) it follows further using the definition ( 2) · 

1- 6u~ (J<o,-oo) . s+ ~5 
i U,.,_ (x,,-N) 1i <f;,.lyJ ~'fl(x-9} ti'f.;,lyJ " @ {x-~)j (y} (56) 

5Uo~ (+ooJ Xo) 
-~ 

~1fU!i (;j) 

with (compare ( 48) which we also use f9r infinite t *) 

(56') 

(57) 

where, of course, it is S -= S itt.-= S o11-f according to ( 49 ) . and ( 4) (compare also ( 3) ). For we 

have ( u~ing the unitarity. relation ( 44) also for infinite t * ·) · 
* See for this the discussion at the end of this section. 
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· + o'S +- t lilJ· (X -C>o') 'J(11)=iS =iU. (Xo1-oo)'U~(+ 04JXo)U,~{+Cb1 X 0 ) 111 01 

il 0~~ (~) LU- 0 <fiw (~) 
. Uf & ftit.v (Xr~, -oo) = L · (x0 -ool fo't- L{ <. Xo ; 

• LU ' j oftM (~} d 

(58) 

1(11)=i 6S 5+-=-i oUowt; (+oo 1 J<o,) U · ) + 1. ) 't . 
d 5'fr~wt. (q) 0 ,p (1.i) owt (Xo,-oo Uowt I Xo~-oo Uowf (+oo,x.) 

tJ 1 IIliA; (} (58') 
· o-Uo~at (too, x.) f ( ) 

=l o''fo~o.ot (~} Uowt +""1Xo for ~o>Xo 
llere we have also made use of tile fact that '-1,;, (too, to} cannot depend on '({·11 [:J) f<!r ffo < Xo because 

of ( 55' ) and Uc!W {x,,-o.) not on '{ol-t(: ( ~} for j o 'l X o because of ( 55) ( we remark that, for 

instanCe u Oltt ( l(o,-OO):. s+uiH. (to~ 00 }faccording to ( 49 ) Or to ( 6 ) and an expansion with respect to 

normal products of incoming or outgoing fields respectively; from the latter the above statements follow 

immediately). The e -functions in (56), (56' ) follow from the proper causality condition (55) 

(55').*). 

* The equality between the expressions on the left·hand·side and on the right-hand ·side of ( 56), ( 56' ) may also be 
concluded by direct comparison between ( 54), ( 54' ) and ( 15 ), ( 15' ) and the definition ( 2) of the current operator is 
obvious in view of 1 (21 ). 

Now we get from (56), (56') using the proper causality condition (55), (55') 

[fM-: 0 
o 1uc (1.) 

6i (y) · ... o 
0 fQid {7.) 

if 'Z-11> Xo > Jo 

if 20· <: X o ..( ~a 

(59) 

(59') 

From (59), (59' } we may now conclude IJogolubov's causality condition ( 8), ( 8' )* since we may 
choose x0 very close to Yo in ~ 

* Write here only 9 instead of X and 7., instead of '3 

(59 ), (59' ). The symbol "-/ in ( 8 ), ( 8') in. addition is a simple consequence from the requirement 

cf covariance. Thus we have shown that the causality condition ( 8 ), ( 8') is a necessary integrability 

condition for the retarded or advanced solutions of the inhomogeneous Xlein-Gordon equation ( 15 ),( 15') 

to which the relations ( 54), ( 54') are equal under the assumption ( 55 ), ( 55' ) according to (56 )
1 

(56'). From these considerations it is also very obvious that we have no prescription for X
0 
= J 

0 
in 

( 8 ), ( 8') which leads to the possibility of adding quasilocal operators to ( 8· ), ( 8' ). 

The above considerations can be generalized to the case where translation invariance 11eed not be 

assumed (i.e. to the case of open systems). We start from the relations ( 12 ), ( 12') where we quan

tize the free fi~ld operator ft ( lt) according to (compare ( 25 ), ( 26)) 

[ f t ( J() ) ft ( ~ J) : i ll ( t-~) 
( 60) 
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~here the right-hand-side is independent on f , i.e, on the special initial condition (that is a well 

known property of the solutions of the homogeneous Klein-Go:don equation; compau/71 ( 22 )'), llut from 

( 60 ) the existence of a unitary transformation follows, such that 

f- I ( I fe (x}-::- U {b,i)ft;, (><} U ~t) 
( 61) 

U, (t,t') Ut-(t,t')=·tVf(t_,t') U (bJ-t')·==i. 
( 62) 

According to (14) we get from ( 61 ) for X 
0 
= {; writing {; instead of 1/ 

, 

( 63) 

. ~ . 
Thus we arrived at relations of the type ( 38) and ( 32) which may be handled as above, 

lYe remark that the causality condition for the interacting field operator 

[ tf(x), q/y})=O if . (64) 

is then fulfilled in a trivial manner since we have according to ( 63 ), ( 62) and ( 60) 

f - -
( 65) [<M. rr~J] x, ":!• • u (A,, 1;) L <ft(x-), ifJ;rJ] u (x '• t) /,,.'!, ~ 0 

and for the reason of covariance ( 65) has to bold also for X "'"j. . . 
For the above considerations it was assumed that the operator U.e {x,J) (or U.x

0 

{X o, /;) ) has 

a well-defined limit for -/; -r -::;. t>o and that also the unitarity condition ( 44) holds in these limits· 

( it is obvious that ( 44) must be right for finite -{; and X, in view of ( 30) and ( 40 ) ). :low-

ever, as it is well known, in going to the limits -b _. ::;:: Oo we have to adopt a special adiabatic con-· 

ception ( in order to get mathematically well-defined results ) and the limiting process 11ay influence 

the unitarity property for the operators (52)* . That this is indeed the case may be seen as follows,. 

---.*k;W;;e---;do-no-;t·d-;:-is-c-us-s--;h;-e-re-t::-he-_ -s,:-'tu-a-ti:-on-w~he_r_e -b~o-un_d_s_t-at~e-s -ba_v_e_t_o -b-e -co_n_s-id-er_e_d_(-se-e"-.,.·6'(;--)-, --------------

----------------------------------------~ 
lVe consider first the operator (compare, ( 40) , ( 41) and ( 30)) • 

0 

'1/ ( ') { . j :<ot.( 1 ~ _ 11_1} iP,/ {0}X. 0 -{I?, {X0 -t) , -tf}, (o){; 
Wo X 0 ~ = e xp_ - (, p t 0 WLt = e e e ( 66 ) 

J + 0 ) ' 

~~ i ' ' 

It is obvious in view of ( 66) that lfo {X01 t) is unitary for finite /; and X 
0 

, Now we introduce ex
plicitly the adiabatic conception in the form 
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Pi(') -l/t1 '('~ 
0 iO ~e P., to 

' J 
( 68) 

/tl . 
where e • £ is a dampi~g factor in the sense that, pfter the calculation is performed, the limit c -0 
is to be taken*. 

ror another possibility of defining the limiting process seeBI 

Then we get from the right equation ( 43 ) 
. ~ . 

Uo (xt>,f)~i+i f U
0 

(xo,t') Poi {( o)dt' ( 69) 

. Xo 
and from this putting X

0 
= 0 and 1:. ::;: 0o 

U, ( o, +"")if: (o)= {t +i /it'e -£Me i (P.-P/"i)t~;(o!} y((o) I 7o J 

={i+ pC•;_CJ+';, P,
1
(o)} r: (o) 

where o/:0 

{ 0) is given by ( 21 ) and we have made use of the relation ( compare ( 66 ), ( 67) ). 

U. ( 0, t') p} (( o)" e if! t~ i (o) e -i P:(o)t' I 71 J 

From ( 70 ) we conclude using the right equation ( 67 ) 

( ~ - ~ (~}) U 
0 

( ~ 1- oa) o/;, ~ { o) = 0 ( 72) 

i.e. the states 

1,rC±J ( ) o ( ) 
T.. = Uo Q, -=f ~ lf w 0 
~ 0-1 

( 73) 

" 
are eigenstates of the energy operator ~ of the .total system ( compare ( 20 ) ) corresponding to 

the free partic1e situation l.Jf: { 0} at t : ~DO. 
Now we show that either U(! (0, "f r>o) is not unitary or there is no interaction between two par-

tides. The proof is in two parts: first we show that a unitary Uo (o, + oo) cannot l1ave any influence on 

the stable states of the system and then conclude from this that there cannot be any interaction between 

two particles. 
0 ( ' D 

For the first part we choose 'Jf
14 

0) as a stable state ~ (o} (vacuum o,r one-particle state) 
and get from ( 70 ) 

lfs= Uo (OJ+ oo} tfs 0 
( o) =- U0 lf;,o {o)= {1 +pf~ A ~L{oJ} lf.o ( 0) 

0 0 j . 

since the fixing of the singularity is unnecessary in this case. llowever, we have 

1. 
p(ij_ P. 
0 I> 

l 

~ (o) <[o(o)~!\ lfs 
s . 

( 74) 

( 75) 
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where the operator A projects off the state !JFs" {o} and in view of ( 74) it is then cleat that a uni

tary operator U 0 carlnot have any influence on the stable states lJ';, 0 
{ o) ( otherwise: if if; 0 

( 0) is. a 

normalized state, the state rs ·.cannot be a normalized one). To prove ( 75) we proceed as follows: 

from (compare ( 20 ), ( 21 ) ) 

and 

p 11r = p_ (s) ltr 
0 T''b o Ts R,o (o) lfso {o} = ~ {5} lfs o {o) 

Po =- F:, 0 

{ 0) T P
0 
~ ( 0) 

lfs = c~ rs 0 ( o) + 1\ lfs 
where C S is a normalization constant, it foll9ws 

( 76) 

( 77) 

Po lfs =Po (t5 lfs o ( o) + 1\ Lf s ) = C5 ( P/s~ Po'( o) )lfs" ( o)+F!, 1\ lf;, 
(s) (s) 

( 78) 

: Po lfs :. 8, ( CS o/; 0 
{ 0) -1- 1\ ¥;, ) 

and from this 

's) { 
(Po'- Pa) A rs =Cs Po _(o) lfso (o) 

. o { (s) ) 
i.e. our statement ( 75) (because of tl1e stability of ~ (0) the operator ~- Po 

( 79) 

has a unique in-
verse in ( 79 )). 

Now we show in tl1e second part of our proof that there cannot be any interaction between two par

ticles provided that a unitary operator U0 (~+co) has no influence on the stable states. We consider 

the general S-mattix element for two incoming particles 

~ n-j S /qt., q,_ >. : < n)s / C?t ,q:, ~wt:= o~ ~/~f.'(/~ >4, =ofl .. 
0 0 

+o~n. f R., / q,,,aJ.>, .. L ( 80 J 
ut u~t owt , ,.t ,~... f· VtJ-V 

with 14 j J . - -i . f e -i~,x < n-j· x J ) = -L· Jotx e-i1,x >' 
o"'f Rt ~i•~t ~wt- (Mi) 3A dx ~ ont ~ (} CJ-~ o~ (J,Ji)f.t fl ~ . 

-i }J I e_i9,x-i~~~ I tt'(i<) ~ ~'1-0~ njq,lli rr;Jj {x)/O> 
t- c.Uot11 <.it- ~ O>. o. =-+ Jn.2 -+-:.. ( 81 J 

(j,1i!a d 3, VCfi,.~J.,c' Out 5<fout ry) J rt,o +ffc • 
reduced in the functional derivative approach to quantum field theore by means of commutation relations 

of the type 1( 8 )1 1 ( 32) (where we have £hosen in ( 80) the states / Cf11 ~~ >, J Jt > as outgoing 

states in order to make use of the definition ( 2) for the current operator i~ connection with the stability 

property of the one-particle states alter the IFrst reduction; /0 > is as in ( 7) the state vector of the 

incoming or outgoing particle vacuum). Using 1( 19) we get for a causal' theory up to contributions from 

the corresponding quasilocal operators 
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,{;.. n f R,j q,,,~,>.u,~. - r ~~'" j of, -V~ ,<u. '>/a;"'" {if,_) J (' J I 0 > 
. . 9.-~,,IJ 

. 1 jd e-L9tX-L97..'J . 1- J (82) 

+ ("fr)3 t xoff ~ --,, (} ( y-x) 0~ u,;~(J<J,j(')jJ) O>j ~i,o=rymtt1{"' 
I h . . f'l V<J.!,CI q1 ' 0 h .k h f, 1 . n t e znteractzng te d operator approac ( 82 ) ta es t e orm (compare a -so sectwn 4) · 

<. rv f~<,/q '~'- /: = -i . J-' e-iCJ~.x ( .t) j * { ...... ).0(-1/ 
ol\.t 'Yl t# (~J/)3/.t 1.J1J( ;/ , o .. -~H oui-<Jv ~ttt ~J 7 x; r?> (83) 

f«Jl, 0 e -i~ X-(·9 ~ + i I (:l,Ji)3 ~to!' 'J. .~ 

2 vcho rt-~.07 ( o, -"'~ (a 1 -"' ~ G (~-x ~.,< *I ['ff,!, 'I' (y!} I~>; q,;;' J'~ 
The first expression on the right-hand-side in ( 81 ), ( 82) and ( 83) vanishes unless one of 

the mome;ta in the final state / h- >owt is equal to f,_, ancl vanishes identically if /11.- > tJ>vb is 

a two-particle state because of ( 90 ), ( 91 ). First we consider the second expression in ( 83) which 
we write in the form . . 

J 
-L2 X-(~ ~ { 

( ;~)~ of:.:~u e z .t. { 0"'-m:z.)(}{'lf-x)(a"-J.n-:z.) .~~/!f(xJf(t~J/o> 
"'Jf d G v I d d 0-w <1 ( 83' ) 

· ~J.,O ~J.,,o 

- ( o y- rwJ)e ( ';J-x} (ox- ~~J 0~ }tr / tf(yJ tf{x) /o>}; Cfc,o =- + ~ 

where we have made a partial integration (see, for details, also the next section). We expand the matrix 

elements of the field operators in ( 83') with respect to a complete set of incoming or outgoing particle 
states jw') ~ 

1 
for instance, 

out. . 

c~t /'f (•Jcfry; I o > = ~ ~"' l'fr 1 I,.·:'!!, f.."''l f(y; I~> 
and consider the matrix el~ment ~ < r-,} / 'f { 'lf} j 0 > which we perform as follows 

( 84) 

! . L~J owl; I J· 
~it< w <f ( J J I rJ > -= -e .< w 1 cf ( o J 1 o > a, 
ol/k . o%t I ,. ( 85 ) 

· I . I 

= €t~J < r:J (o)j u: (~ :;:oo)fo (o}zto(O, ~oo)/l(;{o)~=et~yl(,;foJ)fo{o)jl()oJ> 
where we have made use of the translation invariance ( q,' is the energy-momentum vector of the state 

jtt 1) ~ ), expressed all quantities in the usual interaction representation (which is possible since 

(./0 (o,-:;: 0:)1-t is assumed as unitary; compare for details the appendix, especially ( A.6), (A. 7) and ( A.8)) 

and in the last step used our assumption that Uo(O. :roo) or Uofl,o) ~ oo) respectively has no influence on the 

stable states ~r { o) (the fact that with Uo (01 -:;:: "") also 
1
U: {~:;:oa) cannot have any influence on the 

stable states follows simply from the unitarily condition Uo (0, -:;:oo)1V
0

{0, t=oo) lfs*'(o}-:c. 1. l(o (o}}. 
:Iowever, from (85) ~e conclude that ( 83') .vanishes identically since according to ( 85 f only the one

particle states contribute in( 83 ') and the application of the corresponding Xlein-Gordon operators yields 

zero. By the same argument it is immediately seen that also the first ter.n in ( 83) vanishes identically. 
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This completes our proot• • 

. . . .. . . . . . * .. 'ii' ~~ ·~~~·~· ~~. ;b~;;,· i'b~i ·~·;;,. -p;~·~i' ~;;~. ;;~· ·;~;~·~d~d· i~ 'i;;;. ~~·~~· ·~; ·;;,~~~. th~~. i;;,~. i~~~~~~~ 'i,',;;ii~i~~ .. i ;;,.,~~;. ~~·;· b~~· 
to deal with T-products; compare ( 9) ) which, however, bas no immediate physical interest. Mathematically it would then comp• 
let ely prove that an unitary transformation between tf c~) .and 'f;n (x) is only possible in the free field case. 

n 

Thus we have shown that the operator llo ( 0, =F oo] cannot be unitary for real interactions and the 

same must be true for the operator l/ ~ ( 0
1 

:;:. oo) because we have, for. instance, according to ( 49) 
f 0~ . 

1k ~, ( 01 ':f oo} = U ~ ( 0 + 00} U U. { 01 :;:oo) U itJ { 0, ':f oo). Since, however, according to the 
ol!lt 0 ~ 0 OH/; 

assumption ( 20 ), ( 21 ) lf~t- and lftt.- (o} are connected by a unitary transformation the operator 

llo ( 0, :t: 1'0) whicl1 transforms between tl1em must then correspondingly unitary up to a general finite 

(re-)normalization constant (related to the constant % of the following). 

It is also very instructive. to discuss this situation by studying the commutatioq relations. From 

( 32 ) or ( 63 ) it follows using ( 42 ) and ( qg) 

[f(x}, qryJ]/= [u f;(Xo,t} ft (iC} U{xoJ Jf t/(xo,t) c{t{t) u (Xo,-6-), cf ryJ] !xo~Jo .. 

+ 1t/ {x.,,-l:) [eft· (x}, it CyJ} U {Xo, t )/x: .. ~o . (,86) 

= i [ U
1 

{x.,, f) [P," ( x.,, t ), eft {x)) 'll (xo, t ), cf ( ~) ]!x.~y: io (.t-j) ~ -(t (x-_ f) 
if we assume in the last step that P~i ( t} depends only on the field operator <ft J X:' I:) ~ 
:: <f (~:;f) itself and not on· its time-derivatives (according to ( 41) and (''1.9,) Po {J(01 t) 

tJ (-' 1 can then only depend on 7 i: ~~ X 0 , such that 

[ ~i (Xo, t }
1 
ft (J(}j" f) 

is fulfilled* ). !lowever, ( 86 ) cannot hold if f {t.} is of the form ( 15 ), ( 15' ) where the free 

*. ( 86) holds, of course, also in more general cases, for instance, if Po' (f) depends in addition on the first time• 
derivative of the field operator in first order. We have always in mind only the conventional local interactions for which ( 86) 
can be performed, · 

field operators </,;., ( J() obey ( 5) in connection with the stability requirement for the one-particle 

states. For then ~~must have { / rJ > is as in ( 7) and ( 81 ) the state vector of the incoming or 

outgoing particle vacuum) 

( 87) 
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where* 

1-i=]ofwf yv~J~i- ( 88) 

l We exclude the singular case ~ ~ 0. lt would mean that the solution of the inhomogeneous Klein-Gordon equation 
cannot exist in the form (1 z ), ( 12' ). or ( 29) in quantized"field theory since the quantization ( 93) /or the free field 
operator tft ( l(J makes no sense, On the other hand, ( U J, ( 15') is the limiting case of ( 12 ), ( 12') (notice also that 
the limiting solutions ( IS ), ( IS' ) can always be brought into the form ( 12 ), ( 12' ) with 

jo-v X a > f: f. (x) = { tfu. ()()+ 1: ~ (t--~)i{~) c/~ 
i- . fout (J()- ~oo f1 (x-1j) j (-'J)cUt }o't Xo < /; 

which obviously obey ( 13 ) and ( 14 ) ), It would further mean that ·we cannot exclude the case that because of ( 87 ) (which 
is more singular than a 0 ·function)· the quasilocal operators appearing, for instance, in ( 108) have infinite coe/licients 
(probably also the explicit!y written term in. ( 108) will then not make 'sense), 

!J ( )'V._} is the wetl-known spectral function of :dlll~n/9/ andLehmann/10/ whichlollows from 

an expansion of th~ left-han~-side of ( 87) with respect to a complete set of incoming or outgoing partie· 

·le states (compare ( 84 )). For really interacting fields it must be 
-1 

% >1 ( 89) 

because 

Z
-i 

"'i ( 89') 

results already from the contribution of the stable one-particle states { J' {)v.t) ""fJ (;.v~- ~uJ.}), 
In general ("89') would be equivalent to the case that (/.,,U,., (~ '+-.,..} has no influence on the stable 

ont 
states (compare the considerations ( 84) if) which we have to exclude according to tlze considerations 

(84) fl. Only for the contribution of the intermediate one-particle states in ( 87) tlie operator l/17~ (o,:;.-} 
is without any influence according to (compare ( 15 ), ( 15' ), ( 25) and ( 26) ) Dlft 

<ojf(xJ/f>~<ojf()t ()(J/f>=(L,J~ 
e-ilJ,x 

since it is ~ 
<off (xJ If>= o 

ft' 

( 91) follows from the stability condition 

< f / s/.f > = i 

( to show this use the commutation relation 1 ( 8 ) ). 

From the above considerations we conclude that the free field operator 

really to be quantized according to * 

1
-9' 'It ~ >=~~ (i)/o> ( 9o J 

( 91) 

( 92) 

eft: (x) for finite f has 

- -·-*we remark that ( 93 ) ( as well as ( 60 ) ) yield~--i 6i.),-(62J:w-~-have no reason to conclude that U { f, t 1} 
is not unitary for finite times. But under the assumption ( 93) the relations ( 86) and ( 87) are compatible /or .a unitary 
U ( t, i') since· now the factor '1.- 1 appears also in ( 86 ). 

·-----·------ -----

[ ft (~), Lft. (~J] ~t· 'Z, -i <1 ()(-ij) ( 93) 

-----------



in contrast to ( 60 ) (and consequently we have to put the same factor into ( 26) ) or the limiting 

value for 

( 93') 

( 93) and ( 93') show evidently that the operator U-~o, rl4t (xo,'ft.) which connects the interacting field 

operator 1 D (X) with the incoming or outgoing free field operators t/' U, ( ;<} can only be unitary up the 
1 owt 

constant Z, • Tl1us the employment of the solutions ( 15 ), ( 15') where "the free field operators 

f,i1 (!(}obey ( 5) together with the stability condition (92) or, more generally spoken, the requirement 

~~ompatibility between the commutation relations (quantization) on the one hand and the properties · 

of the mass spectrum and state vectors ( llilbert space ) on the other makes necessary a redefinition 

of the quantization prescription for the free field operator <(t (x} for finite f * 
' ,., 

*The problem of the existence of a unitary operator l/o {O, -~} was first discussed by R. Haac/lll, We have adopt. 
ed the jol~9.wing point o/ view: whereas ( 93 } and ( 93' } show that really no unitary transformation between the free field 
operator V'~ ( .<l or - because of <ff- (~) = ~ ( l(j for i • .... b .•the interacting field operator tJ ( J( J and the in com• 
ing or outgoing./ree field zeerators 4.(' ~~ (J(J.. can exist it still exists according to ( 93 } and ( 93' } between" the untenor-
malized field operator 'l.· t !P ( 1(/. ana· ~ ih Olft (J(}.Jt is obviou. that the unitarily relation for U )(0 k1.r( lC 0 'f. Oo) can 
then correspondingly bold only UIJ o a renormalizati'on factor which, of course, is unimportant for the study o't zntegrabili1y con· 
ditlons for the solutions ( U }, ( U' } of the wave equation ( l }. However, it should also be remarlt.ed tbal it is quite unclear 
wether the quantization ( 93 }, ( 93'} (which males the theory consistent only subuqt.iently) ·can lead to a theory which is 
consistent at all (and probably it can only be consistent up to the renormalization factor Z "'~}. For instance: if we tale into 
account ( 93 ), ( 93' } in the relations ( SO ) If there the free wave part 'must be multiplied by the renormalization factor . z-% · 
(and also j (X) in ( SB }, ( SB' }, both in contrast to our assumption for the discussion in ( 86} lh which again bas to be 
modified sribstquently by considerations analogously to ( 86} II ( which can be repeated' ad infinitum}, Furthermore, it should 
always possible to replace u~!.L (x. "o.) by Ux. (to 1= .._) '(compare the footnote for (so J J but these two operators 
cannot be Identical according to f"4S J.)f one tales into ac~ount ( 93 }, (.93' }, We add the remark (which is quite evident 
/rom the above consid,ations} that we are always only concerned with the tquivalent ordinary representations of the commuta· 
lion relations for which vacuum states exist and which are connected by unitarY transformations considering the whole question 
as a renormalizatlon problem with rupect to the constant 4 connected immediately with the adiabatic conception (compare 
( 93 }, ( U' ) J which yields only weally convergent results, -

3. ·THE EXTRAPOLATED 8-l\IATRIX ELEMENTS 

lVe study first the situation connected with the problem of an extrapolation of the reduced s.matrix 

·elements off the mass shell in the functional derivative approach to quantum field theory. If we write 

1 ( 16) in the form 

• -L [J· (x),J. ( 11)}.+ ~~ (~) . 
d b cf U. {IV} 

multiply this equation by ei (J(, ~1 
and (}~ {t, ~) obey tl1e relation 

L\ tx, .1 ~/ (;<) 
an.d add on both sides·the term {7~1· ~/ ~rUt (J} 

we obtain 

( 94) 

( 95) 
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. . , d(,'y)' {x) i;·{x} 
&'J (<J • _ i eJx, yJ [i (•i,J (yj+ r;L (x,y) l<f;

1
,/ e. ·3 t,"'f,;. 1y1 r 96 J ofk. cyJ 

. ( 32 ) a ears then in the form 
. The commutation relatzon ~ . PP e LCJ-~ "tj (;C) -

( 97) [au,(fJ.j(xJ)" (:r.tr)K f" ~· lf,;, IJI-

• ilj-ff ·. . . ~·(!f) . t·[x} ~. ~ l . j" ,~fi&,{x,y)~(<),j{yffre, {<,-yJi$,;, {<) +0/'·lf)&~u.ryJl' 
If we choose e! ( x, 1j} as the usual step function 

(to:+ 1/ tnt.-rf). 

(}1 (x.ff) =- 9 {x-~) ( 98) 
such that according to ( 95) 

(9~ .(x,J)=i-f9 {x~~)==B('ff-x) ( 99) 

we get for a causal theory from (97) accor_ding to ( 8 ) 

[a-.;, (fj,j W]" c:tri* jo~, ~fie (<-g)[J(x},j(yO}; ~· cj,-.+r• r 1oo) 

with 0 {x} J { y) J ;,. O for ·X..., ~ (compare 1 ( 18 ) J, up to terms ~esulting from the corresponding qua-

silo cal operators. Of coitrse, we may also work in this case with the more ~eneral representation ( 97) and 

the important point is now that this is also possible ( without introducing any modification.) if we extrapo

late ( 97) off the mass shell according to :Jogolubov's original idea 

111-- t ~ cr . r 10 1 ) 

as the starting point for the analytic continuation of tile-corresponding matrix elements of ( 100) with 

respect to €} 11 /31, The reason is that ( 96) itself is a!simple identity (which is not only valid on the 

mass shell in ( 97) ), i.e. the choice of the @ -functions has no influence on the extrapolated relations. 

In the interacting field operator approach to quantum field theory we meet a quite different situation~ 

:I ere the causal properties of the field theory are expressed by * 

* We assume here that ( 64) is really a condition on the formalism which is important for the analytic 
behaviour of the. reduced S-matrix elements, 

[ f ·rxJ. <f (JJ] == o if x...-:1 ( 64) 

and it was shown in 1 that in the reduction formula 1 ( 29 ) determined from an application of the asymp

totic condition* 
li We write here more generally Giel <~}--instead of t:} ., J( -}) ' 
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L" I 

· [a-~ (f). j ,•J] = ,;m> Ja3 ~ (o~-m'J{-iGu~ (-. ~!(a,-"')[<~'I•J,'{'f~!Jh.=ti'""'P 1 102 J 

the function o,e+. (ll., ~).can only be determined by the boundary values 

( ~-~ Qui; (:<,y) ~ {; ( 103) 
!./o +~ . 

with vanishing derivatives l t9 {t '11) at these limits*. If, however, we extrapolate (102) off the 
CJ'f~ oztio 1

(/ 

* We remark that th'!.lartial integration in the last step in l ( 27} · is not influenced by a dependence of 8ut ( x,y) 
on the space:coordinates 'J ~ For the dependence on X there is really no condition ( as far as ( 10.3 J is not violated). 

mass shell according to ( 101) there appear additional terms depending on e'tt~ (J(, "j) wllich make an ana• 

lytic continuation of the corresponding matrix elements of ( 102) with respect to ~0 in general impos-

sible. ~ 

We may study this as follows. First it is clear that according to ( 103) we may add to a given func

tion Qtet (1, y} in ( 102) ~n arbitrary additional function 61"- .( ){
1 
J} obeying the boundary condition 

liJu ·(;Ia.. ( x, 1{) = 0 ( 104) 
. 'j0 .-..-:;oo _ tf 

with vanislling derivatives L (:) {x 11 ) at these limits. The reason is that on the mass shell the relation 
· ay., a. 'd'. 

( 
L~~ -I 

a,-m~) e =0; ' Cjo"-+ vm.t,tf.t (105) 

is valid*. Jlowever, if we extrapolate off the mass shell according to (. 101 ) the relation ( 105) takes 

·-·· Strictly speaking this is only right if we replace the plane waves in ( i02} by the corresponding wave group solu· 
tions of positive ·energy; compare the performance l ( 27 ), · 

( o
1
-rr) e '9-1"" 0; . CJ,o -= + ~ 

( 106) 

tlze form 

and t!,.e contribution resulting from the f!ll}ction 9Q.. ( i 1 'Jf} leads correspondingly to the additional term 

. (" ott) J. Jo! e Ltt-1 { . ( {; 17}. . c;;;:-' 
L-Ut / (),ff.1f1 y ~ -L@c:~,. K,~)fd{!<J,'f(y.j j~o~-ty?:+fJ.. 

in the extrapolated relation ( 102 ), ~ · 

( 107) . 

If we choose in ( 102) eozei: (t, 31 as the usual step function w'e obtain 

[a.,. (f!,i(•J] • r1rJ'fi. J~ ~{-;ohJQt•J.J{JJ]j;~.·+~ ( 108) 

with[j (-JJJ/ ( yJ]'" 0 for X"" ff (compare ( 64) ), up to contributions from some quasilocal operators. 

( 108) is equi~·alent to the relation ( 100 ). 1~ the extrapolation off the mass shell is carried out the ana

lytic continuation of the corresponding matrix-elements of ( 108) can be performed as usuallyl3!, Jloweve~, 

the use of other (} -functions leads to the appearance of additional terms of the form ( 107) which in 

view of the condition ( 104) make in general impossible an analytic co~tinuation of the matrix elements 
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of the extrapolated rel~tion ( 102) with respect to ~() *. "lut since accordint, to ( 107) these non· 

----- ·---- -------- -·· - .. ------
*we remMit. thai the e'xi;apolated relations 

ft::Jm each other by terms of the form ( 107 ), 
1·( 28 ), l ( 29) (between. u·hich we cannot distinghuish a priori 1 differ also 

analytic contributions lead to zero contributions on the mass shell (and we are only interested in the final 

res.ult for 'l:- ,., .2. r they 'are really spurious.~ we have no need. to continue tlle:n analytically. 

Thus we lwve shown . that both approacl1es give in general rise to different extrapolations of the re

duced S-:natrix ele.rnents off the mass s!1el1: tltat part wl1ich can be analytically continued is essentially 

determined by IJogolubov's causality condition and corresponds to a special choice of the G func-
. ,\ "" _, ' 

tion in the interacting field. operator approach. 

4. CAUSALITY CONDITION IN TilE INTERACTING FIELD OPERATOR APPllOACII 

Concluding we show thai tl1e causality condition for tl1e interacting field operator in the com:nutator . . ' 
form is wit/tout any meaning for the analytic behaviour of the reduced S-matrix ele:nents in the interacting 

field operator approach as studied in tl1e theory of dispersion relations. For tllis purpose we consider the 

S-:natrix element for elastic scatter.ing ( compare ( 80 ), ( 83) ) 

oJ ~li,CJ..,[~ ... ~~ >&4,"' ~ •• ~.,; ~t/1-:. + 11~ ~$,'J..,/R./~,,q,J. >o~ ( 109) 

with 

ovi q,!,q,v[R..}q.l,tj,,.>o...,t = }_jofx~ 
-io x-t"o x e n J-l 

~ v~l,O CJ.~.o 
.t.)( 1 ~I 

( QX -m .· O'J- M / ( 110) 

Ll fx'~~'< x ':YacJv I 't · owt ~3•~'1 / [ f(IC} 1 ff3Jl/ O> j ttL f) .,• + .,; Jn"'+ a:~ I. 
J -,, -

where the function (}oriv (X,~} has only to fulfill the condition ( 103) lor interchanged limits 

future). Let us assu:ne that tl1e field operator <f (x) is a non-causal one, i.e. 

[ff(J.f(1)lf 0 ' L'f .X~ J. 
:low we choose t:le function eatlv (x,y} sucll that it vanishes for space-like separated points 

Badv (x,~}-=0 if X-vJ I 

(past and 

( 111) 

( 112) 

This choice is quite tJenerally compitable witl! tile condition ( 103) for interchanged limits since tl1e space 

like region ( x - y) vanislles for y" =:;: oo (such points ( x - y) which can contribute on tlte planes 

~0 .. "f Oo lie asymptotically on the li~llt cone,· tl1ey have infinite values of the points X' or :/.., 

in ordinary space where in addition the field operator f(11), f(J) itself vanishes*• ). For time-like 

• * Strictly spealt.in.li we have for Ibis to replace alway~ the plan~ w~-VIIS by wav11 paclt.11t so.iutions of 
positive 11nergy (for 'f{t) we assume an expansion of the form J ( 2' ), really und11rstood for wave 
group solutions), Only in the final results we go then ov11r to the limiting case of plan• waves (compare/2/ 1 , 

IVe remarlt. further for the case of possible singularities in space·lilt.• r•eions that it is as usual--assumed 
that tbe inteeral over tb•m with a finite f •/unction in ( lJO } is defined, .. _ 

·- -··- ··-------·----------

.._ ___________ ....;.. _____________ ~~--------
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points (X - y ) we choose 60dll c~tff) such that it is equal to one in the backward light cone and equal 

to zero in the forward light cone in ( x - y )-space which again is in accordance with ( 103 ) for inter

changed limits. This shows that it is always possible to bring ( 110) in such a form that it represents tl1e 

Fourier transform of a function f ( x, y) which is different from zero only in the backward light cone of 

( x - y ). JJut this property involves all what we n:ed from a causality condition in the theory of dispersion 

relations • 

. 'Of course, we do not believe that the relation ( 110) derived fro;z; an application of the asymptotic 

condition makes any sense in a non-causal field theory * . It seems evident that the causal character of 

* Otherwise dispersion relations would be valid for causal as well as non-causal field theories which contradicts the re• 
suits o/lhe functional derivative approach. The conclusion that the contributions /rom space-like regi~ns of the commutator ( Ill) 
cannot make any sense in the reduction formulae of the interacting field operator approach may also be reached from the require• 
ment of covariance ( an argumentation used in I ), ' 

the theory is a priori assumed in the derivation o'i"f( 110 ). If one makes a first reduction in ( 109) accor-

ding to the relation (compare 1 ( 21)) • 

• l CJ,JC 

lk i<> ( f} • ct.,ui ( f} + (~~)'/• f rlx~ j (x) I 114J 

one sees immediately that one has to solve for a further performance in ·( 110) tlw wave equation ( 1 ). 

In a second reduction there is assumed that the solution f ( ~) has a well-defined asymptotic bella

viour for ~c _.,.. + oo and it seems very unlikely that 'f (~ 1 can be another solution as an advanced one 

which assumes Dogolubov's causality condition ( 8') as a necessary integrability condition according_to 

section 2. 

In any case, the causality condition ( 64) cannot be interpreted as a condition on the reduced S-mat· 

rix element ( 110) wbich is important for its analytic behaviour as studied in the theory of di~persion re
lations. If one wants to investigate the consequences of a possible non-causal structure of quantum field 

theory ( whicl1 is a very important physical problem also within the theory of dispersion relations) one has 

to use reduction formulae for tbe S-matrix elements derived~ in tlle functional derivative approach. 

I would like to thank very much Akademician Dogolubov and Dr. :.Jedvedev and also .Prof. Lehmann 

and Dr. Symanzik for valuable discussions which have strongly influenced tl1e present paper. I ain also v~ 

ry grateful to Prof. Drell for l1is great interest in tl1e preceding paper to this one; 

APPENJ?IX 

We derive some relations valid for a representation at arbitrary t. We perform 

( A.1) 

where 

r: { t 1 i= Oo J/h >in 
otd:; ( A.2) 

and (compare ( 3) and ( 4)) 
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S "'f j o!x1 ... dx~~- j,. (xi,···J Xn.}: ~ (t 1) ••. ~ (xn ): 
f lt:O 

f 1- • 

st sc"' st sol ".i ( .1.3) 

with (compare ( 38)) 

t 
f. ( t-):: u ~ 

t Old 
( t, -;: C>o) £1) ~ . ( x) U in. ( {;, + oo) 

. 7 cud Ow(; 
( A.4) 

:Ve remark that because of ( 45 )* 

* For U~;,in ( t 1 += ~ we may also have in mind representations of the form ( 3 ) . or ( 23) for which ( 45) is tr.ivial 
because of ( 38 J."lfere we ignore as usually the fact that LLL ,;, (t,+<><>} ·can only be unitary up to a constant ( if one takes into 
account this fact·one has always to replace !f't-: (Kl) by •o..t:z.'l•tft (t;)or to drop the Z~ factor in ( 93) and to normalize the 
states 1f. 0 (t} • se.e also the footnote at the end of section 2 ). · . 

ft. I \ 

u in. ( t., + oo) = u+- ( t:., T 0o) • 
awt , ( A.5) 

For the matrix elements of f (x) we write 

i~ w' J <r (xJf n >il~ -= < ut (t, =t:~><>J If:~ (&)l<frx1 1 ut (~:, :;:oo) r: (l.J > 
owt · OIV!: 

( A.6) 

since according to ( A.2) and ( 4.5) 

ul: ( t, 7f DO) lf: r t J =; n- > ~ 
. . 0~ 

( A.7) 

and where we may use on the right-hand-side of ( A.6) employing ( 32) and ( 17) 

f ( >i) ~ u/ ( XoJ} <ft {x) 1tt ( :<b, t}<:.~ i P. (Xp-t)c.f (f; {;) e -t'fJo ( Xo -i} ( A.B) 

as· the interacting field operator corresponding to the t-representation. According to ( 21 ) we have for 

( ..4;7) . 

• ~.oif!/ Ut (t,-:;:vo) r-: (i:)=Po(~~,JUt (flt=w) /f:o(t)i ~o{l:}~:,o~)=P}ftJlf: {t) 
( A.9) 

. .ad 
where obvzously ( compare ( 37) ) 

o + { . ) a· · ( . } Po (t}"" 'l{c 1:1 +DO Po,~ L/f. f, -:foo; 
· ou.i (A. 10) 

For f = 0 (conventional interaction representation * *') ( A.9) ·reads 

** For this case see also 12 

Po, eM '1,V
0 

(0, -:;ooJ ¥: (o)=P
0
(w}U.,(O,+oo)1f: {o) 

( A.11) 
0 0..~ 

Comparing this wit!J ( 72) we arrive at the result that Po. r.:_. , 

o.-cvc 
have to be identified with Po itself 

which was stated in ( 27 ). 

Concluding we derive the causality conditions valid in the t-representation. For finite t (54), (54') 
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reads* 

* For a quantization according to ( 93) the integral terms in ( A.12 ), ( A.12') have to be multiplied by z•1, Since this 
/actor is unimportant /or the study of integrability conditions /or the solutions ( 12 ), ( 12') of the wave eqtuttion ( 1 ) we drop 
it as in section 2. 

tf (~) "'ft (~) ti /aj A {t'-~) 1i/ (Ko, t} $U.~; (t,,f) 
fo'Z. Xo > t 6 eft (1) 

f (t.)= 1~ ( :<J-i/ d;J~ (x-ff) 
tui {I:, x,) + 

fo'l, x, < /: 
6tft {~} ut .l t, x,) 

As in section 2 we now conclude the 'proper causality condition'· 
l<!l" .. 

~ u~ (:<o, {;) 
=0 if. ff 0 >' Xo_> /; a 1~ r~; 

~U;; {t,x,) 
~<ftC~) 

:::0 tj 10 < x, ~ t 
and tl1e causality condition 

a;· (3) = f {i uf (xo t) ~ ll-t (x,,t) ~ :o 
$lft rz] oft('!.} t ' oc.ft CyJ . if l., ., x,., l· )' t 

as necessary integrability conditions for the retarded or advanced solution ( 12 ), ( 12' ), 
We note also the formula 

-J ("J"'iJ+ os =iss s+ 
o1in (r.) S'fo~ttt (") . . $S 

= i U,~ (t -oo) S ~ . ~ 5t -tc/ {t -0o)= i UJ.f { +oo, t) of, (x) 
l. J • t . ~ lft (J J t 1

. .. t 
whicll is evident in view of ( 3 ), (A • .3) and ( A.4 ), For the operator 

where 

( A.12) 

( A.12') 

( .. 4. 13) 

( A.13') 

( A.14) 

(A. 14') 

( A.16) 
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+ 
'Pf (x) :0 St t{t (x) St' s ~ 5-

t i ( A.17) 

(compare ( A.3)) we conclude from { 8 ), ( 8') and ( :1.3) and (A.4) the causality condition 

f>{t (") 
(... .... o 
'Otft(~) 

if ~~X 
(A. 18) 

~d~ {") 
=0 

& ff {~} 
z'j - r £" 

(A. 18') 

which one has to use if one derives reduction for;nulae for tile S-matrix in the t-representation. 
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