J-23.

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

1000 Martine

E-2726

Z. Janout, Yu.M. Kazarinov, F. Lehar, A.F. Pisarev

THE MEASUREMENT OF THE TRIPLE SCATTERING PARAMETER R DAT 70° AND THE PHASE-SHIFT ANALYSIS AT 630 MEV

E-2726

Z. Janout, Yu.M. Kazarinov, F. Lehar, A.F. Pisarev

THE MEASUREMENT OF THE TRIPLE SCATTERING PARAMETER R_{pn} AT 70° AND THE PHASE-SHIFT ANALYSIS AT 630 MEV

ועריידאת אנויידי ידייילי In MES Lair (Chin 100) THE BETTERA

4339/2 pr

The triple - scattering parameter R_{pn} was measured previously $1^{1/2}$ for 90° and 125° (c.m.s) in the elastic p-n scattering at 605 MeV. The obtained results made it possible to specify the phase-shift analysis at this energy and to exclude one of the three previously existing solutions 2,3/2. The probabilities of the two remaining sets of phase-shifts remained approximately equal, with respect to the χ^2 - test, and additional experiments were necessary to find the most probable of them. The angular dependence of $R_{pn}(\theta)$, calculated using these two sets indicated, that the best method for finding the most probable phase - shift set is to measure the parameter R_{pn} at the angle 70° . The results of these measurements are given below, as well as planning of further experiments, necessary to determine the nucleon - nucleon scattering amplitude at 630 MeV uniquely.

The experimental equipment and the method for measuring R_{pn} have been described in $^{1/2}$ and we drop the details here. In brief, the experiment consists of determining the polarization, produced in pn-scattering, if the polarization \vec{P}_1 of the primary beam lies in the scattering plane and is perpendicular to the beam direction. This polarization is analysed by scattering of protons, previously scattered on neutrons, on a graphite block $/16 \text{ g/ cm}^2/$ inside a spark chamber (analyser). The angular distribution $q(\theta_3, \phi_3)$ of protons on the analyser is

$$\sigma_{g}(\theta_{g}, \phi_{g}) = \sigma_{0g}(\theta_{g}) \{1 + P_{g}(\theta_{g}) \{P_{g}\cos\phi_{g} - RP_{1}\sin\phi_{g}\}\}, \quad (1)$$

where σ_{03} - is the cross-section for unpolarized protons on the analyser, $P_{g}(\theta_{g})_{-is}$ the analysing power (polarization in pC -scattering), θ_{g} -the third scattering angle lab.s.

lab.s. The parameter R , as well as the polarization P_2 , produced in pn-scattering, are determined by the maximum likelihood method, in the treatment of the measured angular distribution $\sigma_8 (\theta_8, \phi_8)^{-1/4}$.

In our case $P_1 = 0.37 \pm 0.03^{1/16/1}$. The analysing power $P_3(\theta_3)$ in the region $4 \le \theta_3 \le 20^\circ$ was taken from $15^{1/16/1}$, where pC -scattering at 424 MeV were

measured. This energy corresponds approximately to that of protons, incident on the analyser (406 MeV). The number of useful events, obtained in the treating of pictures for measurements with CD₂ and C targets is equal to 4197 and 1375, respectively. The "instrumental" asymmetry was excluded by performing measurements with two opposite polarization directions of the initial beam $\vec{P}_1 / 1/s_1^{e}$. The average values of the instrumental "right-left" ϵ_p and "np-down" ϵ_g asymmetries are given in Table 1. They coincide within the errors with the values found previously in measurements at 90° and 125° / 1/.

Table 1

Values	of	the	average	"right-left"	and	"up-down"
			instrume	ental asymm	etry	

$\theta^{\circ}_{3\min} - \theta^{\circ}_{3\max}$	$\epsilon_{\mathbf{p}} \pm \Delta \epsilon_{\mathbf{p}}$	$\epsilon_{\mathbf{R}} \pm \Delta \epsilon_{\mathbf{R}}$
6 - 20 7 - 20	 0.046 <u>+</u> 0.060 0.100 <u>+</u> 0.061	0,087 <u>+</u> 0,014 0,076 <u>+</u> 0,015

The results of the treatment of the obtained data in the region $\theta_{3\min} \le \theta \le 20^{\circ}$ are given in Table 2 for various values of $\theta_{3\min}$. It follows from Table 2, that the quantities P_2 and R above $\theta_{3\min} = 6^{\circ}$, do not, depend on θ_8 within the experimental errors.

It was found that $R(70^{\circ}) = 0,09 \pm 0.19$, $P_2(70^{\circ}) = -0.05 \pm 0.18$. The same parameters were simultaneously found for quasielastic pn-scattering on the neutrons in carbon nuclei.

 $P_2^{C}(70^{\circ}) = 0.12 \pm 0.23$ $P_2^{C}(70^{\circ}) = 0.09 \pm 0.16$.

The obtained values R and P_2 were used to specify the two remaining sets of phase-shifts at 630 MeV.

However both the phase-shifts had considerably large errors. The attempt to find the single experiment, which would decrease errors, was not successful. The planning has shown, that it is necessary to increase generally the accuracy of all experiments in order to decrease the errors. In view of this it was decided to use all available data obtained at 630-660 MeV for specifying the phaseshifts analysis / Table 3/. Thus the number of used experimental data increased up to 209 points, mainly due to the effective cross-section and the polarization in the pp-scattering data.

x/ it should be noted that such a method excludes the "instrumental" asymmetry completely only in the determination of R.

The obtained phase-shifts sets are given in Table 4. It is seen from this table that errors of the phase shifts noticeably decreased $\sqrt{1/2}$ and the ratio $\chi^2/\overline{\chi^2} \approx 1$. The dependence of experimental quantities on the scattering angle, calculated on the basis of the obtained phase-shifts are presented in figs. 1-13. In fig. 1 the experimental values obtained by the authors are shown together with the calculated dependence $R(\theta)$. The vertical lines show the calculated corridor of errors.

The planning of experiments was performed $^{/3/}$ to determine the optimal angle, at which the measurements can exclude one of the remaining phase-shifts sets. This planning concerned the Wolfenstein parameters R_{pn} , D_{pn} , A_{pn} , coefficient of the spin correlation C_{pn}^{pn} and the component of the asymmetry tensor A_{ss}^{pn} $^{/27/}$. The results of the planning are given in Table 5. It follows from this table that at existing experimental possibilities the best experiments to exclude one of the remaining phase-shifts sets is to measure the triple scattering parameters D_{pn} and A_{pn} at angles 115° and 130° , respectively.

It should be noted, that more detailed investigation of polarization at the analysing proton scattering (on the carbon target) is necessary in order to decrease considerably the errors of Wolfenstein parameters.

The authors express the deep gratitude to S.I. Bilenkaya, L.I. Lapidus, Yu.N. Simonov and P. Winternitz, for useful discussions, E. Dudova, J. Fingerova, V.A. Maximova, V.M. Sakovsky, S.I. Smirnova and T.D. Timofeyeva for help in the work.

References

- 1. Z. Janout, Yu.M. Kazarinov, F. Lehar, A.F. Pisarev, Yu.N. Simonov. Preprint JINR E-2560, Dubna 1966.
- 2. Ю.М. Казаринов, В.С. Киселев. ЖЭТФ, <u>46</u>, 797 (1964).
- 3. Z.Janout, F.Lehar, V.V.Fedorov. Preprint JINR E-2765, Dubna 1966.
- 4. И. Быстрицкий, Ф. Легар. Препринт ОИЯИ Р-2028, Дубна 1965 .
- 5. E. Heiberg, Phys. Rev., 106, 1271 (1957).
- 6. Н.П. Богачев, И.К. Взоров. ДАН СССР, <u>99</u>, 931 (1954).
- 7. Н.П. Богачев. ДАН СССР, 108, 806 (1956).
- 8. С.Я. Никитин, Я.М. Селектор, Е.Г. Богомолов, С.М. Зомбковский. Изв. АН СССР, АН сер. физ., <u>19</u>, 561 (1955).
- 9. М.Г. Мещеряков, Б.С. Неганов, Л.М. Сороко, И.К. Взоров. ДАН СССР, <u>99</u>, 959 (1954).
- 10. Е.С. Богомолов, С.М. Зомбовский, С.Я. Никитин, Я.М. Селектор. CERN Symposium 2, 130, Geneva 1956.

- 11. L.M. Smith, A.W. MacReynolds, G. Snow. Phys. Rev., 97, 1186 (1955).
- В.М. Гужавин, Г.К. Клигер, В.З. Колганов, А.В. Лебедев, К.С. Мариш, М.А. Мусин, Ю.Д. Прокошкин, В.Т. Смолянкин, А.П. Соколов, Л.М. Сороко, Цуй Ва-чуан. ЖЭТФ, <u>47</u>, 1228 (1964).
- 13. Л.С. Ажгирей, Ю.П. Кумекин, М.Г. Мещеряков, С.Б. Нурушев, В.П. Соловьянов, Г.А. Столетов, Phys. Letts., <u>18</u>, 203 (1965).
- F.W. Betz, J.F.Arens, H.E. Dost, M.J. Honsroul, L.E.Holloway, C.H.Schultz, G. Shapiro, W.K. Troka, H.M. Steiner, O. Chamberlain, B.D.Dieterle, P.D.Grannis, L. Van Rossum, D.M. Weldon, Proc. XII- International Conf. of High Energy, Dubna 1966.
- 15. В.П. Джелепов, Б.М. Головин, В.С. Надеждин, В.И. Сатаров. 12-я Международная конференция по физике высоких энергий Дубиа, 1964 г., стр. 11, Атомиздат.
- 16. Ю. П. Кумекян, М.Г. Мещеряков, С.Б. Нурушев, Г.Д. Столетов. ЖЭТФ, <u>46</u>, 50 (1956).
- 17. Ю.П. Кумекин, М.Г. Мещеряков, С.Б. Нурушев, Г.Д. Столетов. ЖЭТФ, <u>43</u>, 1665 (1962).
- 18. В.И. Никаноров, Г. Петер, А.Ф. Писарев, Х. Позе. ЖЭТФ, <u>42</u>, 1209 (1962).
- И. Быстрицкий, Б.М. Головин, Р.Я. Зулькарнеев, С.В. Медведь, В.И. Никаноров, А.Ф. Писарев. 12-я Международкая конференция по физике высоких энергий. Дубиа, 1964, стр. 14, Атомиздат.
- Б.М. Головин, В.П. Джелепов, Р.Я. Зулькарнеев, Цуй Ва-чуан. ЖЭТФ, <u>44</u>, 142 (1963).
 Исправления. Р.Я. Зулькарнеев. Диссертация, ОИЯИ, Дубиа, 1965.

21. H.E. Dost, Preprint UCRL-11877, Berkeley, 1965.

- 22. В.П. Джелепов, В.И. Москалев, С.В. Медведь. ДАН СССР, 104, 380 (1955).
- 23. Н.С. Амаглобели, Ю.М. Казаринов. ЖЭТФ, <u>37</u>, 1587 (1962); ЖЭТФ, <u>34</u>, 53 (1958).
- 24. Ю.М. Казаринов, Ф. Легар, Ю.Н. Симонов. Препринт ОИЯИ Р-1207, Дубиа, 1983.
- 25. В.П. Джелепов, В.И. Сатаров, Б.М. Головин. ДАН СССР, 104, 717 (1955).
- 26. Б.М. Головин, В.П. Джелепов, Ю.В. Катышев, А.Д. Конин, С.В. Медведь, ЖЭТФ, 36, 735 (1959).
- 27. С.М. Биленький, Л.И. Лапидус, Р.М. Рындин. УФН, 84, 243 (1964).
- 28. H.P. Stapp, T.Y.Ypsilantis, N.Metropolis. Phys.Rev. 105, 302 (1957)

Received by Publishing Department on May 4, 1966.

Table 2

Results of treating experimental data in the interval $\theta_{\delta \min} \le \theta_{\delta} \le 20^{\circ}$ for various $\theta_{\delta \min}$ at $\theta_2 = 70^{\circ}$

		p — n scai	ttering on deuteror	ר	
$\theta_{s\min}^{o}$	P2	± ΔΡ ₂	R .	±ΔR	Number of events
.4	-0,172	0,160	-0,107	0,172	
5	-0,087	0,170	0,025	0,185	
6	-0,052	0,179	0,085	0,193	
7	-0,083	0,190	0,089	0,196	
8	-0,053	0,204	0,113	0,204	
9	-0,126	0,225	0,100	0,213	
10	-0,193	0 ,2 66	0,069	0,216	
11	-0,109	0,273	0,019	0,225	
12	-0,236	0,296	0,061	0,237	
	F	-n scatterij	ng on neutron in o	carbon nuc	lei
4	-0,196	0,124	-0,180	0,181	876
5	0,047	0,149	0,140	0,203	635
6	0,088	0,161	0,118	0,228	531
7	0,073	0,175	0,100	0,224	449
8	0,087	0,192	0,079	0,232	384
9	0,151	0,204	0,151	0,238	349

0,064

0,032

0,059

0,244

0,260

0,265

325

289

256

10

11

12

0,202

0,274

0,307

0,217

0,234

0,254

Refs. Measured Statistical Energy Parameter $\theta_{0,m,\theta}^{0}$ value error + MeV 0,07 [9] 2,05 σ^{pp} 657 90 [8] 5,47 0,12 30 660 mb/sterad 4,97 0,10 40 0,12 4,03 50 3,21 0,12 60 2,59 0,10 70 0,11 2,19 80 2,06 0,08 90 [6] 18,9 1,1 5 660 0,7 11,0 10 0,53 8,67 15 7,75 0,48 20 0,08 6,56 25 [7] 5,58 0,15 657 30 4,78 0,26 40 3,99 0,20 50 0,13 60 3,41 0,03 2,07 90 [10] 7,5 17,32 1,85 660 7,80 0,49 16 6,75 0,29 20 5,79 0,41 25 5,47 0,29 30 [1] 0,7 3,67 590 50 2,87 0,10 65,1

The Experimental Data Used in Phase-Shift Analysis for np- and pp- Scattering at Energy 630 MeV

Table 3

90

0,05

2,12

Parameter	Energy MeV	θ ⁰ _{e.m.s.}	Measured value	Statistical error +		Refs.
σ ^{pp}	650	3,1	21	12	ſı	2]
		6,0	16	6	-	-
mb/sterad		8,2	12	4		
		10,5	12	2		
		12,8	9,7	1,7		
		15,1	7,3	1,2		
		17,5	8,6	1,2		
		19,7	8,6	1,2		
		22,1	7,4	1,0		
		26,3	6,5	0,8		
		26,7	6,1	0,9		
		28,9	6,0	0,8		
		31,2	6,5	0,8		
		33,5	5,8	0,8		
		35,7	5,2	0,7		
		38,0	4,4	0,6		
		40,3	4,4	0,6		
		44,7	3,8	0,6		
		47,0	4,0	0,6		
		49,2	3,6	0,5		
		51,4	4,4	0,6		
		53,6	3,6	0,5		
		55,8	3,5	0,5		
		58,0	2,8	0,4		
		60,2	2,6	0,4		
		62,4	3,7	0,5		
		64,5	3,5	0,5		
		66,7	2,8	0,4		
		66,1	3,5	0,5		
		70,9	3,2	0,4		
		73,0	3,0	0,4		
		75,1	2,6	0,4		
		77,2	2,3	0,4		
		79,5	2,4	0,4		
		81,4	1,7	0,3		
		83,5	2,4	0,4		
		85,5	2,1	0,4		
		87,5	2,6	0,4		

Parameter	Energy MeV	θ ⁰	Measured value	Statistical error +	Refs.
σ ^{pp}	650	89,6	2,0	0,4	[12]
0 ⁰⁰	657	4,35	0.012	0,028	[13]
r	0.01	4,88	0,051	0,024	
		7.22	0,140	0,029	
		10.43	0,242	0,026	
		12,10	0,272	0,017	
		16,27	0,357	0,019	
		21,28	0,448	0,028	
		27,87	0,506	0,016	
		48,17	0,580	0,046	
		27,6	0,541	0,042	
		34,4	0,543	0,041	
		41,2	0,576	0,041	
		47,9	0,513	0,038	
		54,5	0,485	0,031	
		61,0	0,417	0,029	
		67,5	0,379	0,037	
		73,8	0,264	0,038	
		80,1	0,227	0,035	
		86,3	0,115	0,054	
		90,3	-0,021	0,033	
		53.0	0 470	0.056	ር ብ
	680	51,2	0,472	0,090	[14]
		54,3	0,564	0,041	
		57,4	0,528	0,039	
		60,5	0,494	0,041	
		63,7	0,385	0,042	
		66,7	0,375	0,045	
		70,8	0,384	0,032	
		73,7	0,317	0,021	
		10,1	0,100	0,020	
		(9,0	0,175	0,029	
		02,0	0,10	0,03	
		07,0 32.7	0,004	0,053	
		, í	0,004	0,000	

.

Parameter	Energy MeV	θ ⁰ _{0.m.s.}	Measureo value	erro	tical Refs. • <u>+</u>
 P ^{PP}	635	18.5	0,295	0.045	
		34.5	0,460	0.046	[13]
		45.7	0,467	0 049	
		56,7	0.437	0.044	
		67,3	0.335	0.038	
		90,0	0,032	0.031	
		112,5	-0,354	0.034	
		134,3	-0,477	0,044	
D, b,	635	112,5	0,76	0,08	ſ15]
		54	0,66	0,28	13
		72	0,47	0,22	
		90	0,93	0,17	
		108	0,51	0,17	
		126	0,90	0,22	
٨	608	54	0,48	0,09	[16]
		72	0,46	0,10	- 2
		90	0,20	0,06	
		108	-0,08	0,09	
		126	-0,20	0,14	
R ^{PP}	635	54	0,45	0,08	[17]
		72	0,49	0,08	
		90	0,26	0,07	
		108	0,32	0,06	
		126	0,49	0,13	
C _{m1}	660	90	0,22	0,18	[ւշ]
	605	90	0,25	0,33	[19]
C _{nn}	605	90	0,43	0,34	[19]
	640	72	0,77	0,18	[20]
		90	0,93	0,21	
		51,2	0,449	0,122	
		54,3	0,57	0,097	
		57,4	0,543	0.092	

Pa r ame ter	Êne r gy MeV	θ ⁰ _{e.m.s.}	Measured value	Statistical error <u>+</u>	Refs.
	660	60.5	0,545	0,097	[21]
Can	000	63.7	0,708	0,1	
		66.7	0,665	0,104	
		70.8	0,574	0,079	
		73.7	0,603	0,069	
		76.7	0,752	0,075	
		79,6	0,806	0,078	
		82,6	0,731	0,079	
		85,6	0,909	0,101	
		88,7	0,835	0,128	
o pp tot	640	-	39,8	0,6	[22]
σ^{np}	580	180	10,45	0,80	[23]
mb/sterad	,	176,5	9,25	1,10	
207 Close		174,16	7,80	0,49	
		174,16	7,61	0,49	
		170,75	7,45	0,52	
		168,5	6,45	0,42	
	580	166,5	5,96	0,42	[2 3]
		163,8	5,68	0,38	
		161,5	5,10	0,32	
		159,25	4,46	0,51	
		157	4,33	0,38	
		145,40	3,21	0,12	
		134,20	2,12	0,15	
		123,20	1,39	0,07	
		112,40	0,94	0,05	
		102	0,94	0,04	
		91,6	0,97	0,04	
		81,8	1,17	0,04	
		72	1,53	0,05	
		62,33	1,73	0,08	
		53	2,15	0,17	
		44,5	2,55	0,14	
		35	3,78	0,23	

.

Parameter	Energy Mev	θ ^ο	Measured value	Statis erro	stical Refs. r <u>+</u>
σ ^{np}	580	23,25	5,95	0,68	[23]
		11,5	8,21	1,11	
mb/sternd		11,5	6,4	0,9	
		23	4,3	0,5	
		35	3,7	0,2	
	630	180	10,60	0,54	[24]
		173,1	8,47	0,27	
		168,45	6,46	0,11	
		164,0	5 ,2 5	0,12	
		157	4,22	0,097	
		145,6	3,17	0,075	
		134,3	2,03	0,065	
		123,3	1,50	0 ,0 63	
		110,7	0,996	0,052	
		102	0,996	0,052	
		91,7	1,04	0,042	
		81,7	1,245	0,042	
		72,0	1,44	0,073	
		62,3	1,70	0,073	
		52,7	2,33	0,2	
		44,0	2,84	0,24	
		35,0	3,55	0,34	
		45,0	2,74	0,43	
		34,3	3,93	0,40	
		23,0	4,58	0,44	
		11,6	7,94	0,70	
11.0	590	5	10	1,5	[26]
P	635	18,5	0,285	0,059	[15]
		34,5	0,357	0,052	•
		45,7	0,236	0,036	
		56,7	0,0955	0,030	
		67,3	0,0471	₽,021	
		90	-0,262	0,042	
		112,5	-0,380	0,052	
		134,3	-0,304	0,043	
	1	145,7 3	-0,197	0,068	

Parameter	Energy Mev	θ ⁰ 0.m.s.	Measured value	Statistic error <u>+</u>	al Reís.
p ^{np}	605	90	0,07	0,06	[1]
		125	-0,44	0,16	
		70	-0,05	0,18	
R ^{np}	605	90	0,5	0,107	[1]
	-	125	-0, 059	0,258	
		70	0,09	0,20	
D ^{BP}	635	112,5	0,51	0,39	[15]
σ ^{up} tot	630		37	4	[25]
$\frac{\sigma^{nd}(0)}{\sigma^{np}(0)}$	63 0	0	0 , 554	0,044	[2]

Table 4

Sets]]		1		1	2		2.
Phase	δ	+ Δδ ^ο	δ ⁰	+ Δδ ⁰	δ ⁰	$\pm \Delta \delta^{0}$	δ ⁰	+450
shiíts			Real pa	rts of ph	ase shifts			
f ²	0,081	0,008	ാ,08	3 0,007	0,062	0,009	0,055	0.009
1 _S	-21,66	2,84	-27,53	4,85	-27,85	2,63	-28,80	2,42
³ S ₁	-14,78	9,74	-6,26	7,60	1,97	6,34	0,82	5,55
P	-34,05	4,47	4 0,45	7,80	-58,93	7,12	-48,52	10,90
	-11,06	4,65	-11,29	5,32	-60,70	9,91	-67,31	6,87
P_1	-24,31	4,03	-28,06	3,43	-38,12	3,25	-36,17	3.85
⁹ P ₂	34,25	1,50	25,42	1,84	18,93	1,37	21,43	1.42
٤1	27,26	, 2, 76	25,32	2,18	-6,58	8,60	1,34	9.00
³ D,	-17,24	2,49	-17,59	3,06	10,39	5,87	18,42	5.99
1_{D_2}	7,17	1,65	6,84	2,27	6,12	1,77	3,45	1.97
${}^{3}D_{2}$	14,40	4,97	15,83	3,06	25,1S	3.63	19.57	5.13
³ D ₃	-4,48	2,07	-4,34	3,23	6,90	1,79	8,15	2.54
<u>`</u>	-2,58	0,92	-3,93	2,10	-0,31	1,47	-7.03	2.26
F_2	-4,03	1,17	-7,01	1,34	-7,99	1,40	0.37	2.61
¹ F ₃	4,76	2,21	3,72	2,72	2,15	1,80	0.099	4.16
3 _{F3}	2,01	1,20	-3,95	1,50	-2,96	1,14	-10,45	1.70
3_{F_A}	3,17	0,93	1,22	0,83	1,36	0,61	3.11	0.85
۰ <u>۶</u>	16,77	0,68	18,19	0,60	-1,92	4.64	-0,98	6.52
³ G ₃	3,62	1,67	-0,81	2,24	2,71	2,79	0.54	3,70
	5,41	0,74	5,16	0,86	4,76	0.67	5.71	0.67
G ₄	5,63	1,93	3,17	2,29	-2,29	2,98	-1.74	2.54
G5	-3,15	1,04	-5,33	1,92	-0,92	0,88	-1.68	1.62
	-4,10	0,67	-6,57	0,59	-3,43	0.88 •	-3,48	1,13
^H 4	-2,62	0,65	2,26	0,63	0,61	0,49	3.03	0.81
¹ H ₅	5,65	1,64	6,98	1,41	-5,64	1.83	-5.15	1.53
H ₅	-3,36	0,82	-1,88	0,82	-1,80	0,95	-5.29	0.94
⁵ H ₆	-2,40	0,50	2,87	0,47	0,94	0,21	2,35	0,31
		I	maginary	partx of	phase shift	5		
³ P)		-1,57	3.64)		4 45	6 33
³ P ₁	3,64	0,43	-1,24	2,38	2.67	0.71	-0 22	3.10
3P2]		6.57	2.57	-,•,	0,11	-0,22	3,40
	14,27	2,11	16,34	3.75	6.67	2.42	<pre><,09</pre>	2,52
F ₂	11.00	0.00	3.49	2.09		- 1 - 1	7.00	2,25
F3	J T ,99	0,22	2.86	2.85	3,10	0,3 8	7,02	2,00
x ²	201.7	2	213	74	200	55	0,97	3,20
3 /12	T TO		ريم ۲	20	209,		194	,64
x /x]	1,13		1,	20	í,	1/	Ι,	10

The phase-shifts in degrees (the Stapp²⁸ parametrization) for 630 MeV nucleon-nucleon scattering

_

Table 5

Parameter	T(time in arbitra Ty units)	optim. θ _{o.m.∎.}		
D pn	0,035	115°		
۸ pu	0 , 19 0	130°		
R _{pn}	0,690	1150		
Parameter	T'(time in arbitrary units)	орtim. в _{с.т.е} .		
С ^{рв} вв	75 /500/	150° /70°/		
Apa	11, 24, 30	25°, 65°, 155°		

T and T' are measurement times in arbitrary units. Measurements on the parameters D, A, R have been planned under the assumption that in measuring spark chamber should be used. In the experiment on the determination of C_{nn}^{pn} and A_{ss}^{pn} the polarized proton target and the polarized neutron beam are to be used. The scales of T and T' are different $\frac{/3}{}$.

Fig. 1. The dependence of triple scattering parameter R_{pn} on the scattering angle θ . The curves 1, 1', 2, 2' were calculated from the phase-shifts sets given in Table 4, respectively.

Fig. 2. 18

U

180

Ĺ

Fig. 3.

•

Fig. 4.

Fig. 8.

Fig. 10.

Fig. 12.

Fig. 13.