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l ( § :1. -Introduction 

Difficulties arizing in the theory of strong interactions led to revisions of 

the principal ideas of quantum field theory, '!here were even doubts about the 

validity of its application to strong interactions/ :1/ • Recentl:y the . situation has 

still more aggravated because the strongly interacting particles are now thought 

of as not elementary and their interaction is assumed to be nonlocal. In this con

nection a question arises: which local quantities can be preserved in the field 

theory and how is it possible to obtain information on strong interactions out of 

these quantities. 

In formulating the local quantum field theory the fundamental . quantities are 

the radiation operators or currents/ 2 / whose matrix elements are straight for-

wardly connected with the vertex functions and amplitudes of different processes. 

The local properties of the currents and the microcausality condition allow 

tis to prove. the dispersion relations for the amplitudes ·of different processes. 

In the conventional quantum field theory to each elementary particle there 

correspond its fields and currents. 

Applying quantum field theory to strong interactions one ,_.should take into 

account that the strongly interacting particles, the number of which is increasing, 

cannot be considered elementary in the true sense of this word • 

.At the present time a great deal 9f attention is being paid to the quark 

model in which all the strongly interacting particles- hadrons are build up out of 

three basic particles- quarks. From the point of ·view of quantum field theory only 

these basic particles can, apparently, be called elementary, and only to them one 

can ascribe their fields and currents. 

Out of the presently known particles only le!J;uns can be apparently con

sidered elementary. According to the low of the leptonic charge conservation,lep-.. 
tons interact with hadrons only in pairs: ( e v • ) and (JL~IL ) in weak interac-

tions and (e;') , ( JL~) in electromagnetic interactions. 
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Thus, ou~ of the local currents one ca~ build up vector and axial currents 

which describe weak and electromagnetic interactions in the lowest order of the 

coupling constant. 

The hypothesis of isotopic invari.ance permits one to ascribe to these currents certain 

properties under isotopic transformations. So, the electromagnetic current is given 

the properties. of an isovector and an lsoscalar, while the weak current is given 

·the properties of an isovector for the decays conserv'.ng strangeness an isospi

nor for the decays violating strangeness. lf we believe in unitary symmetry or 

the quark model we are able to generalize the electromagnetic and weak currents 

to the nonet of vector and to the nonet of the axial local currents. In view that 

the weak and electromagnetic interaction constants are small one can say that 

the vector and axial currents describe the reaction of the composite system, 

which the strongly interacting particles comprise, on the weak external perturba

tion 1 yielding Indirect information about strong Interactions. For the quantities con

cerned with the local 'Vector a:nd axial currents, quantum field theory allows one 

to prove dispersion relations. 

The effective tool for extracting information about strong interactions is the 

Goldbergei'- 'I'reiman relation or PCAC - hypothesis. 

Some authors formulate the PCAC - hypothesis as an operator equality 

1T 
divA (x) • c </>11 (x) ( ~.~) 

which establishes the proportionality of the pion field and the axial current di

vergence with the quantum numbers of the pion. 

lf the pion is a composite particle then such an operator equal!~ is mean

ingless, since In this case the pion cannot be described by the local field </> r. ( x ) • 

'Therefore it is more reasonable, from the standpoint of the composite model, to 

formulate the PCAC - hypothesis In the pole approximation on the basis of the 

unsubtracted dispersion relations in the virtual momentum. 

One can attempt to generalize the Goldbergei'- 'I'reiman relation to the axial 

currents having the quantum numbers of K -mesons. It should be expected, 

however, that such relations will have. a lower accuracy because of the large 

K- meson mass. 

To obtain information about strong Interactions on the basis of the currents 

introduced above, Gel!- Mann postulated, as a dynamical prir:1ciple, the equal- time 

commutation relations, i.e. a certain algebra of these currents. 
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Fubini, Furlan and Rossetti suggested to combine the algebra of curre 

and dispersion relations in order to obtain the so- called "sum rules" intercc 

ing the constants of different processes/ 4 / • 

One of us ( N.B.) drew attention to the fact that to obtain a number o1 

tions derived usually from the algebra of currents it suffices to use only th 

cal properties of the cyrrents from which the dispersion relations follow. 'It 

mics is contained in the assignment, of the number of subtractions in thesE 

persion relations (the same number which was used by Fubini, Furlan and 

Rossetti in combining the algebra and dispersion relations). 

The algebraic properties of currents turn out to be not essential. Thl! 

quite in accord with the idea that in quantum field theory the dynamics is f 

determined by a set of local currents and by a chain of quasi local operat 

Starting from this idea, on the basis of the ordinary dispersion relc:>.tior 

certain restrictions on the number of subtractions, some relations have beeJ 

tained/ s-g/ which connected the coupling constants and the magnetic .mom< 

baryons, including the well- known Cabibbo- Radicati relation. 

Up to now, only the Adler and Weisberger relation/ ~of 
a 

2 1 IT ,. k dcu 
1 - gA· + - J --..- [u - - u + ] , 

IT p. ru• IT P IT p ( 2, 

which determines the renormalization of the axial constant of the weak inte1 

has been the monopoly of the algebra_ of currents . 

The aim of the present paper is to obtain relation ( 1), on the basis 

dinary dispersion relations. We also use the additlvi~ principle in the qua1 
. i d . '-! 11.~2/ del for the zero- angle scattermg ampl tu es near the threshold . 

§ 2. Adler- Weisberger Relation and Additivi~ Principle 

Consider the quanti~ 

-J.qx • • 

Ta{3 = J dx e 9( x o } < P~ I [ i a ( x) , i {3( 0 ) H P 1 > • 

a 
where ia(x) • divA (x) 

= 

a=l,2,3 stands for the isotopic index. 

(2 

The local operator i a ( x) has ali the transformation properties a -quantum numbers of. the pion current. The locali~ of the currents ia(x) 

it possible to prove, for ( 2.1), the dispersion relations in the variable 
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Fubini, Furla n and Rosse tti suggested to combine the algebra o f curre nts 

and dispersio n r e la tions in order to obtain the so- ca.lled "sum rules " Inte r connect

ing the constan ts of diffe r e nt processes/ 
4

/ • 

One o f u s ( N.B.) drew a ttention to the fact tha t to obta in a number o f r e la

tio n s derive d usually from the algebra of c urrents It s uffices to use o nly the lo

cal properties o f the c yrrents from which the dispers ion rela tio ns fo llow. The dyna

mics is con tained In the assignment o f the n umber o f subtra c tio n s In these d is

persion r e lations ( the same number which was used by Fubini, Furla n a nd 

R ossetti In comblnlng the alg ebra a nd dispe rsion rela tions). 

The algebraic properties o f currents turn out to be n o t e ssential. This Is 

quite In a ccord with the idea tha t In qua ntum field theory the dynamics is fully 

determined by a set of local currents and by a chain o f quasi local o pera to r s/ 
2

/ • 

Starting from this Idea, on the basis o f the o rdinary dispersio n relc>.tio ns with 

certain res trictio ns on the number o f s u btractions, some rela tions h a ve been ob

tained/ 5 - 9/ which connected the coup ling c o nstants a nd the ma gnetic mom e n ts of 

baryo ns, including the w ell- known Cab ib b o- Radlcati relation . 

Up to now, only the Adler and Weisberger rela tion/ 10/ 
2 

2 1 , 00 kdcu 
I • gA + -- f--.- [o - - o,+Pl , 

, ll "'. , p 
( 2) 

which determines the reno rmalizatio n of the axial cons tant of the w eak Intera ctio n, 

has been the monopoly of the algebra of currents. 

The aim o f the pres ent paper is to obtain rela tion ( 1), on the bas is o f o r

dinary dispe rsio n relatio n s . We also u se the a dditivity principle in the qua rk mo
·-j 11,12/ 

d e l fo r the zero- angle s cattering amp litudes near the threshold . 

§ 2 . Adler- Weisberger Rela tion a nd Additivity Principle 

Consider the qua ntity 

-tqx • 

Ta.f3 • f dse II( so)< P2 1 ( j a. ( s), j ,g< 0) n p 1 > 

a. 
where la.(s) • di•A (s) a. • I , 2 , 3 s tands for the isotopic index. 

( 2 .1) 

The local operato r j a ( s) h a s all the tra nsfo rma tion pro perties a nd the 

quantum numbers of. the pio n current. The locality o f the currents ia.< s) 

It possible to prove, for ( 2 .1), the dispers io n rela tions In the variable 
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I 
w • 2""01 ( q , p 1 + p~ ) when the values o f 

~ 
q are negative or sufficiently small 

p o sitive. The quantity T af3 has the s truc ture o f the rr N -sca ttering amplitude 

a.n d in the case corresponding to the forward s cattering in the lab,system 

( ;. - p~- 0) can be represented as 

<+) 
Ta{!r l5a{3 (A 

<+> (-) (-) 
+wB )+~l'a'fJ](A +wB ), ( 2 ,2) 

(:1;) <±> 
wh0 re the functions A and B have the follo win g symmetry properties 

(:1;) (:1;) 

A (-w)a+A (w) 

(±) (:I;) 
( 2 ,3) 

B (- w) '!' B (w) 

(-) ~ 

Let us determine the function I ( w,q ) related to the crossing antisym-

metric part o f T a{3 : 

(-) ~ 

wl (q ,w) • A 

( -) (-) 

+ wB 

It follows from the symmetry properties ( 2 .3) tha t 

( 2,4) 

(-) 

lew •• ~ > is an even tunc-
<-> ~ 

ti ::m o f w a nd finite a t w • 0 . VVe suppose tha t for the function I (w ,q ) the 

dispersion relatio n w iU•out s ubtractions holds 

(-) 
( - ) 

(-) ~ l+oo~ 

1 (w ,q l- iT_~w ' - w 

(-) ~ 2 ~ lm I 
dw'= I (w ,q )+ITf~w'dw' 

pole p. cu -(£) 
( 2 .5) 

Using the definitio n o f the matrix element of the current i a ( x) 

single -nucleon states 

- ~ -
< p~ J ia(O)Jp 1 > = 2mg AD( q )uy 5 u 

between the 

( 2 .6) 

where 0 (0) • I the pole term, singled out in dispers ion rela tio n ( 2 ,5 ), c a n be 

written down as 

(-) 

I polo ( W • q ~ ) 

~ 1 2 2 
~ 4m q D (q 

gA < 
q - 4 m w 

( 2 ,7) 

l\1aklng use of the Goldberger- Treimdn rela tio n and o f the o ptical theorem 

we are a ble to connect the imaginary part of the function 
(-) 

I a b ove the 
+ 

threshold w 2: ,. with the total cross sectio n s of rr -- me son scattering o n 

protons 
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~ 

<-> ~ p. I rr ~ k [ u - - u + J • 
lml (w , q l • (~) ~w " o rr o ,. -q 

( -) ~ 

Note that the function I ( w , q ) should be considered as an anal 

of two complex variables q~ and w , In the language of rr N . 

is the ma s s of the incident pion, whereas w is its lab,energy. ' 

titles a re related by 

2 2 ~2 2 2 
q o w -q =W (1-{3) 

where {3 is the velocity of the incident pion, 

Further w e will consider the dispersion r elation for the fun< 

the value of {3 is fixed, This disp ersion relation assumes the 

use is made of ( 2,7) and ( 2 ,8) 

(-) ~ 

I ( q 'y) 

~ ~ ~ ~ 
~ 4 m 0 ( q ) p. I rr ~ 1 oo k 'clw ' 

8 A !I !I ~ + ( -::-r-:T l -;;- f , !I 2 [u - - • 
q - 4m y P. - q p. w -w " • 

I 
where y • ~ is the Lorentz factor. 

yi-{3 
Going over, (in 2,10), to the zero mass and velocity limit 

we obtain 

~ 

(-) ~ f 00 kdw 
f (0,1) • g + ___!! f -:,..- [u - - u + 

A 71 Jltu 17p ftp 
l . 

In onder to get the sum rule determining the renormalizatior 

constant for weak interaction , g A , we formulate the additivity p 1 

(-) 
tity [ r a r {3 ] f (0,1) is addltively composed _of the contributions fro 

forming the nucleon 

<-> a <-> 
lrarQ]f (0,1) • I [rarQ] 1 1 1 (0,1). 

,.., ·-· ,.., 

An account of only one Born term In the quark amplitude gives 

(-) ~ 

r,<o.n-<sAl quarks. 

Fixing ( V - A) -variant of the weak Interaction for free quarks 

that the proper axJal constant for the Interacting quarks is not r 
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<- > 2 

.nd finite a t lLI - 0 . We s uppose tha t fo r the functio n I (<LI ,q l t h e 

tation w iU1out subtractions holds 

(-) 

<-> I +~ I /-> <-> 2 2 ~ Im I 
I (<LI , q

2
) =- f-m __ d<LI ' = I (<LI,q l+ITf~lLI ' dlLI ' 

"-CICI cu , - Ct> pole J.1 cu -cu 
( 2 .5) 

"initio n o f the matrix element o f the current i a ( x l 

>n states 
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1 

> = 2mgAD(q luy
0

u 

between the 

( 2 .6) 

the pole term, singled out in disper s ion rela tio n ( 2 .5 ), can be 

as 

(-) 

I pole ( lLI • q 
2 

) 

2 1 2 :l 
2 4m q D ( q 

gA ( 2 .7) ... ., 2 
q - 4 m lLI 
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to connect the imaginary part o f the function 
(-) 

I a b ove the 

~I' with the total c r oss section s o f 
+ 

rr -- me son scattering o n 
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2 

<-> 2 I' I rr 2 k ) 
Iml (<LI ,q ) • (~) -2-·• [u,-, -u"+" . 

I' - q ~ 
( 2 ,8) 

( -) 2 

Note that the function I ( lLI , q l should be considered a s an analytical function 

of two complex variables q
2 

and lLI , In the language of 
2 

rr N -scattering q 

is the mass of the incident pion, whereas lLI is its lab,energy. These two quan

tities a re related by 

2 2 ~2 2 2 
q • (LI -q =<LI 0-{3 ( 2.9) 

where f3 is the velocity of the incident pion. 

(-) 
Further w e will consider the dispers ion r elation for the function I w hen 

the value o f f3 is fixed. This dispersion rela tion assumes the form ( 2.10) if 

use is made of ( 2 .7) and ( 2 .8) 

(-) 2. 

I (q ' y) =-

2 2 2 
24m D (q 

g A ~ ~ 2 
q - 4m y 

2 
I' I rr 2 I ~ k 'd(LI' 

+ (~q l -;;-f ,~ :a [u,-,-u,+ ), 
,... - I' (LI - (LI p 

( 2 .10 ) 

1 
where 

y - yi -{3 
is the Lorentz factor. 

2 
Going over, (in 2 .10 ), to the zero mass a nd velocity limit ( q • 0 , y • 1 l , 

we o btain 

2 
<-> 2 1, ""kd<LI 

I (0 1) - g + - f -7:v- [u - - u + 
' A , ll W 11 p tT p 

l . ( 2.11) 

In onder to g et the sum rule determining the renormalization of the axial 

constant for weak interaction , g A , we formulate the additivity princip le: the quan
(-l 

tity [ra rf3]1 (0,1) is addltively composed .of the contributions from the quarks 

forming the nucleon 

<-> a <-> 
[rartl)f (0,1) • I [rarf3) 1 1 1 (0,1). 

,.., l•l 
( 2 .12) 

An account of only one Born term in the quark amplitude gives 

(-) 2 
I 1 ( 0,1) • (s A) ( 2.13) quarks. 

Fixing ( V - A) -variant of the weak interaction for free quarks we shall suppose 

that the proper axial constant for the interacting quarks ts not renormallzed 
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<s:> quark - 1. ( 2 ,14) 

This is equivalent to the assumption that the virtual effec ts are suppressed 

in the quark interaction involving soft massless pseudophotons. It should be ex

·pected in this case that in the quark amplitude near the threshold the Born tenn 

dominates, As a result, we obtain the well-known Adlel'- Weisberger relation 

2 

2 111 ~ kdc.~ 

• SA+ -;r f -,-[a,-.- u 11 + ]. 
II. Ql • 

( 2,15) 

§ 3. D i s c u s s i o n 

We have shown that the consideration of dispersion relations without sub

tractions for the quantity related to the divergences of the local axial currents 

allows one to obtain the Adlel'- Weisberger relation under the following assumptions: 

1) The additivity principle for the scattering amplitude of the massless pseu

doscalar particle near the threshold. 

2) The proper axial constant of the weak interaction of quarks is not renor

malized, 

3) The assumption that the virtual effects are suppressed in the quark in

teraction with the massless pseudophoton in the zero momentum limit. 

Assumptions ( 2) and ( 3) are closely connected and consistent with the g e 

neral spec;ulations of the composite model for elementary particles. According to 

this model, the basic particles-- quarks have no structure of their own and their 

intera ction detennines the structure of the composite, particles, 

The validity of assumptions ( 2) and ( 3) is likely to be accounted for the 

large quark mass, Whereas tor the nucleon the relative contribution of the virtual 

effects to the axial constant is of the order of ..!!... • 0.15 , then for the 
m 

quark .!ir • 0 at M .. ~ • 

In conclusion we would like to point out an independent possibility o f 

checking the assumptions made in the work, UsP'lg the Goldberger-Treiman re
(-) 

la tion, it is possible to connect the function I (0,1) w ith the corresponding am-
(-) 

rrN- scattering r,,.<ol , at zero pion energ y 
(-) (-) 

ma tely that I,.J.Ol//1 1,,.<11. l 

. Assuming a pprox i-plih.lde of 

ctnd having in view the a b o ve princip les we a r e 

B 

able to connect the weak decay c o nstant o f charged pions 

leng ths of rrN - s cattering 

'" II. -,-,.- -:---7"(1 + -)(at-•al· 
Itt 31' m 

Using ( a 1 - a 3 ) • 0.28 we obtain 

with experiment. 

1, • 0 .85 + OJ5 11. 1 in 

We are g rea te sincerely to D.I. Blokhintzev, A.M.Baldin, 

A.V.Efremov, f<.M.Muradyan, B .V.Struminsky a nd r-<.N.Fausto v f < 

c ussio n. 
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(g:) quark - 1. ( 2 ,14) 

This is equivalent to the assumption that the virtual effects are suppressed 

e quark interaction involving soft massless pseudophotons. It should be ex

in this case that in the quark amplitude near the threshold the Born term 

lnates, As a result, we obtain the we~ known Adlel'- Weisberger relation 

2 
2 117 .. kd"' 

• s + - f ---r- [u - - u + I . 
A 17 I' "' lr P 17 p 

( 2,15) 

§ 3, D i s c u s s i o n 

We have shown that the consideration of dispersion relations without sub

:tions for the quantity related to the divergences of the local axial currents 

rs one to obtain the Adlet'- Weisberger relation under the following assumptions: 

1) The additivity principle for the scattering amplitude of the massless pseu

alar particle near the threshold. 

2) The proper axial constant of the weak interaction of quarks is not renor

ed. 

3) The assumption that the virtual effects are suppressed in the quark ln

tion with the massless pseudophoton in the zero momentum limit. 

Assumptions ( 2 ) and ( 3) are closely connected and consistent with the g e 

·spec;ulations of the composite model for elementary particles. According to 

node!, the basic particles- quarks have no structure of their own and their 

•ction determines the structure of the composite, particles, 

The validity of assumptions ( 2) and ( 3) is likely to be accounted for the 

quark mass, Whereas for the nucleon the relative contribution of the virtual 

s to the axial constant is of the order of L • 0 .15 , then for the 
m 

I' 
'1l - 0 at M ~ .. . 

In conclusion we would like to point out an independent poss ibility o f 

:ing the a sswnptions made in the work, Us~ the Goldberger-Treiman re
(-) 

, it is possible to connect the function I (0,1) with the corresponding run-
(-) 

~rN- scattering 1 (0) at zero pion energ y 
(-) (-) lrH I 

r that 1
71

J.Ol:l I,H(I') 

? of . Assuming appr oxi-

ctn<;i having in view the above principles we a r e 

fl 

able to connect the weak decay constant o f charged pions I, with the s -wave 

lengths of rrN -scattering 

4, I' 
~I •-:--TO+-H•,-•a>· , 31' m ( 3.1) 

Using ( a 1 - a 8 ) • 0.28 we o btain 

with experiment. 

171 • 0,85 + 0.15 I' 1 in a good agr eement 

We are g rea te sincerely to D,l. Blokhintzev, A.M.Baldin, A.A.Log unov, 

A.V.Efremov, r<,M,Muradyan, B .V.Struminsky a nd I-<.N.Faustov fo r the usefull dis
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