

L.A.Malov, V.G.Soloviev

THE STRUCTURE OF THE GROUND AND EXCPTED STATES
OF DEFORMED ODD-MASS NUCLEI
IN THE ACTINIDE REGION

The interaotion of quasi-partioles with phonons in odd-mass deformed nuclei has been considered in a prorious papar ${ }^{1}$. A seoular equation for determining the nonrotational state onergy has been derived. It has been show that this interaotion leads to the appearance of admixturee in states olose to the single-particle ones and to the formation of oolleotive nonrotational states and oomplex structure states. The otruoture of the grome and excited states of odd-mass nuole1 in the region $15364 \leq 187$ has been invetigated in ref. ${ }^{2}$. In the present note we give a part of the results obteined in invesitgating the struoture of the oxoited states of odd-mass muolei in the region $22944 \leq 255$.

The seoular equation determining the energies η_{j} of the ground and exoited states of odd-mass deformad muolei is of the for 1

$$
\begin{equation*}
\varepsilon(\rho)-\eta_{j}-\frac{1}{4} \sum_{\lambda \mu i} \sum_{\nu} \frac{v_{\rho \nu}^{2}}{\left.Y^{2} \lambda_{\mu}\right)} \frac{\rho^{2 \mu}(\rho \nu)^{2}+\bar{\gamma}^{-\lambda \mu}(\rho \nu)^{2}}{\varepsilon(\nu)+\omega_{i}^{\lambda \mu}-\eta_{j}}=0 \tag{1}
\end{equation*}
$$

the oolleotive state anergies $\omega_{i}^{\lambda \mu}$ and the quantity $\gamma^{i}(\lambda \mu)$ being caloulated in refs. $3,4,5, f(\nu)=\sqrt{C^{2}+\{E(\nu)-\lambda\}^{2}} \quad$ (C is the oorrelation function, λ is the cherioal potential for an odd-mass nuoleus), $v_{\rho}=u_{\rho} u_{\nu}-v_{\rho} v_{\nu} ; f^{\mu} \mu_{(\rho \nu)}\left(\rho-\rho_{\nu}(\rho)\right.$ are the metrix elements of the mulipole moment operator ($\lambda \mu$) . The sumation over $\lambda_{\mu i}$ is due to that one takes into acoount the interactions of quasi-partioles with quadrupole $\lambda=2, \mu=0,2$ and ootupole $\lambda=3 \quad, \mu=0,1,2$ phonons for the first two roots $i=1,2$ of the seoular equations for even-even nuclei, the wave furotions and the Hilsson potential energies ${ }^{6}$ are used in the caloulations. The wave funotion desoribing the state with a given $K / \bar{\prime} \quad$ is of the form:

$$
\begin{gather*}
H\left(K_{\pi}\right)=\Omega\left(K_{\pi}\right)^{+} \Psi_{0} \tag{2}\\
\Omega\left(K_{\pi}\right)^{+}=\frac{1}{\sqrt{2}} C_{0}\left\{\sum_{\sigma} \alpha_{S}^{+}+\sum_{\lambda_{\mu i}} \sum_{*} D_{\rho / \omega i}^{\lambda_{\mu i}} \alpha_{*}^{+} Q\left(\lambda_{\mu}\right)^{+}\right\}, Q_{i}\left(\lambda_{\mu}\right) \Psi_{0}=0 \tag{3}
\end{gather*}
$$

where $Q_{i}\left(\lambda_{\mu}\right)$ is the phonon operator of multipolarity $(\lambda \mu), \alpha_{\nu G}$ is the quasiparticle operator, $\sigma^{\prime}= \pm 1, p$ stands for the arerage field levels with given $K \sigma$'s and y for the remaining levels.

$$
\begin{align*}
& C_{\rho}^{-2}=1+\frac{1}{4} \sum_{\lambda \mu i} \sum_{\nu} \frac{v_{\rho \nu}^{2}}{\gamma^{i}(\lambda \mu)} \frac{\psi^{\lambda \mu}(\rho \nu)^{2}+\bar{f}^{\lambda \mu}(\rho \nu)^{2}}{\left(\varepsilon(\nu)+\omega_{i}^{\lambda \mu}-\eta_{j}\right)^{2}} \tag{4}\\
& D_{\rho_{\nu \sigma}}^{\lambda \mu i}=\frac{1}{2} \frac{v_{\beta}}{\sqrt{Y^{i}(\lambda \mu)}} \frac{f^{\lambda \mu}(\rho \nu)-\sigma^{\prime} \psi^{\lambda}(\rho \nu)}{\varepsilon(\nu)+\omega_{i}^{\lambda \mu}-\eta_{j}} . \tag{5}
\end{align*}
$$

The quantity C_{ρ}^{2} dotermines the oontribution of the one-quasi-partiole state with a giren ρ and $\frac{1}{2} C_{\rho}^{2} \sum_{\sigma}\left(\frac{D_{\rho N}}{\rho_{N}}\right)^{2}$ the oontribution of the oomponent with a quasi--partiole in the ν state and a phonon with $\lambda \mu i$ to the oonsidered state desoribed by $4(K n)$.

The inrestigations made in ref. ${ }^{2}$ for nuolei in the region $151 \leqslant 4 \leqslant 187$ showed that the lowering of the onergies η_{j} with respeot to $\mathcal{C}(\rho)$ and to the first pole $\varepsilon(\nu)+\omega_{1}^{\lambda \mu}$ is mainly defined by the terms (1) with $\lambda=2, \mu_{r} 2$, in 1 and somewhat less strongly by the terms with $\lambda=3, \mu=0, i=1$. In some oases of importanoce are the terms in (1) with $\lambda=2, \mu=2, i=2$ and $\lambda=2, \mu=0, i=1$.

In the aotinide region of great importance are phonone with $\lambda=2 ; \mu=0, i=1 ; \lambda=3, \mu=0$ $i=1$ and in some oeses phonons with $\lambda=2, \mu=2 ; \lambda=3, \mu=1,2$ here i belag unity. In the aotinide region the role of betamibrational and ootupole ($\mu=0$) phonons essentiaily grew as oompared with the rare-earth region. It should be noted that the terms in (1) with $\lambda>3$ and $i>2$ give a rery amall oontribution sinoe $\gamma i(\lambda \mu)^{-1}$ tends to zero when the oorresponding state of even-oren nuoleus approsohes the two-quasi--partiole one.

Baoh ralue of $K \pi$ has its own equation (1), the solutions for this equam tion are the onergies $\eta_{1}, \eta_{2}, \ldots$ For the ground state of odd-mass nuoleus $\eta_{1}\left(K_{0} \pi\right)$ assmes the smallest value and the onergies of the eroited states are the differenoes $\eta_{j}\left(K_{\bar{H}}\right)-\eta_{i}\left(K_{0} \bar{H}\right)$.
In the oases when the interaotion of quasi-partioles with a beta-ribrational phonon played an 1mportant role then, instead of (1), eq. (13) was solved in ref. ${ }^{2}$ in whioh the spurious state was exoluded. However, this erolusion little obanges the results of caloulations. When in investigating the states with a given $K \|$ thare are sereral fevels in the Hilsson soheme $\rho_{1}, \rho_{2} \ldots \rho_{n}$ whioh have $\varepsilon\left(\rho_{1}\right), \varepsilon\left(\rho_{2}\right) \ldots \varepsilon\left(\rho_{n}\right)$ olose to one another then, instead of (1) a oomplioated seoular equation was solred. The general form of this equation whioh is a deterninant of n-th orier is given in and the partioular oase $n=2$ is investigated in details in ref. ${ }^{2}$. The main role of this equation is the exoiusion of false solutions for eq. (1) and the determination of the struoture of relatively high states with a given K K.

The interaotion of quasi-partioles with phonons in the ground state of an eveneven nuoleus is taken into aooount, as in ref. ${ }^{7}$, whioh leads to the appearanoe in (1) of an additional term without pole. The caloulations performed showed that oorreotions due to the interaotion of quasi-partioles with phonons in the ground states of system with even number of nuoleons enter the calculations errors and should be disregarded.

The seoular equation (1) has no fres parameter. The values of the poles in (1) are olose to the two-quasi-partiole state energies given in ref. ${ }^{8}$. The analybis of the solvtions of eq. (1) shows that if $2, ~ 1 s$ very olose to $\mathcal{\ell}(\rho)$ then the state is olose to the one-quasi-partiole one. If Z_{1} notioaably differs from $\mathcal{E}(\rho)$ and the first pole $\mathcal{\varepsilon}(\nu)+\omega_{\mathcal{L}} d \mu$ then the struoture of suoh a state is very oomplieated since, in addition to the one-quae1-partiole state, many states with difforent quasi--particles and phonons oontribute to the wave fumotion. If η_{1} is rery olose to the firat pole of the seoular equation then the state is oolleotive.

We have olloulated the energies of many levels for a large number of odd-mass nuolei in the ragion $229<A \notin 255$. The wave funotions have beon found and the oontribution of the one-quasi-partiole states and of various oomponents quasi-partiole plus phonon has beon oaloulated. As an example, in $T_{a} b l e, 1$ we give the energies of the ${ }^{237}$ Hp levels up to 1 Mov and their struoture (in per oent). The experimental values are taken from ${ }^{6,9}$. Most low-lying etates of ${ }^{237}$ yp are olose to the one-quasi-partiole ones, in some states the admixtures are vory important and the $5 / 2$ atate of energy 0.9 MoV is olose to the ootupole one, and the $5 / 2$ state of onergy 1 MeV is almost purely the betampibrational one. From Table I it is seen that rather good desoription of the energy levels of ${ }^{237}$ Mp ie obtained on whioh experimental data are available and the position of some additional states is predioted.

The interaction of quasi-partioles with phonone relatively weakly affeote the Ka $1 / 2$, $9 / 2$ states olose to the one-quasi-partiole states and somowhat more strongly the states with amaller K . This leads to different lowering with respeot to the $\mathcal{f}(\rho)$ energies of these states. Therefore in a number of nuolei the oaloulated sequenoe of the expited states olose to the ono-quaci-partiole ones differs from the sequanoe of the levels in the H1lsson sohere. The interaction of quasi-partioles with phonons leads to a ohange of the state energy in different nuolei with identioal odd ralues of H and 2. For instanco, at $N=143$ the energy of the $K \bar{\pi}=1 / 2+$ state olose to the 631 , state in ${ }^{235} \mathrm{~J}$ is equal to 0.08 KoV and in ${ }^{237} \mathrm{Pu}_{\mathrm{Pa}}$ - 145 KoV . The oaloutations show that the energy of this state in ${ }^{235} \mathrm{~J}$ is 10 KeV and in ${ }^{237} \mathrm{Pu}-150 \mathrm{KeV}$. On the whole, the energies of the states olose to the one-quasi-partiole ones whioh are oaloulated taking into aooount the interaotion of quasi-partioles with phonons somewhat better agree with experimental data than the results obtained in the independent quasi-partiole model ${ }^{10}$.

The interaotion of quasi-partioles with phonons leads to the frmation of oollective nonrotational states in odd-mass nuolei and of oomplex struoture states. Table 2 gives all the experimental data ${ }^{9}, 11-13$ on suoh type states and the results of caloulations. The $K_{\bar{n}}=1 / 2$-states of energy 685 KeV in ${ }^{239} \mathrm{U}$ the $K_{\bar{\prime}}=1 / 2$-states of energy

650 KeV in ${ }^{235} \mathrm{~J}$ and the $K_{\overline{1}}=1 / 2$ - staten of energy 451 KoV in ${ }^{239} \mathrm{Pu}$ are to a large ortont ootupole ones. The $K / \pi=5 / 2-$ states in ${ }^{237} 7_{\text {Ip of onergy }} 721 \mathrm{KeV}$ and in ${ }^{239 \mathrm{Mp}}$ of energy 766 KeV are beta-vibrational. It would be vary interesting to deteraine experimentally the eotupole $K / \pi=5 / 2$-states in these nuolei whioh aooording to the caloulations, are somowhat below then the beta-ribrational ones.

Thus, the aocount of the interaotion of quesi-partioles with phonons allowed ta explain the position of all the experimentally found oolleotive non-rotaio nal states and prediot many states of suoh a type in odd-ass muolei in the aotinide region.

The properties of the colleotive states and the oomlex struoture ones as well as the admixture in states olose to the onequasi-partiole atates are revealed in the probabilities of the eleotrical B2 and 83 transitions, alpham and beta-decay rates, the ralues of the speotrosoopio factors ih direot nuolear reaotions, in the ralues of the deooupling parameter: a for the $K \pi=1 / 2$ states and so on. Let us oonsider the hindranoe faotors HP_{F} in alpha decays. If a $K_{1} \bar{H}_{j}$ state olose to the one-quasi-partiole statef, al pha decays to the oomponent quasi-partiole ρ plue phonon $Q_{i}(\lambda \mu)$ of the ware funotion with $K_{2} \bar{w}_{2}$ and ρ_{2} thon the squared matrix element 1s of the form:

$$
\begin{equation*}
\left.\left.\left|M_{\alpha}\left(\rho_{1}-\rho_{1}+Q_{i}(\lambda \mu)\right)\right|^{2}=C_{\rho_{1}}^{2} C_{\rho_{2}}^{2} \frac{1}{2} \sum_{\sigma}\left(D_{\rho_{i} \rho_{L} \sigma}^{\lambda_{\mu i}}\right)^{2} \right\rvert\, M_{Q_{i}(\lambda \mu)}\right)^{2} \tag{6}
\end{equation*}
$$

whore $M_{\left.Q_{\text {(}}, \mu\right)}$ is the matrix element of the alpha transition from the ground to the oolleotive $\lambda_{\mu c}$ state of even-even nuolei the equation for whioh is given in ref. ${ }^{3}$ The hindrance faotor \quad whioh defines the hindrance of the transition to the given state as oompared to the transition of the same energy between the ground states of the oorresponding oran-evan nuolei 18 of the form

$$
\begin{equation*}
H F\left(\rho_{1} \rightarrow \rho_{1}+Q_{i}(\lambda \mu)\right)=\frac{H F\left(Q_{i}(\lambda \mu)\right)}{C_{\rho_{1}^{l}}^{l} C_{\rho_{2}}^{2} \frac{1}{2} \sum_{\sigma}\left(D_{\rho_{i} \rho, \sigma}^{\lambda \mu i}\right)^{2}} \tag{7}
\end{equation*}
$$

Where $H F\left(Q_{i}\left(\lambda_{\mu}\right)\right)$ is the hindranoe faotor for the alpha decay to one-phonon $\lambda \mu i$ state ${ }^{3}$. This transition 1a favourable and its hindranos as ocmpared to the alpha deoay to the colleotive one-phonon state of the even-oven nucleus is due to the admintures in the f_{1} state of the parent nucleus and to a non-anity oontribution of the atate quasi-partiole ρ_{Ω} plus phonon in the wave funotion of the daughter
nucleus. Suoh apha transitions are somewhat hindered, as oompared with the favourable onen, and notioeably omhnoed as oompared with the unfarourable ones, provided that $H F\left(Q_{i}(\lambda, \mu)\right)$ $\rho_{1}+Q_{i}(\lambda \mu)$, is not too large and the fraotion of the oonsidered state in other oomponents (quasi-partiole $\quad \nu \neq \rho_{1}$ plus phonon) of the wave funotion with $K_{2} \pi_{2}$ and ρ_{2} are about the same as those for the unfarorable alpha transitions between one-quasi partiole states. A small value of (7) shows an essential admixture of the $S_{c}+Q_{i}\left(y_{n}\right)$ state.

Lable 2 gives the experimental data on the hindranoe factors 9,11 and the caloulated ralues. So, $H F\left(Q_{1}(20)\right)=4 \quad$ for ${ }^{234} 0$, aooording to ${ }^{11}$, therefore $H F\left(631 t \rightarrow 631 t+Q_{1}(20)\right) \simeq 60$. mental data on $H F\left(Q_{1}(30)\right) \quad$ in ${ }^{234} U_{\text {, we take }} H F\left(Q_{1}(30)\right)=160$ 1.0. 1ike that in the alpha transitions ${ }^{236} \mathrm{pu} \rightarrow{ }^{232} \mathrm{~J}$ and ${ }^{242} C_{\text {n }} \rightarrow 238_{\text {gu }}{ }^{11}$. For the alpha decays ${ }^{240} \mathrm{Pu} \rightarrow{ }^{236} \mathrm{U}$ and ${ }^{242_{\mathrm{Pu}} \rightarrow}$ 238_{U} we take $H F\left(Q_{1}(20) /=10\right.$ 1.e. like that in the alpha deoay ${ }^{242} C u \rightarrow{ }^{238_{P u}}$ and find $H F\left(523 t \rightarrow 523 t+Q_{1}(20)\right)=10 \div \| \quad$ in ${ }^{237} \mathrm{Mp}$ and ${ }^{239}{ }^{23 p}$. From Table 2 it is seen that the caloulated ralues prove that the interpretation of the oolleotive states in ${ }^{235}{ }_{\mathrm{O}}, 237_{\mathrm{Np}}$ and ${ }^{239} \mathrm{~Np} 18$ oorreot. It should be noted that the hindranoe faotors on the ootupole $K /=5 / 2-s t a t e s$ in ${ }^{237} \mathrm{~Np}$ and ${ }^{239} \mathrm{~Np}$ are ossentially larger than on the betamibrational states; namely, this just results in the interpretation of the experimentally found states as beta-vibrational ones.

We inrestigate the effeot of the interaotion of quasi-partioles with phonons on the deooupling parameters a. Taken the wave funotion $\Psi(K \pi)$
in the ferm (2) we get

$$
\begin{equation*}
a=Q_{\rho}^{2}\left\{a_{\rho_{j}}^{N}+\sum_{\nu^{\prime} i} a_{\nu^{\prime}}^{N}\left(D_{\rho \nu+}^{20 i} D_{\rho^{\prime \prime}+}^{20 i}-D_{\rho \nu+}^{30 i} D_{\rho \nu^{\prime}+}^{30 i}\right)\right\} \tag{B}
\end{equation*}
$$

where $a_{\rho \rho}^{N}, a_{\mu j^{\prime}}^{N}$ are the deooupling parameters a caloulated with the N1lsson wave funotions 6 . For states close to the pole with $N \neq O$ the a is zero. The role of the seoond term in (B) in non-assential for the nuolei in the rare-earth region but essential for some nuolei in the aotinide region. Table 3 gives the experimental ralues of the deooupling faotor $9,11,12,14$ and their oalculated ralues, the ralues of a^{N} are also giten, knowing c_{ρ}^{2} it is easy to find $c_{\rho}^{2} a^{N}$. To illustrate the role of the betamibiational terms and the ootupole ones with $\mu=0$ we give their oontribution to the oaloulated Q. Table 3 gives the ralues of Q
for the oolleotive states, the agreement between the caloulated and experimental velues for the $K / \pi-1 / 2$-state of onergy 685 KoV in ${ }^{239} \mathrm{~V}$ provides evidence for the oorrect desoription of the struoture of this state while for the state of suoh a type in 239
$P u$ the situation is unolear. The oalouleted velues of a for the states olose to $631 f$ in the U and P_{μ} isotopes are in their absolute value larger than the experimental ones. Perhaps, this is due to the defeots of the Milsson potential ware funotion. The arloulated values of $a \quad$ for states olose to 5304 are also larger than the experimental ones, the deorease of a as oompared to a^{N} due to the multiplier C_{ρ}^{2} being oompensated by the addition fron the ootupole phonon. The aooount of the intoraotion of quasi-partioles with phonons does not elininate disagreoment between the caloulated and experimontal values of a for states olose to the one-quasi-partiole ones, though it decreases this disagreoment as oompared to α^{N}.

We hare oaloulated the properties of the ground and exolted states for 30 nuole1 in the region $229 \in 4 \leq 255,20 \div 30$ states have been oaloulated for each nuoleus. Thus we have acoumiated a large amount of experimental material. Tables $1 \div 3$ give a amall part of the results oonoerning the most interesting oases and the cases on mhioh there are oxperimental data. The remaining material oan be utilized as the amount of experimental data 1noreases.

The alm of the present paper is to give a general pioture of the exoited states for many odd-mass nuole1. Therefore we have not performed a oareful analysis of individual nuolei. Further one should analyse in detail the properties of the most interesting nuolei improving the Hilsson potential parameters, taking into aooount the Coriolis interaotion and so on. With such an approach it is possible to obtain better agreament between theory and experiment and improve the prediotions for the considered states.

It should be noted that in investigating the interaotion of quasi-partioles with phonons there is no free parameter, the quantities $\quad \omega_{i} \mu^{\mu}$ and $\gamma^{i}(\lambda \mu)$ are obtained in caloulating the oolleotive states of eren nuolei. Therefore when the agreement between theory and experiment was insuffioiently good in even nuelei this inoorrectness is transferred to the desoription of odd-asss nuolei. On the whole, the general pioture of the excited states of odd-mass nuclei is more oomplioated and the description more rough as compared to eren nuolei. The iwestigations have shown that the structure of exoited nonrotational states of deformed odd-mass nuolei is a rather various. If most low-lying states are olose to the one-quasi-partiole ones then, the energy inarease, the number of states olose to the oclleotive ones and of ocmplex
struoture atates inorenses. The acoount of the interaotion of quasi-partioles with phonons has led to the inprovemant of the desoription of nuolear states olose to the caequasi-partiol states as oompered with the independent quasi-partiole model and to a sufficiently oorreot desoription of the oolleotive and the oomplex struoture etates. For further study of the struoture of exoited states of odd-mass deformed nuolei it is neoessary to have a larger anount of experimental data on the gtates enargies, beta and gama-transition probabilities, speotrosoopio factors in direot nuolear reaotions and so on.

It should be noted that the position of the deformed odd-mass nuolens levels is to a large extent defined by the beheriour of onempertiole arerage field levels. Therefore the aooursoy of the caloulation of different oharaoteristios of odd-mase nuolei is restioted to a rough desoription of the energies and the Iilsson potential wave funation.

I express my gratitude to M. . Bogolubot, S.Bjdraholn, S.A.Baranot, V.M.Kulakov and P. Vogel for interesting disoussions.

日ererenas:

I.T.G.Soloriov, Fhys.Her.Lett 16, 308 (1965). F.G.Soloviev, the artiole in "Struoture of Complex Iuole1". Atomisdat, 1966.
2.7.G.Soloviev, P.Vogel, Preprint JIIR E- 2561 (1966). Huol. Phys. (in print).
3.7.G.Solotiet, Atomio Energy Review, 3, 117 (1965). Preprint JIMR P- 1973.
4.E.M.Zhelesnota, A.L.Eorne1ohuir, V.G.Soloviev, P. Yogel, O.Junglanssen, Preprint JIHR D- 2157 (1965).
5.L.A.Malor, V.G.Soloviev, P. Vogel, Phys.Lett. (in priat), Preprint JIRR P-27I2(I966).

7.B.L.B1rbrair, Iav. A SSSR, ser. 118. 27, 1329 (1963).
B.T.Voros , V.G.Soloviev, F.Siklos, Iav. A 888R, ser.ife. 26, 1045 (1962). V.G.Soloriet, T.Siklos. Huol.Phys. 59, 145 (1964).
9.8.1. Baranov, V.M. Kolakor, V.M.Shntunsky, Inol.Phys. 56, 252 (1964).
10.V.G.Soloriet, Bffeot of pairing oorrolatione of the superoosduotive type on the properties of atenio nuole1.
11.S.Bjornholn, M.Iederer, F.Asaro, I.Porlman, Phys.Rev. 130, 2000 (1963). M.Lederer, ©CBL - 11028 (1963).
12.B.P. K. Maier, Zoitsohr. Phys. 184 (2) 143 (1965).
K.F.Fiobiger, O.R.Fang and W.R.Fane, Broobharen Mational Leb, Rep. APS- Meating L962. (not be pablished).
13.S.A.Baranov, Yu.F.Rodionot, V.M.Iulakot, V.M.Shntiasky, Progran and the Thoses of the reports at the XII Conforonoe on Yuolear Speotrosoopy and Atoanio Inoleus Struoture.
14.T.H.Braid, R.R.Chasman, J.R.Britine, A.M.Friedman, Phys.Lett. 18, 149 (1965).

Taple 1

Binergy and stratiors of the ground and exoited states in ${ }^{237}$ Hp

K_{6}	Bnergy (kev)		Struoture of the state $c_{s}^{2} \frac{1}{2} \sum_{\rho}^{\left(D_{s \rightarrow t}^{2}\right)^{2}}$
	Bxper.	Caloul.	
5/2+	0	0	6424 93\%; 6424 +0 (20) 3,2; 521\& +0 (31) 1.2
5/2-	59.6	140	523 $9686 ; 521 \psi+0(22) 18 ; 523\}+0(20) 28$
1/2-	270	170	5304 82\%; 5304+0(20) 5.9 \%; 660t+0(30) 5.38
1/2+	327	250	$400 t$ 795; 400t $+0(20) ~ 108 ; ~ 402\}+0(22) ~ 4.45 ~$
3/2+	(357)	260	6514 69\%; 6514+0(20) 248; $5304+0(31) 2.48$
1/2+		300	6604 535; $5304+Q(30) 208 ; 6604+Q(20) 198$
3/2-		425	5321 74\%; 532 + Q(a) $17 \% ; 651 \mid+Q(30) 3.38$
3/2-	438	470	5214 845; 6424 $+0(31) 5.28 ; 5214+0(20) 3.641$
7/2-	-	580	6334 90\%; 634 +0(20) 4.94; $5214+Q(32) 1.34$
11/2-	- -	700	5054 698; 5051 + Q (20) 30\%
1/2-	-	800	541才 $57 \% ; 5417+0$ (20) 22\%; 530i+0(20) 8.5\%
5/2-	-	900	6424+0(30) 928; 51245.86; 633 +0 (31) 0.58
5/2-	721	1000	523 $+0(20)$ 988; $523+1.1$ \%; $6424+0(30) 0.36$

Table 2
Snergy, struoture and forbiddenness factors for α - deoay for the oolleotive states and the oomplex struoture states of deformed nuolel

Inolei	Kr	Bnergy (Kov) Forbiddeness faotor IF				Structure of the states
		2xp	Calon	Expe.	Coloul.	
${ }^{235}$	1/2-	650	660	75	300	631 + +0(30) 52\%; 761 348;761 $+0(20) 98$
${ }^{235}$	1/2+	780	760	25	60	640459\%; 6404+0(20) 248;6314 + +0(20) 6.58
$2370^{\text {U }}$	1/2-	-	630	-	-	631 $\downarrow+Q(30) 534 ; 761 \downarrow 338 ; 761 \downarrow+0(20)$
${ }^{239} \mathbf{V}$	1/2-	685	530	-	-	$631\}+0(30) 66 \% ; 761 \nmid 27 \% ; 761\}+0(20) 3.83$
${ }^{239} \mathrm{Pu}$	1/2-	451	560	2460	-	$631+0(30)$ 81\%; 761 17\%;
$237^{\text {\% }}$	5/2-	-	900	-	-	642 $4+0(30) 924 ; 51215.83 ; 6334+0(31) 0.54$
${ }^{237}$ \%	5/2=	721	1000	13	10	$523\}+0(20) 981 ; 523 ¢ 1.16 ; 642\}+0(30)$ 0.31
${ }^{237}$	1/24	327	250	2400	-	400 179%; 400 $+0(20) 10 \pi ; 402 \downarrow+0(22)$ 4.46
${ }^{239} \mathbf{p}$	5/2-	-	800	-	-	642/+0(30) 94\%; 512/ 5.2 \%; $523 \gamma+Q(20) \quad 0.2 \%$
${ }^{239}$ pp	5/2-	666	930	24	11	$523 t+0(20) 97 \% ; 642\}+0(30) \quad 0.5 \%$ 52310.48
${ }^{239} \mathbf{4 p}$	1/2+	326	460	-	-	$\begin{aligned} & 400 \& 77 \% ; 5304+9(30) 13.4 \% ; \\ & 4004+Q(20) 8.4 \% \end{aligned}$

Decoupling paraneter

Mueler	$K \pi$	ρ	Bnerg Exp	(Ker) Caloul		a Calcul	α^{N}	$C_{\rho}^{2} \cdot a_{\mu \nu}^{N} l D$	$)^{2}-C_{5}^{2}$
${ }^{235}$	1/2+	6401	780	760	-	-0.6	-0.96	-0.23	0.21
${ }^{235}$	1/2-	761	650	660	-	-0.84	-3.13	-0.28	0.50
${ }^{239} 0$	1/2-	761	. 685	530	0.2	0.15	-1.61	-0.06	0.64
${ }^{239} \mathrm{Pu}$	1/2-	761	451	560	-0.4	0.25	- 1.61	-0.01	0.78
${ }^{233} 0$	1/2+	6311	399	250	-0.23	-0.65	- 0.89	-0.16	0.14
${ }^{235}$	1/2	631	0.08	10	-0.30	-0.8	-0. 96	-0.16	0.08
${ }^{237}{ }_{0}$	1/2+	631	0	0	-0.44	-0.8	-0.96	-0.08	0.07
${ }^{239} 0$	1/2+	631 ${ }^{\text {f }}$	133	70	-0.54	-0.84	-0.06	-0.01	0.08
${ }^{237} \mathrm{Pu}$	1/2+	631	145	150	-0.4	-0.86	-0.96	-0.08	0.06
${ }^{239} \mathrm{Pu}$	1/2+	631	0	0	-0.58	-0.80	-0.96	-0.02	0.10
${ }^{241}{ }_{\text {Pu }}$	1/2+	631 1	163	100	-0.75	-0.9	-0.96	-0.01	0.07
${ }^{251}{ }_{C f}$	1/2+	6201	0	0	0.1	0.1	0.18	0	0.04
${ }^{233} \mathbf{P a}$	1/2-	5301	0	0	-1.33	-2.5	-2.5	-0.01	-0.35
${ }^{237}{ }^{1} \mathrm{p}$	1/2-	5304	270	170	-1.65	-2.5	-2.5	-0.15	-0.34
${ }^{239} y_{p}$	1/2-	5301	267	160	-1.2	-2.4	-2.5	-0.01	-0.40
${ }^{237}$ Mp	1/2+	4001	327	250	1.1	0.48	0.41	0.04	0.08
${ }^{239} \mathbf{p}$	1/2+	4001	326	460	-	0.70	0.41	0.04	0.34

