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ON TIE ASYMPTOT[CFAND CAUSAL[TY_COND[TIONS '
IN QUANTUM FIELD THEORY II



The conclusions reached in a recent paper on the connection between the interacting
field operator approach to quantum field theory of Lehmann, Symanzik and Zimmermann and
the functional derivative approach to quantum field theory of 3ogolubov are established in
more details, Especially it is shown that Bogolubov’s causality condition is a necessary
integrability condition for the retarded and advanced solutions of the inhomogeneous Klein-
Gordon equation. Associated with this the fact is investigated in some detail (related to
Fflaag's theorem) that the transformation operator which connects the interacting field opera-
tor with the incoming or outgoing free field operator can only be unitary up to a positive re-
normalization constant smaller than one for real interactions. Further we discuss the dif-
ferences existing between both approaches with respect to the extrapolatzon of the reduced
S-matrix elements off the mass shell. Concluding we show that it is without any importance
for the analytic behaviour of the reduced S-matrix elements in the interacting field operator
approach considered in the theory of dispersion relations wether the causalxty condition for
the interacting field operator in the commutator form is fulfilled or not.

' INTRODUCTION:

_In a recent papez/'/l/*' we have sfudied (on a preliminaty stage) the connection between the in-

* In the following quoted as 1.

teracting field operator approach to ipxantuz‘n fiéld theory as worked out by Lehmann, Symanzik and Zimmer.
ﬁank/ 2/ and the functional derivative approach to quantum field theory as proposed by Bogolubov/ 3/, The
equivalence between these two is in general not obvibus since both approaches start from the considera-
tion of a general field theory (S-matrix theory) in which are derived reduction fotmulae for the S-matrix
elements using quite different mathematical tools: the former makes use of interacting field operators as
retarded or advanced solutions of the inhomogeneous Xlein-Gordon equation together with the employment
of the asymptotic condition whereas the latter avoids these completely and works only with a given S-mat-
rix as a functional of incoming or outgoing free field operators and its functional derivatives with respect
to these free field operators. The causal field theories are then considered as special cases of the general
theory restricted by the causality requirement, [lowever, the causality condition assumed m the first appro-
ach in the conventional form that the commutator of the interacting field operator is to vani,é"h for space-likq
distances of thé corresponding space-time p;)ints is formulated in the second approach as follows: the cur-
rent operater ( 2) constructed from the S-matrix and its functional derivati&e with respect to the incoming"
or outgoing free field operator is to have the retarded or advanced properties ( 8 ), ( 8’) as for its functio-
nal derivative with respect to the incoming or outgoing free field operator respectively. The latter coridition
(in contrast to the former) involves obviously also a time distinghuishing causality condition for time-like
distances of the corresponding "spéce—time points which should be required for a definition of ‘causality’
from a physical point of view. On the other hand, the.conventional causality condition for the interacting
field oﬁerator in the commutator. form presumes the existencé of the latter as retarded or advanced solutions
of the inhomogeneoés Xlein-Gordon equation, and the explicit absence of a time distinghuishing causality
condition for time-like distances might be overcome by the fact that the interacting field operator construc-

ted in the above manner exists only for field theories which are causal in the Bogolubov sense (at least, if



we require the commutator condition for the interacting field operator). However, it will be come clear

" from the investigations of the pre;ent paper that really the commutator condition for the interacting field

| operator — in contrast to Bogolubov’s condition — cannot be considered as a condition on the reduced

- S-matrix elements which is important for their analytic behaviour as studied in the theory of dispersion

" relations (as it is hitherto generally believed). '

The present papér is devoted to a thorough - investigation of the conclusions reached in [ that

-1) the interacting field operator approach holds only for causal field theories (in contrast to the assump-
‘tion i/ ¥/ ) and 2) the causality condition for the interacting field operator in the commutator form

" might not be sufficient for a general approach to -quantum field theory as needed in the theory of disper;
_sib‘n relations. First we show that Bogolubov’s causality condition is a necessary integrability condition
for_vth.é retarded or advanced solutions of the inhomogenéous Xlein-Gordon equation (section 2). In this
fs'ense_..tbe interacting field operator approach presumes Bogolubov’s causality condition and, if the latter
is taken into account, we expect also no principal difficulties for an application of the asymptotic condi-
tion . (éompare a1s64/ and section 4 ). In connection with this we discuss in some detail the fact (réla-
ted to Haag’s' théorem) that the transformation operator which connects the interacting field operator

‘f (x/ with the incorﬁing or outgoing free field operator ‘fm (X) - can only be unitary up to a po-
sitive tenormalization constant smaller than one for real interactions of the conventional local type. Its
conséquehces for the commutation relations of the free field operators are pointed out. Further we discuss
the di[fe_iences existing between the interacting field operator approach and the functional derivative
apprba_ch with re:spect to the extrapalation of the reduced S-matrix elements off the mass shell (as consi-
dered in the theory of dispersion relations; section 3) Concluding we show that it is quite unimportant
for the analytic behaviour of the reduced S-matrix elements in the interacting field operator approach
considef@d in the theory of dispersion relations wether the causality condition for the intéracting field
operator in the commutator form is fulfilled or not (sectioh 4). This means that the commutator condi-
tion forthe interacting field operator cannot be interpreted as a condition on thé reduced S-matrix ele-
ments which has some analytic cot?sequgncés in the theory&?f dispersion relations but that the causal
properties of the interacting field operator are a priori assumed in the derivation of the reduction formu-
Iae(obviously by the use of the asymptotic condition). In this sense we have to understand the indica-
tion  2in 1. ’
2. CAUSALITY CONDITION AS INTEGRABILITY CONDITION OF THE KLEIN-GORDON
) . EQUATION . ) ‘

We show (after some introducing remarks) that Bogolubov’s causality condition is a necessary in-

tegrability condition for the retarded or advanced solutions of the inhomogeneous Klein-Gordon equation

(O=-m5) ¢ x)=j(x) (D



where  1(12),

(\/) L.S+ 55 . 55 e+
X7 ) = 5tf¢(x) 5

is the current operator, The S-matrix is considered as a general operator in the 'lilbert space of the

incoming or outgoing free particle states and allows therefore the representation /1 (4). 1 (11) / -

5‘%0::0 dxl-.-c/xnf("u---, xn)f”fo‘f:t (xi) "p,:,w (Xn)’ (‘?)

with SS+=S+5=1 (1)
(o- m)t{’m (x)=0 * [</m (x)% (y)]=ia (x-y) 5

and ’l \\
‘fowt (x) = sj‘fiw (x) 5 | (6)

It is evident (compare also the discussion i’/ ) that the functional derivatives in ( 2 ) cannot be
deterinined from the S-matrix (3 ) in a unique manner since the expansion functions fn' gy, Xr.,)
are not completely determined by the expansion ( 3 ). The reason is that because of ( 5) the Fourier
transforms of qu(X,_, . X,L) contribute only on the mass shell in ( 3) in contrast to the situation in
(2), i.e. in general (2) depends on the extrapolation off the mass shell in a co’npletely arbitrary nan-

ner®, Of course, as to their contnbunons on the mass shell the expansion funcuonsfn (X,_r« ) X,,) have

Wc remarle tbat !be pav/ormauce of the /uncnonal derluatlon o/ !be S-matrlx ( 3 ) with respect to the free /:eld opera-
tors ‘Pm ont (X) in the conventional manner makes a priorl nacessary an extension in the definition of the S-matrix
since no regard is ba 7(1 at this to the fact that the free field operators have really to satisfy the aquations ( 5). Thus to obtain
(2) we have to go beyond the ‘physical’ S.matrix (3 ) where the [ields Yu, (1) or Piut (X) obey(5) toan exhapolated‘
S-matrix which is a functional of the fields Yin (X) or Plont (x) considered as arbitrary classical Junctions ( see also’3/, espe-
clally the footnote on p, 180 in the German translation), It is obvious that such an extrapolation is avbitrary since the expansion
Junctions $p (X4, xu) are not uniquely determined by ( 3) and ( 5) and the same is then true for the result of the func-
tional derivation wbich finally is considered as a functional of the field operators \f‘j“ (%) or Pout (x) obeying (5) and
ordered in normal producl Jorm, .

*..

to fulfil some conditions, especmlly the unitarity condition ( 4) and the requxrement of invariance with

respect to the mllomogeneous Lorentz group. eyond it in a causal field theory they have to obey the cau-

sality condition which will be discussed in the_following. Generally they may be expressed by vacuum ex-

pectétion values of the functional derivatives of the S-matrix and if we are only interested in matrix ele-

ments of S between states where all momenta of the outgoing particles differ from those of the incoming
~ (which we also assume for (9), (10) and( 10’)) we may use the simple representation



fn,. (x ,,,_,x,,_)-_-il <0 55 ‘
1 ! / S‘fg';é(xl)"- 5.)01;” (Xu) /0?

L e 8% | 5" (7)
-1 cofs L °

(7) may easily be checked on the ground of the expansion ( 3 ). In the second line of (7)) we have
‘made use of the stability of the vacuum (putting the arbitrary phase factor equal to unity).
If we define a causal field theory by / 1( 17 ) 1017/

¢ -0 if jzx .(8)

x;fy$x (8)

and use the definition ( 2) then it is possible to write (7)) in the form

| J(w (X450 XW)=%:<0/T(/'(>‘1) ...J'('x,,)/0> (9)

( compare 1(34)*/. Since (8), (8') involves no conditions for X,= é{, the expressions (9 ),

* This formula, bowever, contains a misprint: the f[irst expression is ‘missing a minus sign.

(11) and( 11’) are onIy determined up to contributions arising from quasilocal operators*, We remark

¥ For the definition o[ the laner see/S/. they lead to terms of the form

~Xa ) O (x4-% iv)
where p (ax ) is a covariant polynomml with respect to '__.__ with constant coefficients,
[)M i a xl-l/“' ‘ )

the important point (compare also the discussion i/ %/ ) that (8), (&) is in general a condition for
the Fourier transiorms of the expansion functions JC (Xgy0 , X ,,,) on the mass shell in (-3) as well
as on their exttapolatton off the mass shell in ( 2). llowever, the last cannot be of principal importance

in an S-matrix theory: every causality condition is equivalent to (8), (8’) provided it has the sane
consequences for the phvstcal’ S-matnx ( 3), i.e. for the contributions of the expansion Iuncttons
fw (X;, o X;y) on the mass shell.

If one is concerned only with the case of two incoming or two outgoing parttcles in the S-matrtx

elements then the expansion functions J£ w ( Xqypeey Xu) can be represented as vacuum expectatton values

of advanced or retarded products of the current operator respectively

J(,,, ("U"" x"') =;h/§~—<0/4 (xv' Kysoee ’;‘x"')/0> - (10)



(¥) | g ,
f("u “1%a )———<0/R(x1,x&, x,,)/o> ()

wbere ( compare aIso/ 2/ (27))

A(X Xz,) 2 Xn) = 5’"- (1) . : \
) 5“fou£ (xz) 5‘70,“(:( n) -L) Z’Q(x x"") 0("3 x’) (11)

- L] Ca)- ool ] .
Xq B
R 5 m’nﬂ - Fbend- 0 L Gy Gl

(10) corresponds to the case of two mcommg partxcles and ( 10’ J to that of two outgoing particles and

the summation m (11) and ( 11’) is taken over all permutatxons of the (n— 1) coordinates ’

ER S Xa/y . These formulae may.be easily proved. by the performances made in sections : 2
(relatxons (80), (81 )) together with an employ'nent of the causalxty condition (8) or (8) in( 11)
or(11') respectxvely : -

Now we proceed to the discussion of the retarded or advanced solutions of the mhomogeneous Iein-

Gordon equation ( 1), We write them in the form

§ (- 0.0- / zet(xy)/(y)d;{ foxt o

where kpt (x ) is the solution oi the homogeneous x{Iem-Gordon equation - _
(o-w) g 0
which coincides thh (ﬂ (X) for  Xo=t ~ S ‘, .l [ . :
K= ) e Xe=t 1)
Ve shaIi be especxaIIy mterested in the limits '[2""°° in ( 12) and '[:—*"f‘Oo in ( 12’)

P )= f, (%) / 8qet (x- y)J(y)oly </7w () = li A (x

ot —r-°°

.(15)

(f o»t (x) / A gdv (x y)/(y)vly ‘-f £(X) Zm« (f(x) - ( 1”5',)-'  

t-r-f-oo



wlucb of course, make necessary the implication of an adxabattc conceptton On tbe other hand, we can
make use of the invariance properties of the wave equation ( 1) assummg that the extrapolatxon off the
' 'mass shell in ( 2) is performed in a Lorentz invariant (and, o! course, -finite ) manner. Expecially from

" the translatxon invariance follows the exxstence of the energy-momentum operator F/)u asa
'dxsplacement D operator in the sense

3 (P(X) LLP ﬂf(*)] [ 'Py]=0 (16,
so that there extsts thb respect to tbe txme-coordmate tbe relatton R . -

LP(X) P, oxo)LP(x ) '-;p (X X) ‘(‘17)

For the free field operator ( 13) we have in a quite analogous manner

YA L[p (U ‘f"‘)] [P (¢, R (f)] 0 - ()

where P ( t) is the energy-momentum operator o[ a !ree particle system corresponding to the initial
condttxon at time t and expecxally itis

g, 0= Oy ) H 0

. (19)

For £”+ © (18) and (19) 4go over to tbe cortespondmg relattons for the incoming or outgomg
fields respecttvely (compare ( 15 ), ( 15’ )), for instance,

°:m/ (X, ‘-PLn Xo-X
'7% (x)= e %. ant(" ) &m P (f) (19°)
)
ut t ~» 3 0o
F or the following we assume, for simplicity, the equality between the eigenvalues of ;/J“" and

(t) *

¥ Theteby assuming that no bound states :;gea (for the possibility of a conventional treatment of the latter case
combined with a modified adiabatic conceptlon se )e .

9)’» ("')% ' ' | . .v i

an

-

' (D)
( NG ARO, |
(21)
and require the -existence of \é.‘state‘ with lowest ‘ energy-exgenvalue, the vacuum Slf
or. (é)respectwely ( P() = (Q ). Equation (21) is indeed possible for arbitrary t because

tbere exxsts a unitary transformation between p,w ({:) and Pu. (f ) which will be shown in tbe follow-
ing (see (37)). (20)and (21 ) together imply the existence of a unitary transformatxonvwbxcb



connects . f, =~ with t}";lo ( ﬁ)

Ve S ST P o (22
Gty @), umu'ty-deyue-1. @
TIze operator '3 ({;} wluch operates in the ililbert space of the free particle states (f) (ﬁ} may be re-

presented as an expansion with respect to the normal products of the free field operator fb (x )
(compare (3)) '

1 (4)- Z fafx;,_,dxn?'n(xi,...,xnjt):cﬂ‘(x,j,_,%(xw), ()

If one takes into account the well known Iact that the free particle states 91- (é) may be built up from
the vacuum state l)l/- ( t ) by ‘means of repeated appIzcatzon of the creation operator

‘q,x -L?K |
(9) (zf)’/:,] {‘Ft (")axo @ ax., ‘F()VQI?_D,} (24)

where ( compare 1(6), 1(7))

0o 4 (o1 g on

[0 G) o (7)) 56-5), [4F) % )]-0
a ()Y (=0 ()

it is obvious in view of ( 23 ) that the left expression (22) represents then the expansion of the statea
% with respect to the free particle states ‘U- ({) For 1‘,—>:F Co we get from the above rela-
tions the corresponding for the incoming or outgomg free field operators. We remark already the i impor-

tant fact ( see appendxx) that the operators P ,in, and /3 out, have to be identitied with
3
xtseII

an

o, out =P | | (27)
so that we have (u}; to some phase factor)
Wi = Ty =1 | ()
Now we perform ( 17 ) with X; =t inthe following way
t BE(TA) L B (et -
P(x)=U (x,t)e Jarere By () )

with
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LR (E)(x0mt) =i P (x,-4)

U (%o, ‘é)=€ = T (30)
where‘obviously. , | o V _ |
U (Xet) U (X t)= U (x0t) 0 (0s,8) =1 . (51)

Using ( 14) and (19) we may write ( 29 ) in the form

¢ (x)=U (Xo,é) P (X)U (%0,4) = (f(x)+z/ (x.,,{-)[ﬂ (x),

Uy, . o
‘From (30) it follows .
~UP° () (5, t) P Iy
e U [xoé) U (é x)e QI ‘7( (R (%o é)) (33)
and from thzs using ( 31) R
(6= (b xe) B (U (5D, Y
Interchanging X, and é in ( 33) vyields on the other hand _
Pr(t)-U (x,¢)p° (x,)H(tx) | (35)
( 34) and (35) together with (31) imply
Y ) ur)  u "(tx)< U (xot). (%)
Thus ( 34) may also be written in the form ‘
. . . .
P (x,)=U (%, t) P (t)U (x,,,f) (37)

which gives the connection for the equation ( 21) for different | 1{:
Using (19) (14), (32), (37) and(31) we may now further conclude
) (X, P o~
$)-e' (){”)fﬁ(,é)el () )
Pt CPC(E)(Xo-t
ol S (L)L) U (Lt ) e | (3)
» -u ('6 £) eLP ({)(xo t) (Pt’ (x é) LP (é}(xo é)u (é,fl)

- u' t') g, (x)l/(ét)
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and applying this formula a secon! time we find

U(tt")-u(tt") ”(ﬁf’), (39)

Using the well known addition theorens for exponential operators we may write ( 30 ) in the form

U (%,t)=1%, (Xo)f)=€XP+{“" 6//3‘(19,15)0/5} (40)

where
iy ERTCER) o ipee)(the) '
B (8t)=e Bl e B 0t -p-p"(1). (o)

)

The + -symbol prescribes the chronological ordering of the operators in an expansion with respect to
p‘ (f f) The index £ in ué (X” f) is in the following to relate  to the + ~-dependence of
p (t': f) and the argument t  to that oi the integral limit (see also ( 43 )). In general Zlé (Xo,'é)

is the solution of the differential equations

au;i&'{)vée ot U, (x,,,f)”, %;T(X"'_Q;i% (x,,f)po[({) (42)

with the initial condition

U, (%,t)=1 for X~ t (42')

or of the integral equatzons
U, (x,t)-1- L/p (U, (tt)dt= 1+z/u (cnt)B (EE) e Ca3)

In (42) only the differentiation with respect to the argument 'é is meant ( compare ( 43)). The uni-
tarity relation ( 31) now reads .

L+ '
U, (x,t) % (%ot )= U, (xo,t) Uy (¥0t)=1 (at)

from which in connection with (43 ) the important relation follows

Zlf.(xo,é)= M:(Xo,f)%t (Xo, ) Uy (Xet) = Uy, (%2) s
ecause of ‘ Lpo(é)(fit) : ‘lP é)(é ¢
bu (5, £) R (£4) U, (o)t )- u(xa,é)e , R (Ye ,( )%(xo,é)
=W tot) WL RULE)U (x,¢)-R (x) Z/(xof}PWwa/ P (%)

E eLP° (xo)(t" XO)EL(’(") ~LR°(x,) (" %) ,D ({ )

(46)
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where we have made use of the first equation. (40), (41), (30), (36), (37) and(39). Using(45)
we may now conclude for uf (Xo,f) irom (36)%

* The relation u:(x,,,{;)z U, (t,%,) may also be concluded fro:a (43 ).

U (X, = T, (8,00)= Uy ()

(47)
and from ( 39 )

Uy (Kat)= Uy (4,8) Uy (Xort) = Uy (,ﬁ’lé) Uy (%,
= U, (%o t) Uy (,8) = Uy (x0 t') U, (E12) (48)
where we used in (48) in addition (44 ) together with (47 ) and

u (EE) Uyr (ot ) Yy (£,)= U (%)

which is obvious in view of (43), (44) and (46).
Now going to the limits t— FOo in (32) we get*

(49)

¥ See for tbis also the discussion at the end of this section, We remark that because of ( 45)
we may perform the limit T+ F©° in (32) also in such a way that Uy, (xo,?'“) is replaced
© by Ux, (xo.T‘”) in {50 ). . C ot

({7(’()"'%;‘1:& (Xa)iw)tfm (x) %0‘;‘:{; (xo,$°°)
=Tu, ; - F00 (50)
- fu, (i (%07 ) [ic OXPRCS )]

with (compare (19’) and (40), (41)) gm-
0o ) tin O et
ot bz ‘f(x,%)e | (51)

,\

Ui, (to5e)=tin U (rat)- exp{ /P by (E1E}, B (€ Com NCD),

£ Foo tsFo (52)

" It is easy to see that in such cases where p (é) depends only on tbe field operator % ("'{) ‘/(X ‘é)
and not on its tzme-denvatzves Ean ({') is nothing else but P (f} expressed by the incom~
ing or outgoing fields at time t In general (52) allows expansions with iespect to normal
products of incoming and outgoing free field operators respectively (compare ( 3) or (23)) so that,

using a performance as in I( 21), we may write (50 ) in the form
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+
; 5'1LG (Xo, % 03)
f &)= f (x)“/dﬂ‘\("’ﬁ)ufﬂ (Xo, 7 o0) ——ent _ % (53)
ont ont . . ;
' 5¢u, (y)
SU,’n (xa,—oo)

or

S(/’L.n (y) (54)
5%0;,19 (’*"": xv) '

Equation ( 54’) which is more appropriate for the following resulfs if one starts (using (47 ) ) from the

P ()= G6)rfaly s () Wl (3050

(54%)

ilermitian conjugated equatiot‘iy (29).

The compatison of (54’), (54’) with (gfIS ) (15°) require; ngcessarily th»e retarded or édvanced
Pro-perties 5, u,[n (xo’ i N) iy |
g’%n;(y) : | | if gt,? Xo (55)

O Wont (t0s,x,) |

e —

& ‘fow(: ( 7) :

We shall call ( 55), ( 55’) the ‘proper causality condition’ which, from the mathematical pbint of view,

if (7.,<Xo (55°)

has the meaning of a necessary integrability condition for the retarded or advanced solutions of the inho-

mogeneous Xlein-Gordon equation, :
From (55), (55’) it follows further using the definition ( 2) -
ot 8 Wiy (Ko, ~00) + 5
[ u in (xo, -—oo)

oty W 0 )i (g )

. S%owf('f‘m;xo) - oo .-' _ 95 + <—-X : (56°)
RS ’xo)fb%"x) ety * U

with (compare ( 48 ) which we also use for infinite {: *)

S:S;‘:&:uoi::t (+t>o,—oo)= %(;':Lf (+°?,xo) Z/:':it (xo}..oo) (57)

where, of course, it is S= S[n, = Som’: according to (49 ) .and ( 4) (compare also (3)). For we
have ( using the unitarity relation (44 ) also for infinite € * )

¥ See for this the discussion at the end of this section.
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. . o F Pl Moo & Uin (X0,
V()18 g = e Ot i (ol o) et

e o Win (Xo,-w0) < Ko s (o)
= u,w (xo'—m) v 6’({ (?) for j o}
. -85 + - 53U, 0, %,.) ) # 4
-ty o Ll el o))
- O Uont (109, x.)

= 7 ] uz»t (+w,xn) For Yo >Xo
out

ilere we have also made use of tIZa fact that U,,’, (+o, x,) cannot depend on ﬂ-,, {y} for ‘l/,, < Xp because

of (55’ ) and UW; (%6,%) not on {‘fmd: (3)  for 5,, 9Xo  because of ( 55) ( we remark that, for

- instance Mont (3(,,;-0:»)=5."7r/‘-‘b (X,- oo)jbccording to (49) orto (6) and an expansion with respect to

normal products of incoming or éutgoing fields respectively; from the latter the above statements follow

immediately), The @ -functions in (56 ), (56°) follow from the proper causaiity condition ( 55 )
(55)%).

% The equality between the expressions on the left-band-side and on the tight-band -side of {56), (356") may also be

concluded by direct comparison between ( 54), ( 54°) and ('15), ( 15') and the definition (2 ) of the current operator is
obvious in view of 1 (21 ). ,

Now we get from (56 ), (55’ ) using the proper causality condition ( 55), ( 55')

i) o

O fi (2) it > Xo>yo (%)
& j ( L[) ‘ .
=0 it 2,4Xo< Yo (59°)
) "/owé (z) _
From (59 ), (59°) we may now conclude Bogolubov’s causality condition ( 8), ( 8’ )* since we may
choose x, very close to Yo In o
Y

Write here only y instead of X and %, instead of y

(59), (59 ). The symbol ~ns in (8), (8’) in addition is a simple consequence from the requirement

cf covariance, Thus we have shown that the causality condition (8),(8’) is a necessary integrability

condition for the retarded or advanced solutions of the inhomogeneous Xlein-Gordon equation ( 15 ),( 15’)
to which the relations ( 54), ( 54’ ) are equal under the assumption ( 55), ( 55°

) according to ( 56 )
( 56’ ) From these considerations it is also

very obvious that we have no prescription for X, =
(8), (8 ) which leads to the possibility of adding quasilocal operators to (8) (8).
The above considerations can be generalized to the case where

o In

translation invariance need not be

assumed (i.e. to the case of open systems ), We start from the relations (12 » (12

' ) where we quah-
tize the free field operator lf{. (x)

according to (compare ( 25 ) (26))

[4. (x)"ﬂ '(7)]=i4 (x'y) (60)
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where the right-hand-side is independent on ‘é , l.e. on the special initial condition (that is a well
known property of the solutions of the homogeneous Xlein- Gordon equation; compare/ 7/ ( 22 )). But from

( 60 ) the existence of a- umtary transformatton follows, such that

o (x)=U (6"5)‘&' ()U(Ht) (61)

U (l[/',fl) %.{-(fji-/):‘%‘(éf.l) U ({/'J'/;,)“i . (62)

!
According to (14) we get from (61) for X =‘£; writing 'lé instead of 'b

f(x)=1u (Xa-é}% [X)%(X%%) | (63

Thus we arrived at relations o{ the type ( 38 ) and ( 32) which may be handled as above,

_ We remark that the causality condition for the interacting field operator

[W"%M)]w ofavy (o

is then fulfilled in a trivial manner since we have according to ( 63 b (62) and (60)

[9%), ¢ry)],,. -y, = % (xo,é)[‘ﬂ (x), ¢, /y}]u[xo z‘)/ (65)

and for the reason of covarisnce (65 ). has to hold also for X ~ ‘

For the above considerations it was assumed that the operator Z{/é {Xa, i) (or % (X 0, ‘é) ) has .
a well-defined limit for 'l':”' F Do and that also the unitarity condition (44) holds in thése limits
( it is obvious that ( 44) must be right for finite t and X, inview of (30) and (40} ). ilow-
ever, as it is well known, in going to the limits + - T 0o we have to adopt a special adiabatic con-'
ception ( in order to get mathematically well-defined results ) and the Itmttmg process may mﬂuence )

the unitarity property for the operators ( 52 )* . That this is indeed the case may be seen as follows,

*We do not discuss bere lbe situation where bound slates have to be considered (see/G/) -

Ve consxder first the operator (c ompare, (40 ), (41 ) and (30))

[ - - \—LP 0{:
e [ 5 ) et

where

oy B e .
HL(éJ0)=€ (}/?, (o)eto(o)f QL(0)=/£*P [o)'-, ‘ (67)

It is obvious in view of (66) tbat U [X ‘é)zs unitary for izmte 'é and Xo . Now we introduce ex-
plicitly the adiabatic conception in the iorm
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RULN

(£ 0) — P (t'0) (68)
glt!

where @ is a damping factor in the sense that, after the calculation is performed, the limit & ()
is to be taken®,

¥
For anotber possibility of defining the limiting process seeS/

Then we get from the right equation ( 43 )

U, (%, t) - 1+c/u (x,,ﬁ)P (f 0)dt v (69)
d(and from thxs puttmg X,=0 and £=.—,:|>a

R T
{i"' (")P-'-LE ()}yfw [0)

where %a (0) is given by (21 ) and we have made use of the relation ( compare ( 66 ) (67)).
. . , ,
LS, Bt -tP%(o
Uo (98) P (0)=e “"pigy etV (71)

From (70) we conclude using the right equation_ (67)

(R-P™)u, (0= @) Y. (o) =0 o

i.e. the states :
; (%) ‘ o 1 '
Y o<, (o 7o) ¥, (0) (73)

are eigenstates of the energy. operator Fz; of the total system ( compare (20 ) ) corresponding to
the free particle situation ( 0} at- t =300,

Now we  show that exther ( 0, '{00) is not unitary or there i Is no interaction between two par-
ticles. The proof is in two parts: first we' show that a unitary U (o .,,oo) cannot have any influence on
the stable states of the system and then conclude from this that there cannot be any interaction between
two particles.

For the first part we choose Slf (0) as a stable state SJ‘ (0) (vacuum or one-particle state )
and get from (70 )

W= (0 m)y (9)= %, ¥, (0)- {1 o (o)}z,w (0) (a)
since the fixing of the sxngulartty 1s unnecessary in this case. Ilowever, we have o

oy RO @L A o

[
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where the operator A projects off the state ()Lfo( 0) and in view of ( 74) it is then clear that a uni-
tary operator U,, cannot have any influence on the stable states <fr (0) (otherwise: if ?r (0) isa
normalized state, the state 9}- .cannot be a normalized one ). To prove (75) we proceed as follows:
from (compare (20), (21)) ‘

&%ee“% R () ¥ (0)- P”%‘() (76)
R°(0)+p' (0)

and

Ve, v (+ny,

where C 5 is a norma]izafion constant, it foIIows
R¥. =P, (Cs (0)"'/\9[5) Cs (P +P (0))V(0)+PA¢ (78)
(s)
= PRV (e ) Ay )

and from this

(~, oA )/\‘/f-c P, (0)‘;”; (9) (79)

i.e. our statement ( 75 ) (because of the stability of 9’; (O) the operator (P() ) has a unique in-
versein (79)).

Now we show in the second part of our proof that there cannot be any interaction between two par-
ticles provided that a - unitary operator LLG ( q F co) has no influence on the stable states. We consider

the general S-matrix element for two incoming particles

;”’/5/91’% 258 <[5 409 30" 8 (9009 % =;, 117““/&/15,32 (80)
e-l. X ; 0 ~(9x

with - ?’
<”/ /91'%3#: (a1)% /dx @—' //()/[f’“‘"“f (:.r)’/* fd Vi{,,’;)'/x
e“]rx'i?z,? (x) ot:f 0n£ ( G )J (x)]0
{1r)5/dXOIy J'W am /b’('g (?}/”; %f""l/‘"'!*‘i/

reduced in the functional detivative approach to quantum field theore by means of commutatxon relatxons
of the type 1(8 ), 1(32) (where we have chosen in ( 80') the states /lz,,, %! >, /H? as outgoing
states in order to make use of the definition ( 2) for the current operator in connection with the stability
property of the one-particle states after the first reduction; / 0> isasin (7) the state vector of the
incoming or outgoing particle vacuum ). Using 1( 19 ) we get for a causal' theory up to contributions from
the corresponding quasilocal operators
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//‘i/'(iloxw (-‘Ur)s/ fofx e 9 ﬁtn, aom‘,— (‘ia.)J (x)/0>
(z+)3j7/x0/} ;l__;ii 6)(3 x)<w/9(x)(/(y}]/0%%0 1/“7‘ '(8.2)

(4
In the mteractmg field operator approach (82) takes the form {compare also section 4 )

, 9y X " )
/ b7, = (2,7‘)3/:. /0/x L (g, ‘")ou{ <””/ aut(%)‘?p(x)/0> (83)
e %x ‘9 4 %110

1
* (4,7)3[0/”/7 QVT' (U ‘”)(Uy ’”)9{7"‘) <h’/[‘/(x/<f(y)]/0>,%—+;m 7

" The first expression on the ng‘)t-hand-sxa'e in (81 )y (82) and (83 ) vanishes unless one of

tbe momenta in the final state /‘1’> ot is equal to @ s, ' and vanishes identically if /n, D ot is
a two-particle state because of ( 90 ), (91 ). First we consider the second expression in ( 83 ) which

we wrzte in the form .

T f"/“f}/al/T {(u )8 (4=x)(@y-m*) <ulpx)p (1) o>
_(Dy"’w)@(ﬁ*x)b(ﬂx“Me)oitw/tfcl/)(/)(x)/0>}; %":*W

where we have made a partial integration ( see, for details, also the next section ). We expand the matrix

(83)

elements of the field operators in ( 83’ ) with respect to a compIete set of incoming or outgoing particle

states /M/ > w for instance,

out .
<W/<f(X)‘7p(g)/0> Z’ <n/¢/ﬂ{x}/n7 <h//(/ﬂ[27}/(7> (84)
and consider the matrix element (f) [y /p) which we perform as foIIows

a9 y)fos - ¢ y< w/tf{a) o> . (
85)
& HOIENC +oo)(/(a/u(o+oy/c,r(o}> ¢t "ol >

where we have made use of the translation invariance ( 4/ is the energy-momentum vector of the state
/ u > mpt ), expressed all quantities in the usual interaction representation (which is possible since
(a/ (0’ Foo) is assumed as unitary; compare for details the appendxx, especially (A.6), (A.7) and (A.8))
and in the last step used our assumption that u/ (0 °'°} or 1{/ O F oo) respectively has no influence on the
stable states (/J" (0) (the fact that with % (0, F °°) also d ((9 +oo) cannot have any influence on the
stable states follows simply from the unitarity condition LL (0, 7)1, (0 7 05) q)'e[oj 1 Qr {D)}
dowever, from (85 ) we conclude that ( 83’ ) .vanishes identically since accordmg to (85 ) only the one-
particle states contribute in ( 83’ ) and the application of the corresponding X Xlein- -Gordon operators yields

zero. By the same argument it is immediately seen that also the first term in ( 83) vanishes xdentxcaIIy
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This completes our proot*,

to deal with T-products, compare (9 ) ) which, bowever, bas no immediate pbysical interest, Mazbemahcally it would then comp~
letely prove that an unitary transformation between (f{x) and lfm '(x) is only possible in the free field case.

Thus we have shown that the operator Yo ( 0, ) cannot be umtary for real interactions and the
same must be true [or the operator ” m ( 0, ¥ oo) because we have, for. instance, according to (49 )
’M/ (0 ¥ °°) %m (0 F °°) 7/{/,:} (() +oo) Uu-.é (0, 7 oo) Since, however, according to the
assumption ( 20 ), ( 21 ) (}1‘ . and V " ( 0) are connected by a unitary transformation the operator
Yo (0 F °°) which transforms between them must then correspondingly unitary up to a general finite
(re-)normalization constant (related to the constant % of the following). -

It is also  very instructive to discuss this situation by studying the commutation relations. From
(32) or (63) it follows using (42) and (6(;)

[P 05), )] )= [ (o) f, () (30,8 )5 0 o) o 4 i (104), Wy)] /
O AR A A S (sa)
=i [ (0 t) [B (%) G0 () Iy g 06 g)~-w(x-7)

sl
if we assume in the Iast step that /3 ({3) -depends only on the field operator '70 ( f) =

(.f (}( {-) itself and not on'its time-derivatives (according to ( 41) and (‘19) P (
can then only depend on (& (X X, ! such that

[ (xo.t) Py (x)]=0

is fulfilled* ). However, ( 86 ) cannot hold if ‘/ (X) is of the form (15), ( 15°) where the free

¥ .{ 86 ) bolds, of course, also in more general cases, for instance, if P" ({:) depends in addition on the first time-
denuatwe of the field operator in first order, We bave always in mind only the conuent:onal local interactions for which ( 86 )
can be performed.

field operators ‘/u,, ( 7() obey ( 5) in connection with the stabxl:ty requirement for the one-particle

out
states, For then we must have (/0 > isasin (7) and (81)  the state vector of the incoming or
outgoing particle vacuum ) .

4 O/ka (x), %[y)]/o)/xfyj—i Z-ié'(x;-f) | (87)
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where*

e 2, . .

:jo}w?(/‘«v)li ‘ (88)

) ¥ We exclude the singular case 1 =0, It would mean that the solution of the inbomogeneous Klein-Gordon equation
cannot exist in the form (12 ), -( 12' ). or ( 29 ) in quantized field theoty since the quantization ( 93 ) for the free field

-operator l& (X) makes no sense. On tbe other band, ( 15 ), ( 15') is the limiting case of ( 12), ( 12') (notice also that
the limiting solutions ( 15), ( 15°) can always be brought into the form (12), ( 12’ ) with .

W (x}*‘ A(X y)/(y}d ‘ ‘ fo‘b Xo >t
(x)- { /
Lﬂ'— %Mt (2)- f a (x- y)}(y)a&/ For o KXo <t

which obviously obey ( 13)) and (14)). It would further mean that we cannot exclude the case that because of ( 87 ) (wbhich
is more singular than a -function ) the quasilocal operators appearing, for instance, in ( 108) bave infinite coe/ﬁczents
(probably also the explzcnly written term in . ( 108 ) will then not . make 'sense )e .

1% ( /W ) is the well-known spectral function of X4l1én /9/" and Lehmann/ 10/ which follows from
"an expansion of the left-hand—side of ( 87 ) with respect to a complete set of incoming or outgoing partic:

" le states- (co'npare (84)). For really mteractmg fields it must be
‘ -1
yé 1 ; , (89)

because
-4
z -1 (89)

results already from the contribution of the stable one-partzcle states ( $ (/‘Vz) & éw m*} )

In general (-89’ ) would be equivalent to the case that Uo i, (0 .,_o.) has no influence on the stable

states  (compare the conszderatzons (84) ff) which we have to exclude according to the considerations

(84) ff, Only for the contrzbutzon of the intermediate one-particle states in ( 87 ). the operator Ugw (0.,».)
‘out.

is without any influence according to (compare (15), (15’ ) (25) and (26))

<Of¢(x)[§> <o/n/)w >

(90)

Vo 1%, Gl

<O/‘/' (X)/gj>=04 _ (91)
(91) follows from the stability cz;ndition
<y sl g1 - (92)

( to show this use the commutation relation 1(8) ).

since it is

From the above considerations we conclude that the free field operator ‘pr: (x) for finite \l: has

really to be quantized accordmg to ¥

¥ We remark that (93 ) (aswellas (60) ) )’Ields ( 61), ( 62), We have no reason to conclude that ¥ ({‘ 'U}
is not umlary for ftmte times. But under tbe assumption ( 93 ) the relations ( 86 ) and ( 87 ) are compatible for .a umltzry
| ({; { ) since now the factor Z," appears also in { 86 ).

[ ?I)t (%), ¢, (5)]‘““7’-14 (x-y) o (93)
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in contrast to ( 60 ) (and consequéntly wé have to put the same factor into ( 26 ) ) or the limiting

value for

[‘{Z’u A,(x,)‘ ‘P;’v (g)]=54(x-7)\ : : (93")

(93) and( 93’ ) show evidently that the operator ”‘ (Xo,w-) which connects the mteractmg field
operator ‘f ( X) with the mcommg or outgomg free [xeld operators ‘fu; (x ) can only be unitary up the
constant % Thus the employment of the solutxons (15 ), (15) where the free field operators
ﬂfm (x ) obey ( 5 ) together with the stability condmon (92) or, more generally spoken, the requxrement
c:f compatxbxlxty between the commutation’ relatxons ( quantxzatxon ) on the one hand and the propertxes
of the mass spectrum and state vectors ( Hilbert space ) .on the other makes necessary a redefxmtton
of the quantxzatxon prescription for the free field operator % (x ) for fmxte {: *

@

* The problem of the existence of a unitary operator ‘lp (0 -o-) was first discussed by R, Haag/ll/ We bave adopt-
ed the follqwing point of view: wbhereas ( 93) and ( 93" ) sbow that really no unitary transformation between the free fuld

operalor . (X ) or = because of (f‘_ (x) (f (x) Jor Xo= £ «the interacting field operator ) (x} and the incom-
ing or outgoing.free field 7 ¢mtors ) can exist it sHll exists according to ( 93 ) and ( 93°) betwnn the unrenor-
malized field operator * 1 1 (x).It is obvious that the unitarity relation for Ux, xo + %) can
then correspondingly bold o o a nnormalzzall'on actor which, of cowrse, is unimportant for the study o? integrability con-

ditions for the solutions ( 13 ). ( 15° ) of the wave equation ( 1). However, it should also be remarked that it is quite unclear
wether the guantization ( 93 ), ( 93° ) (which makes the theory consistent only subsequently) can lead to a theory which is
consistent at all (and probably it can only be consistent up to the renormalization factor 7 =Ya). For instance: if we take into
account (93 ), ( 93°) in the relations ( 50 ) ff there the free wave part must be muluplled by the renormalization Jactor . Z
(and also | (x in ( 358), (38°), both in contrast to our assumption for the discussion in (.86 ) [f) wbich again bas to be
modified subsequently by consldemliuns analogously to ( 86 ) J/ ( which can be repeated ad infinitum), Furthermore, it sbould

always possible to replace (%, % o- by Ux, bo) «( compare the footnote for ( 50 )) but these two operators
cannot be identical according to MS) if onc takes into account (93), (93" ), We add tbe remark (which is quite evident -
from the above considerations) that we are always only concerned with the equivalent ordinary representations of the ¢ ]

tion relations for which vacuum states exist and which are connected by unitary transformations considering the whole question
as a renormalization problem with respect to the constant %,  connected immediately with the adiabatic conception (compare
(93), (93" ).) which yields only weakly convergent results. [T : . - . :

3. 'THE EXTRAPOLATED S-MATRIX ELEMENTS -

. We study txrst the situation connected with the problem of an extrapolatton of the reduced S-matrix
'elements off the mass shell in the functional derivative approach to quantum l'teld theory. If we write
1(16) in the form

G [ ()
Syl B o

multiply this equation by 9 (x yy and add on both sides the term 6, (% ( W _;L__ , where 9( J)
and 04, (% y) obey the relatxon : %« (y)

O (+4)+6, (Xuy)%- e (95)

we obtain
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s{);_ . i o Gw
J‘&fm l«@ X?}D()J(y]"’")( (f (3)5%4(]) (96)

“The commutation relation 1 (32) appears then in the form - -

— W5 (x) R o
fa (9/)J()] (l’r)%foiy : OVA D’/‘-f (7)-' (97)

(m% f”{f 1/- i6,(s C/(x),m)]w(*zf)é—;é%+@(xi)g{/,—("—()—)}

Iiwe choose 9 (X } as the usual step function .. ~+—I “igr R
6, (x.4)=6 (x-y) ~ o8
Such that according to (95) ' o _ o _—
0, (x, 94) = i Q(X-j) Q(y x) S o (%9)
we get foracausal theory from (97). accordmg to (8) ’ e »
[a, (f})/(x)] (zf_y/yv__,{z@(x 7)[}(%(?}]} ? W , »(‘1‘00)“ o

with Q(x} J { y)] Q0 for X~ j ( compare 1 ( 18) ), up to terms resultmg from the correspondmg qua~"

silocal operators, Of coutse, we may also work in this case with the more general representatxon (97 ) and

the zmportant point is now that this is also possible ( without mtroducmg any modification’) if we extrapo-
late (97 ) off the mass shell according to Bogolubov’s original idea

;er —_—T . (101)
as the starting point for the analytic continuation of tbe‘correspending matrix elements of ( 100 ) with
respect to q,, /3/, The reason is that (96 ) itself is agsimple identity ( which is not only valid on the
mass shell in (97) ), -i.e. the choice of the ©. ° -functions has no influence on the extrapolated relations.

In the interacting field operator approach to quantum field theory we meet a quite different situation.
Here the causal properties of the fzeld theory are expressed by ¥ ‘

¥ We assume bere that ( 64) is ,reaily a _condition on the formalism which is important for tbe analytic
bebaviour of the. reduced S-matrix . elements,

[’“/).(A’E)Vr‘f"('%’)];b L kg P ‘(>64)’}'T‘>

and it was shown in 1 that in the reduction [ormula 1 (29 ) detemmed from an applzcatzon of the asymp-

totic condition*

¥ "We urite bere more generally G'iet (X, y) instead of 8 (x_y) T
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'[Ov (r; / )] MT)% fj' 1/__' m){ (X,y)(ﬂ ""),_d’(x) ‘{’f"ﬂ]} gt Ym® +q, ( 102)
the function 9ot (%, ‘11) can only be determmed by the boundary values

Lig 0, (x9)= { ( 103)

_‘/O—’ F oo

with vanishing derivatives _0__ )

(x, y) at these limits¥*, If, however, we  extrapolate ('102) off the
dy, et )

¥ We remark that the partial integration in the last step in 1( 27 ). is not influenced by a dependence of Oret (x 1)
on the space-coordinates f. For the dependence on X there is really no condition ( as far as ( 103 ) is not vtolated)

mass shell according to ( 101 ) there apbear additional terms depending oh e y ) which make an ana-
Iytic continuation of the corresponding matrix elements of ( 102 ) with respect to g, in general impos-
sible. o : » .
We may study this as follows. First it is clear that according to ( 103) we may add to a given func-
tion § ret (% y} in( 102) an arbxtr;ry additional functzon 9 ( X 7} obeymg the boundary condition
Ly -
4 s Ba (07y)=0 ( 104)

8 (x, ,y) at these limits. The reason is that on the mass shell the relation
a

‘94

with vanishing derivatives aa
o
) -ﬁr
o,-m¥*)e ""=0; ,-—-}-'1/& ] ‘ 105
( d ) ’ 9 M tq (105)

is valid*. [lowever, if we extrapolate off the mass shell according to (.101) the relation -( 105) takes

X Swrictly speaking this is only right if we replace the plane waves in ( 102 ) by the corresponding wave group solu-
tions of positive energy; compare the performance l (27). i

the form lg ’_ — '
C(grmeMaos  goeryiige (06,

and the contribution resultmg from the functzon 9 (x 'y) leads correspondingly to the addxtxonal term

(T-w) T (.w’/z / ? {‘9 ey)fjcs, ‘f(y]} Jurty/Ten(107)

in the extrapolated relation ( 102 ).
If we choose in ( 102) 9 (X y}as the usual step function we obtain

o 43 i = 10l g

with&("),j (y ]‘ 0 for X?\‘y (compére ( 64) ), up to contributions from some quasilocal operators.
( 108 ) is equivalent to the relation ( 100 ). If the extrapolation off the mass shell is carried out the ana-
fytic continuation of the cotresponding matrix-elements of ( 108 ) can be performed as usually/ 3, llowever,
the use of other € -functions leads to the appearance of additional terms of the form (107 ) whichin

view of the condition (104 ) make in general impossible an analytic continuation of the matrxx elements
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of the extrapolated r\evlation ( 102 ) with respect to 90 . % 3Jut since according to ( 167 ) these non

*We remark that the eiiropolalcd relations 1-( 28 ), 1 (29) (belween which we cannot dlstmgbmsb a priori | dzf,fer also
from each other by terms of the form ( 107 ).

i n v e o R o s e e e

analytrc contributions’ lead to zero contributions on the mass shell (and we are only mterested in the final
result for T—+ m¥ ) they are really spurious: we have no need to continue then analytically.

Thus we have shown - that both approaches gn'e in general rise to different extrapolations of the re-
duced S-matrix elements of! the mass shell: that part which can be analytically continued is essentially
determined by Bogolubov’ s causalxty condition and corresponds to a special choice of the 0 func-

’

tion in the rnteractmg field. Operator approach. :

4. CAUSALITY ooNDiTlon IN THE lngEnAcrlNG FIELD OPERATOR APPROACH _

Concludmg we show that the causality condmon for the interacting field operator in the commutator
form is without any meaning for the analytic behavrour of the reduced S-matrix ele-nents in the interacting
field operator approach as studied in the theory of dxspersron relations. For this purpose we consider the

S-natrix element for elastic scattering ( compare (80 ), (83))

ol §3:% /908 >a." ‘5;,,«;,,,.'%% +4,G09,/0/9..9, ot L (109)

—E%x-[e‘x o
ont Q/b'q"’/R}qmq’* ont = . a-m*)i L 2
(2'1')""/ dya’m(xm'/u./_'”’)(“o)

ao/v/ \’{'7. < %"27/[‘?(‘]:‘{)@)1/05 Q‘- =+ 1/;" .,.4

where the function Qadv (X,g ) has erly to fulfill the condition ( 103) for mterchanged limits ( past and
future ). Let us assume that the field operator (/) (x ) is a non-causal one, i.e.

[90),P(gIko  if xy.  (up

flow we choose the function Qarlv ( X, y) such that it vanishes for space-like separated pointsv

with

6 adv (X.y)=0 Uf X~y : - | (u2)
This choice is quite generally compitable with the condmon ( 103) for mterchanged limits since the space
like region (x ~y) vanishes for y, FOo (such points ( x —y) which can contribute on the planes
—pn

y Foo  lie asymptotically on the light cone; they have infinite values of the points X" or
in ordinary space where in addition the . lield Operator ‘f(l) */) ( y ) rtsel! vamshes" ). Fo or time-like

® % Sprictly speaking we bave for this to replace always ‘the 'plano' waves by wave packet solutions of
positive energy (for 1f 4 we assume an expansion of the form 1 ('25), really understood for wave
group solutions), Only in the final results we go then over to the limiting case of plane waves (c.omparc/z";.
We remark further for the case of possible singularities in space-like regions that it is as usual assumed
that the lnugml over them with a [inite &  -function in ( 110 ) is defined,
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points (x -y ) we choose 8 odv & }such that it is equal to one in the backward light cone and equal
to zero in the forward light cone in ( x — y )-space which again is in accordance with ( 103) for inter-
7 changed limits. This shows that it is always possible to bring ( 110 ) in such a form that it represents the
Fourier transform of a function f( x, y) which is different from zero only in tbe backward light cone of
( x ~ y ). But this property involves all what we nged from a causali'ty condition in the theory of dispersx'bn
relations. k ’ ' -
~Of course, we do not believe that the relation ( 110 ) derived from an application of the asymptotic

condition makes any sense in a non-causal field théoty * | It seems evident that the causal character of

% Otherwise di'spersion relations would be valid for causal as well as non-causal field theories wbhich contradicts the re-
sults of the functional derivative approach. The conclusion that the contributions from space-like regions of the commutator ( 111 )

cannot make any sense in the reduction formulae of the interacting field operator approach may also be reached from the requires
ment of covariance ( an argumentation used in' 1 ).

the theory is a priori assumed in the derivation of*.( 110 ). If one makes a first reduction in ( 109 ) accor-
ding to the relation (compare 1(21)) : .

“V
@ in (9) a’oui(i’)'f' (35 )%/ _V‘*l]
one sees 1mmed1ate1y that one has to soIve for a further performance in ( 110 ) the wave equation (1),
In a second reduction there is assumed that the solutxon ‘P ( y} has a well-defined asymptotic beha-

viour for go—" te and it seems very unlikely that f (%, can be another solution as an advanced one

which assumes Bogolubov’s causality condition ( 8’) as a necessary intkegrabilityicondition according to
section 2.

(x) | (114)

In any case, the causality condition ( 64) cannot be interpreted as a condition on the reduced S-mat
rix element ( 110 ) which is xmportant for its analytic behaviour as studied i in the theory of dispersion re-
lations. If one wants to mvestxgate ‘the consequences of a possible non-causal structure of quantum field
theory ( which is a very important physical problem also within the theory of dzspersxon relations) one has
to use reduction formulae for the S-matrix elements 'derived’ in the functional derivative approach.

I would like to thank very much Akademician Bogolubov and Dr. Medvedev and also Prof, Lenmann
and- Dr, Symanzik for valuable discussions which have strongly influenced the present paper. I am also ve-'

ry grateful to Prof, Drell for his great interest in the preceding paper to this one;

APPENDIX

We derive some relations valid for a representation at arbitrary t. We perform

) - C,o R v . . ‘ ] ‘
SRl = S s ol [ (0> (1)
o ;. +

S‘rn, (f)= U

in (f,?"")/hz;‘g;b (A2)
and (compare (3) and (4))

where

out




2.

%o ‘ ' t . |
5,- % f iy ot fu Ry 0 )i B (1) (xa )i 5 S 82848, <4 (4.3)
n=0
with (compare (38)) o
, | . |
9, Uﬁ”&{(ﬁw)‘f’;& (%) Ui, (t, %) (A4

We remark that because of (45 )%

" * For ue,ig ( f,:ar) we may also bave in mind representations of the form (3 ) or ( 23) for which ( 45) is trivial
because of ( 38). m:re we ignore as usually the fact that LL‘_ tn  (€,%00) ‘can only be unitaty up to a constant ( if one takes into
account this fact-one bas always to replace Pg: (X1) by 'vntz%‘fe (x;} or to drop the Z- factor in ( 93 ) and to normalize the
states lp’: (t)' see also the footnoteat the end of section 2 ). v

‘ %En- (.6) ¥ oo) = %’E ({:) ?Do) .
Looeut . ) :
For the matrix elements of ‘70 (X) we write

W [P0 >y = (U, () V@000 W (bW ()5 (ae)

(A.5)

373
ot -

since according to (A2) and (A.5)
= ; n; . .
We (& 7))y (t)=]nr = (A7)
and where we may use on the right-hand-side of (A.6 ) employing (32) and ( 17)

¢ ' : C B (%-t) ~1R (xs-1) ‘
ﬁﬂ(’():%t (X_O;{')‘ﬂ(x)"ﬂé (xt,,%):e t/(x, {)e : ' (A8)
as-the interacting field operator corresponding to the t-representation. According to ( 21 ) we have for
(A7) ' ' \

[ 1 ' -0 (n) B ) P 9 () o
R U (L) UL B (3 e) Y B0 ()
where gl(;;ﬁously ( compare (37) ) ‘ ‘

Rty (67 Pl Y (5 72)

(A 10)

: F.'or"{‘ =0 (cohvéntional interaction representation * %) :( A.9 ) reads
 ** Fopthis case see also 12
Pric W (0.5%) ¥ (0)=P, "W (0,7) 2 (o) Caa)
Cbmparing this with (07‘?(; we arr‘ive at the result that P:u; , have fo be identified wiflz R, itself
which was stated in ( 27). L out

Concluding we derive the causality conditions valid in the t-representation, For finite t (54 ), (54")



27

reads*

¥ Fora quantization according to ( 93 ) the integral terms in (A.12), ( A.12°) bave to be multiplied by Z° -1, Since this
factor is unimportant for the study of integrability conditions for the solutions (12), (12°) of the wave equation ( 1 ) wedrop -
it as in section 2, :

Lp(x) 7 (e)ei fay 4 () 4! (1,8) m;?;)) f dert )

e (4 %) o o
‘/(") S, (x)- /dfld (- f/) :’L*{'H :-‘é’x’-) for x, <t (A12)

As in sectxon 2 we now conclude the ‘proper causalxty condxtxon

/0 i
m Xo t) 0 . yo>xu>f (A 13)
$4, (y) | N e :
e (%) (A13)

Wfo x'f y°<x,<£

and the causalxty condition

Sily) S, (x.,t) . o
Skpt('l) 5‘,70 (1){ (o;f) d,.(ft (?)5 =0 l]( Z,?XD?yRﬁ (A14)

ﬂ(%) { 514;(6.)‘0)
34, (1) &f (%) é’q{ (7)

%G’-x")}:o o rexecyoat (A 12)

as necessary mrtegrabxlxty condxtxons for the retarded or advanced squtxon (12), ( 12 ). k
We note also the for‘nuIa '
S SS S : , :
(x)=i * T
J 0. (x) sq’m (x) 5 ' (A 15)
it (4-w) g s W, (t-o0)- % (+wf)w() 5 (4, (e, )

59 (1)
which is evident in view of (3), (A 3) and ( Ad4). For the operator

oy __5_S1___ 55 .+ ( 416)
/i (x)-tSf 7, @ Wt(x) S

where
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+
LPF (x)=5e %‘(")St, S¢=5 (A.17)
( compare ( A.3)) we conclude from (8 ), (8’) and (A.3) and (A.4) the causality condition
57 (x) |
54, )
S (%) A 18
S ‘

-which one has to use if one derives reduction formulae for the S-matrix in the t-representation.

(A 18)
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