





I. Introduction

In paper/Z/ a method was presented for solving nucleon-phonon interaction probiems. This method is
connected neither with the construction of series in powers of an interaction constant nor the diagonalization of
a high order matrix and, what is more important, allows to expect that some reasonable resuits will be obtained
in the most interesting cases, namely when the interaction is rather strong and the distance between two non-
perturbed levels is small in comparison with the collective excitation energy. ,

The results of exact calculation of the energy spectrum in a simple model’ Y are presented below. Exact-
ness of approximate methods formulated in the same paper is discussed. Giving these results we also hope that
some of nucleon-phonon interaction effects will be, perhaps, typical for some other models. For instance, the

appearance of an approximately equidistant spectrum of states under the condition that a harmonic collective
degree of freedom fails formally to be extracted is simply due to a quantum mechanical level repulsion and there-
fore not related to a certain model.

Now let us remind briefly the main results of paper/Z/. 1t concerns a simple system with the Hamiltonian:
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where b'(n) are the pseudoscalar phonon creation (destruction) operators. The single-fermion states alone were
studied whose wave function was written in the form
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and the Schrodinger equation was:
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with the normalization conditinn
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It was shown that to find a soluﬁon for eq. (1) it is enough to solve the following system of differential
equations
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which can be derived from eq. (1) by means of a formal substitution:

b oz p - 4
dz o o
F(b") 10> F(z) 3 0 ) + X f zn
n=q_ ™ n=0
D0 )05 @ (2) T g T gz,

n=0 n
This procedure presents a simplified version of the Fock funct|onal method/ 1/
The normalization condition (2) selects only the entire solutions of the system (3).

I1. APPROXIMATE METHODS

I. In order to solve the equations when interaction is rather strong (y /fiw> 1) and the distance
between two nonperturbed levels small (, —E=¥<<ho) the approximation of strong coupling was worked
out. It consists in expanding an exact solutlon |n the eigenfunctions of the Hamiltonian with =0 . For the
e fi t was obtained:
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¢ - distance between nonperturbed levels, o=+1, y- interaction constant, L~ - joined Laguerre polyno-
mial, ho=1. Expanding E and c, inthe power series of ¢  we have
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2. When 2e=1 and y is small a resonant formula can be used
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with the correction which is equal to
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3. Finally when y<<e we can use the perturbation method:
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Ill. NUMERICAL SOLUTION

In order to examine how all these approximations work the problem of eigenvalues was solved numeri-
cally. It was naturally to use the fact that series S o (f + qS ) is convergent only when E is equal
to an eigenvalue of the system. For this it was necessary to take into account the {imiting but rather big num-
ber of terms in order that the series would not practically depend on the values of separate terms and find
their sum in an energy interval where the eigenvalue was supposed to be present.
A point in which this sum is minimal should be regarded as an eigenvalue. It can be found within any
accuracy needed.
For direct calculations it was convenient to pass to the linear combinations of functions F(z) and

D(z): X(z) = F(z) + ®(z)
Y(z) = F(z) ~®(2) = aX(~z).

Then eq. (3) is reduced to:
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Substituting x(z) as aseries X(z) - 3. x,z  in(4) we obtain
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Formulae (5) and (6) were calculated and with their help eigenvalues E,E, and E, found for a

set of parameters of «  and
The resilts ohfamod are represented by curves in Figs. 1-10,



IY. COMPARISON OF EXACT AND APPROXIMATE RESULTS

Now we pass to the analysis of the results obtained. At first we shall try to reveal separate regula-

rities in an exact solution and then compare them with those obtained by approximate methods.

First of all let us have a look at Fig. 1. When y=0  the energy levels are there represented by

straight lines, corrections appearing when interaction is very weak by dotted lines.

There are two kinds of the corrections: the levels of the same symmetry stopped to cross each other

(it is known from a theorem of quantum mechanics that such levels must repulse each other),

2. the indentica! displacement of all the levels occurs when e=0.

Results presented in Fig. 2 (v = 0,2)  are similar to those of Fig. 1, but here the repulsion bet-
ween levels is stronger, With increasing »  the repulsion between pairs of levels 0~ and 17,17 and 2+,3”
(not shown) and 2~ becomes stronger and the picture changes: at first level 2- becomes |ower than level 2°
(Fig. 4) and then level 1" also becomes lower than level 1™ (Fig. 5). This take place under the condition <1 .
A further repulsion bet.....1 level 2 and a higher level when ¢ = 1.6 and between levels 1~ and 2 ~when
€~0,5 results in that levels 2 ~and 2" are at first bringing together (Fig. 7) and then level 2~ again beco-
mes higher than level 2+ .1t is interesting to notice that with increasing »  strips of pairs of levels 0~ and
07,17 and 17,2 and 2" become more and more similar to each other (Fig.8 and Fig. 9} The larger the
and the lower the level energy the narrower the strips. Notice that the smaller the y | the larger the ¢ | the
closer the levels of the same symmetry. The two last regularities can easily be seen in Fig. 2. Levels 27and 1~
are rather close to each other when « =1,4 5 (see also Fig. 3) and levels 1"and 2*are already separated by
much greater energy interval when e= 0.5,

Besides, when « = 0.5 we have E_-E.<E,-E, .One can prove the first regularity by com-
paring the distance between levels 2~ and 1 “when <= 1.45(Fig.2), when = 1,25(Fig. 5) and when
¢ = 11(Fig. 5). Though at the same time a decrease of ¢ s seen.

Now compare the exact results with those obtained by approximate methods. Results of a resonant ap-
proximation are given in Fig. 4 and 6. It can be noted that when v = 0.2 the above resuits are in very good
agreement with the positions of the levels, When y = 0.6 a deviation of the exact results is considerable (al-
though the corrections introduced improve agreement with the exact results). This means that the resonant
formulae are useful-only for smail values of » . 1t is necessary to remind that the perturbation method does
not work when « -~ 0.5 even if the value of » is rather small. But between points of a maximum rapprochement
one can use the perturbation method. Results of calcutations in the strong coupling approximation(the corrections
up to the second power of ¢ were taken into account) are presented in Figs. 4 ( y = 0.4)and8(y = 1).

1t can be seen that when y - 0.4 the strong coupling approximation is satisfactory upto « = 0.5.
When y= 1 it works already withe = 1. It means that the range of application of the approximation is extended
with increasing y .

Fig. 8 also shows results given by the perturbation method. It can be seen that there is a whole region
of values of « lying to the right of the point ¢~ 1 where neither the strong coupling approximation nor the
perturbation method can be used.

But in this region the behaviour of the levels has an interesting peculiarity.



Fig. 10 shows how the difference in energy of levels close to each other depends on « . These differen-
ces are very close to each other when 1.5 < ¢ < 3.5 and weakly depend on ¢ i.e. the perturbation spectrum
of the system is approximately equidistant. This means that in this region of variation of ¢  inharmonic
effects are practically absent and the interaction leads only to a renormalization of both the phonon frequency
and the fermion energy.
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Fig. 1. Continuous curves are energies of states when ¥ = (. Dotted curves are corrections

when y < 1.



Fig. 2. Energies of states when ) - 1.2. Results of calculations obtained by means of resonant

formula are marked by crosses.
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Fig. 3. Energies of states 1~ and 2™ when y= 0.2.
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Fig. 4. Continuous curves are energies of states when »- 6.4, Results of the a yroximation of

strong coupling arc marked by crosses.



Fig. 5. Energies of states when y . .5



Fig. 6. Energies of states when y= 0.6. Results of calculations by tesonant formula are marked by

Crosses.
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Fig. 7. Energies of states when y-- 0.8,
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Fig. 8. Continuous curves are energies of states when y = 1.0. Results o tne approximation of
strong coupling are marked by crosses. Dotted curves are results of the perturbation

method.
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Fig. 9. Energies of states when y = 1.2.
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Fig. 10. Differences of the energies of states when ¥ = 1.0



