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Recently many sum n.lles for neutrino reactions. electroproductlon and ~ 

vector nucleon fonn factors have been obtained on the basis of current algebra 

and unsubtracted dispersion re.Ja.tlons for the amplitudes/ 1- 5 / • 

On the other hand, it has been shown by L.D.Soloviev that the sum n.lles 

corresponding to trivial commutators ( [A , B) • 0) can be deduced from some aa­

sumptions about the hlgh- energy behaviour of the amplitudes and one-dlmensJo... 

nai unsubtracted dispersion re.Ja.tions for W 61 • 

The generalization of this method with the account of SU ( 3 )-symmetry 

has been applied to derive sum n.ales for strong interactions/ 7/ • 

In this note we would like to show that it Is possible to get the sum n.ale 

for electroproductlon and the Cabibbo- Radicati relation with the only assumption 

about the definite high- energy bE!haviour of the virtual lsovector amplitude of the 

Compton scattering on the proton without any postulated algebra. 

These relations have been previously obtained from the nontrivial commuta­
tors/51. 

Consider the amplitude 

( 1) 
(±) 

where j P. are the lsovector components of vector current density; p 
1 

and 

p 2 are the initial and final proton momenta, p: = p! = M2 q 
1 

, 

and q 2 = p 
1
-p 

2 
+ q 

1 
are the photon momenta. 

In the following we put: 

The amplitude T11 v has the fonn: 

(2) 
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The quantity M I'" can be expanded with the account of time reversal and 

gauge invariance as follows/ 
5

/ : 

I'MI+,-)v= 
1i Hl+,-l(v t 2 )I 111 

<2 I'" fl J=l (J) ' ,q 
( 3) 

1 n I 5/ where the gauge invariant quantities I are defined as in ref. • We need on-

ly the second one H 1 2 1 • The corresponding invariant I 
1 2 1 

has the form: 

where ,1' " 1 'l 2 

I 121=[t 2 ·P-~) q 1 ·t 2 Ht 1 ·P--( 
11~ )q 2 ·• 1 ] 

\ql. q2 1 ql q2 

are photon polarization vectors and 

q,· p q • p 
11=--=-2-

M M " 

t=(q -q )2 
I 2 

P=~ 
2 

The optical theorem reads: 

e2 I I [-• I' " """2--r 
2!•1 (a) Im 0 (p)<(a)MI'.,'Ia) u"(p)],_ 0 =vv

2
-q I u - t= 0 tot 

( 4) 

(5) 

where u ••• is the total cross section for the virtual photoproduction on the 

proton. 

After averaging over spin indices and summing over photon polarization we 

obtain from eq.( 5) 

2 

Im H121(v,t=O,q 2 )= 29 (uT+uL) 
e 2M2 ( 11 2 -q 2) li 

( 6) 

where UL = 0 for q 2 = 0 

From the crossing symmetry of the T 

properties: 

amplitude we get the following 
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(+,-~ ) (-,+~ ) 
Re H I 2 l \II = Re H I 2 l \ -v 

(+ -) 1-,+l 
1m H !2) (v) = -Im H ( 2 ) (-v) 

Consider now the difference of the virtual and real forward amp: 

!+,-) 2 (+,-) 2 !+.-) 2 
t11( 2 ) (v,q ) eH( 2) (v,q ,tm0)-H(2) (v,q •O,t-0) 

We assume that the function ..,!+,-)( 2) 
"'!2) v,q for small I q2 l 

energy behaviour which enables us write down the unsubtracted 
!+,-) ..I+ I K/ 

lions both for tllr 21 (v) and .,.q;r1;,- (v) in the variable v 

From this assumption and crossing relations ( 7) it follows 

f
.. ..,!+.-) 2) f.. [..,(+,-)( 2) ..~-.+)( 2 )] 

1m "'! 2 ) lv,q dv= Im "'! 2) v,q - ... ( 2 ) v,q .dv• 
-oo v 0 

The difference of the amplitudes in eq.( 9 ) can be expressed th 

tudes H~12 11 and H~~~~ with the total isotopic spin I =f 
• 
(+,-) (-,+) 4 (I) (3) 

H!2l -H (2) =T[ H!2l- H!21] 

Separating the one-- particle contribution/ 
5

/ in eq.( 9) and using 

rem ( 6) and the relation ( 10) we get 

M2 "" !+,-) 2 !-,+) 2 
"'2,;"" jim[H( 2) lv,q ,t=0)-H( 2l lV,q ,t=O)]dv= 

0 

=[ Fy(q2)]2-~[ Fy(q2)]2-~ 
I 4M2 2 "e 2 

.. 
f x (2u 

(M.+I')2 -Mt ' 

2M 

~ 7 It is worth noting that just the same assumption for the 
leads to contradiction. 
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ce as 

can be expanded with the account of time reversal and 
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ptical theorem reads: 

e2 ~ ~ c· ,. v 2--r 
Tcs> Ca> lm 0 (p)£Ca>MI'v£Ca> u"(p)]t 0 =1/v
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-q I u = t= 0 tot 

( 4) 

(5) 

is the total cross section for the virtual photoproduction on the 

averaging over spin indices and summing over photon polarization we 
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( 7) 

Consider now the difference of the virtual and real forward amplitudes H 1 1 1 

(+,-) 2 (+,-) 2 C+,-) 2 
<11 121 (v,q ) eH 121 (v,q ,t-0)-H121 (v,q •O,t-0) ( 8) 

We assume that the function 
(+,-) 2 

<11 121 (v,q ) for small I q 
2 1 has the ~ 

energy behaviour which enables us write down the unsubtracted dispersion rela.-
C+,-l ...1+ 1 K/ 

tions both for <~~c 21 ( v) and v • "'c ;,- (v) in the variable v • 

From this assumption and crossing relations ( 7) it follows that: · 

f
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\v,q dv = lm .., 121 v,q - ... 121 (v,q .dv =0 

-oo .. v
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The difference of the amplitudes in eq.( 9 ) can be expressed through the ampli-
c I) ( 3) 1 > tildes H 1 2 1 and H 1 2 1 with the total isotopic spin I z t" and I = 2 

c+,-> c-,+1 4 111 C3> 
HC2l -HC2l =-:;[H(2l-HC2l] 

( 10) 

Separating the one- particle contribution/ .5/ in eq.( 9) and using the optical theo­

rem ( 6) and the relation ( 10) we get 

M2 foo [ <+,-l 2 C-,+l 2 "2,;"" v .lm H 121 \v,q ,t=0)-H 121 lv,q ,t=O)] dv= 
0 ( 11) 

2 2 2 = [ F .. ( q 2 ) ] 2 __ q_ [ F v ( q 2 ) ] 2 __ q_ 
I 4M2 2 IT e2 

..L .1. 
f x(2u 2-u 2

) dv lt=o 
(M+I£)2-M2 y T yv2-q 2 

2M 

K fIt is worth noting that just the same assumption for the amplitude H (v) 
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leads to 'contradiction. 
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where F .. (q 2 ) are 
1,2 

the isovector electric and magnetic form factors of the 

nucleon, respectively, 
1/a s/a 

a.. , a.. are the totAl cross sections for the ~ 

tor photoproductlon on 

pion mass. 

protons of the 1-f and 1-i states, I' is the 

From eq, ( 11) it follows: 

•• 1• r 1+,-) • 1-.+1. • ~ 1m H121 \v,q •O,t-0)-H121 \v,q •O,t-O)Idv•l 
"o 

( 12) 

'llle sum rule ( 9) then tAkes on the form: 

•• r· r 1+,-1. I 1-.+l z. 1m Hu 1 \V,q ,t-O)-H12 ; \v,q 1 ,t-O)Idv•1 
"a 

( 13) 

'lll1s is the same rule which has been previously ~btained from the current 

algebra, Substituting expression ( 11) into eq, ( 13) we obtain the sum rule for 

electroproductior/
4

•
5

/ 

where 

2 ..... .L ..1. 
[F .. ( 2

) 12 --q-[ F .. ( 2 >1 2 -....U:.f(2a1 -a2 ) dy •1 
1 q 4M2 2 q I .. .. .I I 1 1 

2 I 

a • (M+(J -M 

we & v v - q (14) 

Now we tAke the derl:vative of eq.( 14) with respect to q 2 and put q 2- 0 , 

We use the definition of mean square isovector nucleon radius: 

.. a • 1 
dF1 (q) I =f<r!>-f[<r!>-<rD> 
d[ q

2
] .•-o 

and the normalization conditions: 

I 

6 .. 

F
1 
.. (0) -1 F2 .. (0) •JL'(p) -p(n) 

where l''(p) and JL(n) are the anomalous magnetic mome1 

and neutron1 respectively. 'lllen we get the well- known Cabibb< 

tior/ 2 /: 

[ jt'(p~ -If (n) 12 + _2_ j (2a1/2_as/2)k =..1.[< r 2>-< r 
M rre2 a .. .. II 3 P 

Note that the Cabibbo- Radicati relation can be also obta. 

sumption about the unsubtracted 

iJH 12 ~11, q2, t = O), I 
il[ q 2] q2 =0 and 

dispersion relations both for 
ilH121(11, q 1 , t -0) 

II. I 
a [ q •J q 2 = o 

in fact, in this case we have the sum rule 

r+,-) a o) I o .. ilH 12 1 ( q ,11,t• .dv-
fim [ a] q2=0 -oo a q 

Using expression ( 11) we immediately obtain relation ( 15) froJ 

sum rule ( 16) can also be cast into the form 

Ma f 1+,-l 2 
2if_&olmHr2) (q ,11,1=0)dii=C(q 2 ) 

where C (q 
2

) is arl arbitrary function, provided 

~ 
d [ q 2] 

I =0 
q 2=0 

Comparing now eqs. ( 17) and ( 13) we see that the sum rule • 

case of the sum rule ( 17) with C ( q 
2 

) = 1 'lllus, the sum r 

and consequently the Cablbbo- Radlcati relation has no direct c 

current algebra, 'llle same method can be applied to derive thE 

the other invariant amplitudes, 

In conclusion we wish to stress that the validity of the s1 

troproduction and the Cablbbo- Radlcati relation depends only on tht 

sumed asymptotic behaviour and thus unsubtracted dispersion r 
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( 13) 

same rule which has been previously obtained from the current • 

stituting expression ( 11) into eq. ( 13) we obtain the sum rule for 
.ctior/4,5/ • 
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(14) 

2 2 

<11 +,IU -II 

e take the derivative of eq.( 14) with respect to q I and put q 1. 0 • 

definition of mean square isovector nucleon radius: 

" 2 

dF, \q ) I =f<r!> ·fl<r!>-<r!>l 
d[q I .~-o 

allzation conditions: 

6 

• 

r;(o) -1 F; (0)-,. '(p) -.,.(n) 

where ll'(,p) and fl(n) are the anomalous magnetic moments of the proton 

and neutron, respectively. Then we get the well- known Cabibbe>- Radicati rela­
tior/2/: 

[ e'(p)-u(n) 12 +-2-j (2al/a_a3/a)k=.l[<r2>-<r2>] 
211 rre 2 a " " v 3 P n 

( 15) 

Note that the Cabibbe>- Radicati relation can be also obtained from the as-

sumption about the unsubtracted 

aa,.~v, q2. t = O)o I 
a[ q2] q2 =0 and 

dispersion relations both for the quantities 
aa,.,<v. q 1

, t -0) 
v. I 

a[q•J qa=o 

In fact, in this case we hdve the sum rule 

(+,-) 2 0) 
f... an,., ( q ,v,t- I dv=O 

_lm 2 ) q2=0 
-oo a[ q 

( 16) 

Using expression ( 11) we immediately obtain relation ( 15) from eq. ( 16). The 

sum rule ( 16) can "also be cast into the form 

M. r 1+,-) 2 
2ir_,j,lmH(a) (q ,v,t=0)dv=C(q2) ( 17) 

where c (q2) 
.. 

is an arbitrary function, provided 

~ 
d [ q 2) 

I =0 
q 2=0 

Comparing now eqs. ( 17) and ( 13) we see that the sum rule ( 13) is a speclai 

case of the sum rule ( 17) with C (q
2 

)= 1 Thus, the sum rule ( 16) or ( 17) 

and ccnsequently the Cabibbe>- Radicati relation has no direct connection with 

current algebra. The same method can be applied to derive the sum rules from 

the other invariant amplitudes. 

In conclusion we wish to stress that the validity of the sum rule for elec­

troproduction and the Cablbbe>- Radicati relation depends only on the va.Udity of as­

sumed asymptotic behaviour and thus unsubtracted dispersion relation for the 
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ampUtudes. 'lhis approach, in principle, allows ua to wuierstAnd which of the IIWD 

n.lles previously obtAined from current algebra actually do not require the vW.idlty 

of the current algebra. 

The authors are deeply indebted to Acad, N,N,Bogolubov, Prof. A.N. 'l'avkh&­

lldze, S,B,Gera.slmov, R.M.Muradya.n for uaeful d.lscusslons, One of the authors 

( R,E,K.) thanks Prof, V.J:Fainberg for the interest in thi& work and stimulating 

criticism. 
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