$N-56$

ОБЪЕДИНЕННЫЙ
 ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

Nguyen van Hieu

S - MATRIX, NON-COMPACT SYMMETRY GROUPS AND THEIR COLLINEAR SUBGROUPS

$$
E-2754
$$

Nguyen van Hieu

S-MATRIX, NON-COMPACT SYNMMETRY GIROIFS AND TFIEIR COLLINEAR GUERKOUPS

In the present paper we study the structure of the S-matrix in the symmetry with non-compact group

$$
\begin{equation*}
G=\mathscr{P} \cdot S \tag{1}
\end{equation*}
$$

where \mathscr{P} is the Poincare group, \mathscr{E} is a non-compact semi-simple group of internal symmetry, and the point between \mathscr{P} and δ denotes the semldirect product. We consider also connection between the collinear subgroup of S and the $S U(6)_{W}$ Symmetry of Lipkin and Meshkov $/ 1 /$ and Dashen and Gell-Manh i! The symmetry group (1) was suggested by Budini and Fronsdal 3/ and studied in a series of papers by Fronsdal/4/, Delbourgo, Salam and Strathdee $/ 5,6 /$ and Ruhl ${ }^{7 /}$. A detailed version will be published in $8 /$.

We introduce some notations. The generators of the symmetry group δ and the homogeneous Lorentz group $\mathcal{\&}$ will be denoted by S_{ξ} and $I_{\mu \nu}$, respectively. δ contains some subgroup isomorphic to $\mathcal{\rho}$. We denote this subgroup by \mathcal{S}_{ρ} and its generators - by $s_{\mu \nu}$. For the corresponding infinitesimal operators of the representations we use the same notations, and we put

$$
I_{\mu \nu}^{\prime}=I_{\mu \nu}-s_{\mu \nu} .
$$

The operators $I_{\mu \nu}^{\prime}$ form a Lie algebra of some group \mathscr{L}^{\prime} isomorphic to \mathcal{L} and commuting with $\mathcal{S} . \mathcal{L}^{\prime}$ together with the translation group forms some group φ, isomorphic to ρ and G is the direct product of \mathcal{P}^{\prime} and \mathcal{S} $G=\boldsymbol{\rho}^{\prime} \times \delta \quad \delta \quad$.

Let \mathcal{S}_{0} is the maximal compact subgroup of \mathcal{S} which contalns the $S U(2)$ group with generators $s_{i j}, \quad i, j=1,2,3$. Let an irreducible unitary representation of δ be characterized by a set of parameters a. These represent tations split into direct sums of the irreducible representations of the subgroups ξ_{0} each of which is characterized by a set of parameters j the basis vectors with a given j being characterized by a set of parameters v. This basis will be called it camonical one, and the basis vectors will be denoted by
$\mid a j v>$. The representations of the group \mathcal{P}^{\prime} are characterized by two numbers: p^{2} and s^{\prime} We shall consider the case $s^{\prime}=0$ and the basis of the representations of p, will be denoted by $|p\rangle$.

Corsider the rest particles and denote by $\hat{\mathrm{p}}_{\mu}$ their momenta: $\hat{\mathrm{p}}_{1}=0$,

- 1, 2, 3. State vectors are of the form

$$
\begin{equation*}
\hat{p} \quad a \quad j \quad \nu=|\hat{p}\rangle \times|a j \nu\rangle \tag{3}
\end{equation*}
$$

In a pure Lorentz transformation $\hat{A}_{p} \& \hat{p}$ they transform in the following manner
where $\omega_{L_{2}}$, are the parameters of the transformation A, \hat{F}. The first factor in the ricit-harki ide of Eq. (4 ; is equal to ${ }^{\prime} p>$ by detinition. We denote the second frictor by , in $;$. Instead of $\{t$) we have

$$
\because \Leftrightarrow
$$

The vector \mid paj, v is the state vector of a particle svith monientum f. We put

$$
\begin{equation*}
S_{\xi}(p)=e^{1 s_{\mu} \nu^{\left(\omega_{\mu \nu}\right.}} S_{\xi} e^{-i s_{\mu \nu} \omega_{\mu \nu}} \tag{6}
\end{equation*}
$$

These operators satisfy the same commutation relations as the generators S_{ξ}. In the basis $\left|a j_{p} \nu_{p}\right\rangle \quad$ they have exactly the same matrix elements as S_{ξ} have in the busis $|a j v\rangle$. In other words $\left|\alpha j_{p} \nu_{p}\right\rangle$ is the canonical basis of the group with generators $S_{\xi}(p)$ depending on p.

In the scattering processes particles have different momenta, and their state are classified uccording to different canonical basis. Therefore in constructing
S-matrix we have to choose a common basis for all particles. We do this in the following manner. From the state vectors $\mid \mathrm{paj} \nu>$ we construct formerly their linear combination $\mid \rho a j v ;$ in such a manner that in the basis Ipajr> the operator 5_{j} has the same matrix elements as in the basis $|\hat{p} \alpha j \nu\rangle$ for the rest particles. We have

$$
\begin{equation*}
\left|\mathrm{paj} j_{p} \nu_{p}\right\rangle=\mathrm{D}_{\mathrm{p}}^{\mathrm{p}} \mathrm{j}^{\prime} \nu^{\prime},\left(\lambda_{\mu} \hat{p}_{\mathrm{p}}\right)\left|\mathrm{p} \alpha j^{\prime} \nu^{\prime}\right\rangle, \tag{7}
\end{equation*}
$$

and the matrix elements of the S - matrix between the states $\left|p \alpha_{p} \nu_{j}\right\rangle$ are expressed linearly throughout the matrix elements between $|p a j v\rangle$, the general form of which can be found from the irvariance considerations. For simplicity we denote the pair $j \nu$ by a and omit the index p. From the argument of the functions D one can see what index is to be added to a. The product of two representations can contain some representation marry times. In order to distinct these equivalent representations we introduce the index ξ. We denote by $c_{a_{1} a_{1} a_{2} a_{2}}^{a_{a} \xi}$ the Clebsh-Gordan coefficients of the group δ. Then the amplitude of a binary ${ }^{2}$ scattering process is

Putting this expression into the right-hand side of relation

$$
\frac{1}{\mathrm{i}}\left(\mathrm{~T}_{-} \mathrm{T}^{+}\right)=\mathrm{T}^{+} \mathrm{T}
$$

we see that in the two particie approximation the antihermitic part have the same structure as the suggested structure of the matrix element (8), and the unitirity condition leads only to the integral equations

$$
\begin{equation*}
\operatorname{Im} F_{\xi_{2} \xi_{1}}^{y}(s, t)=\frac{1}{8 \pi^{2}} \int \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}} \frac{d^{3} q^{\prime}}{2 q_{0}^{\prime}} \delta^{4}\left(p^{\prime}+q^{\prime}-p_{1}-q_{1}\right) \sum_{\xi_{3}} \bar{F}_{\xi_{3} \xi_{2}}^{\gamma}\left(s, t_{2}\right) F_{\xi_{1}}^{\gamma}\left(s, t_{1}\right) \tag{0}
\end{equation*}
$$

If we construct the amplitudes of other inelastic processes with the particle creation and we put these amplitudes into the right-hand side of the unitarity conctition, then we obtain again the structure of the form (8). Thus in the symmetry theory under consideration there exists no contradiction with the uritirity condition.

Let the group S be $U(6,6)$. In this case there exists a suluraup cul-

$$
S_{\underline{\zeta}}^{*}(p)=S_{\vdots}^{k}, \vec{p} / / \vec{z},
$$

i.e. do not change in the transition from the rest system to the system under consideration. This subgroup is common for all particles imvolved in the glven collinear process ind the study of the invariance under this subgroup can be currled out using the technics of the $U(6)$ symmetry.

The collineir subgroup $U(6)_{w}$ under consideration coincides with the $U(i)_{w}$ group in $i, 2 i$. However, the consequences of the symmetry $U(6)_{w}$ obtained by the method developed here do not coinclde with the predictions obtained by the method of Lipkin and Neshkovi. $1 /$

Indeed, in the theory of Lipkin-Meshkovi 1 the representations of the groups $U(6)_{w}$ and $U(6)_{p}$ coincide but in the theory developed in the present paper the vectors in each irreduclble representation of the group $U(6)_{w}$ are, renerally speatring, the linear combinations of the vectors from different multiplets of the group $U(6)$ with generator obtained from the generators of the group $U(6)$ by means of the transformation (6). This difference leads to the differences of the physical consequences of two theories.

In conclusion the author expresses his gratitude to Prof. Yu.Verle and Ja.A.Smorodinsky for their interest in this work and stimulating discussions.
$k e f e r e n c e s$

1. H.Lipkin and S.Meshkov. Phys.Rev.Lett., 14, 670 (1965).
2. K.Dashen and M.Gell-Mann. Phys.Lett., 17, 42, 145) (1965).
3. S.Budini and C.Fronsdal. Phys.Rev.Lett., 14, 968 (1965).
4. C.Fronsdal. Trieste Lectures, 1965.
5. R.Delbourgo, A.Salam and J.Strathdee. Proc.Roy.Soc., 789 A, 177 (1966).
6. A.Salam and I.Strathdee. Preprint Trleste, 1966.
7. W.Ruhl. CERN. Preprint 1965.
8. Nguyen van Hieu. Lecture at the International School on Theoretical Physics, Yalta, 1966.
