c 323.4
 W- 81

объединенный институт ЯДЕРНЫХ НССЛЕДОВАНИЙ

Дубна

nud M. $8,190_{2}^{2} 8 / m$

 rBING$$
\text { E- } 2714
$$

$\mathscr{F}^{*}{ }^{*} /$ minitimm

ААБӨРАТӨРИЯ ТЕ ОРЕТИИЕСКОЙ ФИЗИКИ

K.S. Wohlrab
SYMMETRY BREAKING QUASIPARTICLE METHOD FOR BARIONS AND FOR OUARKS

1. Bound State Problem

K.S. Wohlrab
 SYMIMETRY BREAKING QUASIPARTICLE METHOD FOR BARIONS AND FOR OUARKS

1. Bound State Problem

Submitted to Nucl. Phys.

$54 \mathrm{mma} \mathrm{m} y$

The quasiparticle method - an essentially nonperturbational approximation of quantum field theory - is applied to an SU_{8} - symmetric four fermion interaction between octet-barions N and antibarions \bar{N} (or between quarks and antiquarks). The method is developed in such a way, that the physical particles and resonances themselves appear as quasiparticles in a bound state approximation. The main weight is attached to the understanding of the principles of the method.

The individual quasiparticle operators obtained are of the form $\Omega=u \mathbb{N}+\mathbf{v N}^{*}$, Their eigenvalue spectrum is compared with the observed barion resonances. A spontaneous dynamical breaking of SU_{3} - symmetry appears and I eads primarily to a GMO formula for the gap constants, independently of the coupling strength. (Similar results come out for quarks). The GMO formula for the barion masses results in the strong coupling limit. (Besides mass formulas for quarks are de rived). Further it is shown in detail, that the origin of the symmetry breaking is the fact, that the quasiparticle method is an averaging approximation.

Quasiparticles of higher order are considered in an orientating manner. Especially the meson spectra are treated in the lowest approximation.

It is shown, that the first two of the three typical difficuities of the quasi particle approximation (1, inequivalent representations and degenerate vacua, 2. parity mixed vacuum, 3. spurious states \equiv Goldstone mesons) are avoided by our bound state approximation. The method is applicable to all compict symmetry groups.

I. Introduction

The large number of particles we are confronted with in particle physics sets the vital question for quantum field theory how to derive the necessary large number of fields from a small number of fundamental fields. Moreover we need a field theory which is consequently nomperturbational. The main aim of this paper is to show that there exists a method which meets both demands - the quisi-purticle method. It provides us with a complete dynamical approximation scherne, treat-
ing the dense cloud of virtual particles in the interior of the physical particles (core region) as a many particle system.

There exist different directions of application of this method in high-energy physics. Nambu ${ }^{x /}$ was the first to use the quasiparticle method, mainly because of its nonperturbational character. Marry authors used its capability to produce spontaneous symmetry breaking in a dynamical way, often in connection with the Goldstone model $x x$ /. Finally the fact, that the transition from particles to quaskparticles has the purpose to transform away the strongest part of the interaction by respecting it in the structure of the (quasi) particles themselves, was the starting point of weinberg $x \times x /$. (The resulting weakening of the interaction between the quasiparticles is likely to manifest itself in the success of a simple first order breaking of SU_{3} and of the one particle-exchange model in highenergy scattering experiments $\mathrm{xxxx}^{\text {/ }}$).

In the present paper we set a high value especially on (1) the consequent nonperturbational character of the method, (2) its ability to construct families of particless (rosoniances) or fields out of a small number of fundamental fields, and (3) the spontaneous dynamical breaking of SU_{8} symmetry. Finally, (4) a specific point of our formulation starts from the following consideration: Quasiparticles are always an approximate description of metastable systems of states. Norv in particle physics the scattering resonances are metastable systems, while in the energy region between the resonances there exist no metastable systems. So the application of the quasi-particle method should be limited to the resonances, and the resonances themselves should appear as quasiparticles. Consequently, the field operitor of the resonance will be constructed out of the fundament : field (s). So we are led quite naturally to a nonperturbational and constructive field theory of compound systemis.

Probably the most important feature of such a quasi- particle scheme is the change in the qualitiative picture. For strong interactions the extension of the parti:les and the runge of the forces are comparable. Therefore two scattering particles - eneryetically within a resonance - appear now as penetrating clouds lusins their individuality by uniting themselves to a common "medium". The virtual or bure particles are moving within that medium and transform therefore into quisi-purticles. Formally the expression for this change of the picture is that there is no liethe-Silpeter equation or something similar. Instead the structure of the quast pirticles is siven by certain structure functions u, v or μ, ν as

[^0]we shall see. We get in this way a very simple dynamical model incorporating the breaking of internal symmetry from the beginning. Its symmetry properties are those of a j -coupling variant of "kinematical supermultiplets".

As an example of detailed presentation of the method we choose a 4 -fer mion interaction between octet barions and antibarions (where easily possible, besides we consider the analogous case of triplet barions, ie. quarks and antiquarks). In chapter II after presenting in outline the standard procedure of the quasiparticle method, the specific properties are studied, which are necessary for
SU_{8} symmetry and for the description of closed systems. Chapter III gives the main application, the determination of the individual quasi-particles as an approximation for the physical barions (quarks). In detall we consider the concrete application to the baryon spectra. After that the spontaneous dynamical breaking of SU_{3} - symmetry is studied and shown, that the method leads to this breaking essentially because it is an averaging method. Different mass formula are derived for the barions (and quarks). Expecially the Gell-Mann-Okubo formula comes out in the strong coupling limit. Chapter IV finally contains a preliminary orientation about higher order quasi-particles, especlally about the meson spectra.

II. Foundations

The standard procedure of the quasiparticle method can be characterized by the following steps $x /$:

1. Choice of a fundamental field (or some of them).
2. Choice of an orthogonal set of states of independent particles of that field. Definition of creation and destruction operators of the particles in these states.
3. Choice of the Hamiltonian B and derivation of the equations of motion.
4. Division of H into the reduced and rest parts: $H=H_{\text {ped }}+H_{R e a t}$.
5. Quasiparticle approximation for $H_{r o d}$, leading to 1 .dividual quasiparticles in the "stable" approximation.
6. Quasiparticle approximation for $H_{r e d}+H_{R e s t}$, leading to quasiparticles of higher order ("excitons", collective states") in the stable approximation.

[^1]7. Decay of the quasiparticles.

We choose one fundamental field of bare mass m, an octet barion-antibarion field $N-\bar{N}$ with usual anticommutator relations:

$$
\begin{equation*}
\left\{\mathrm{N}_{\nu}, \mathrm{N}_{\nu}^{*}\right\}-\delta_{\nu \nu^{\prime}} \quad\left\{\overline{\mathrm{N}}_{\nu}, \overline{\mathrm{N}}_{\nu}^{*},\right\}=\delta_{\nu \nu}, \quad \text { eto } \ldots \tag{1}
\end{equation*}
$$

We use these "bare" barlons as building-blocks for the construction of all particles. (L3y the way, we shall make some preliminary remarks about the most interesting building-blocks, the quarks).

Point 2 of our list requires some more discussion: Should we put our barions into the states of a continuous set (e.g. superconductor: plane waves), or of a discrete set (e.g. nucleus: shell model states)? At first slght it seems to be no doubt, that ia continuous set is to be chosen according to the continuous character of the scattering states. But quasiparticles are always a description of metastable states. In scattering of particles we have metastable states, the resonances, which form a discrete set within the continuum of scattering states. Therefore we define our nodel in such a way, that we approach things "from the bound state side": First we forget the continuum of scattering states between the resoniances and idealize the latter to discrete stable (bound) states. Obviously this proceeding $i s$ absolutely necessary for a theory, which interids to construct (wraroxmately) the field operator of a resonance. Later the model is to be imbedded assin info the continuum, in order to get the decay - the width - of the resoniances, point $\%$.

So we consider not only the nucleon, pion etc., but also each resonance as a stable closed system. It occupies therefore ondy a small finite volume of on der 10^{-13} to $10^{-14} \mathrm{~cm}$. For the start of our method we need - as in each quantum field theory - an orthonormalized set of states of indeperndent particles as build-ing-blocks. Elut independent particles within a small finite volume have according to the rules of quintum mechanics always a discrete spectrum. So we are compelled to $-t$ art from a discrete set of states, and we use the energy differences of this set as fundimental parameters of the theory. For the formulation it is not necessury to ask for the detailed origin of the set.

Nontheless some words are to be said about this origln. The underlying picture is amalozous to the shell model of nuclear physics: We assume, that the complicited forces between the original free barions and antibarions (or quarks) average out within the small volume of our idealized bound system to a simple averise potential $V(r)$ (in the c.m.s.). Our independent particles then move on the discrete levels of this central potential. Speaking more generally: The essen-
tial key is that in each small, strongly interacting system there exist necessarily strong "average" forces, which keep the system together. If this is right, one always will be able to find a potential, which describes that part of the interaction in a sufficient way.

In order to be concrete, we shall use the simple level system of Fig. i, which will be completely sufficient to get all families of resonances. (Cut harmonical oscillator $\alpha=3 / 2, \beta=1$, square well $a=0,96, \quad \beta=0,66$).

Fig. 1

The operators of (1) are the creation and destruction uperators of the particles on their levels. The index v means therefore the quantum numbers

$$
\begin{equation*}
\nu=\mathrm{E}_{\nu} \mathrm{j}_{\nu} \mathrm{m}_{\nu}, \mathrm{B}_{\nu} \mathrm{i}_{\nu} \mathrm{i}_{\mathrm{s}_{\nu}} \gamma_{\nu}, \pi_{\nu} \tag{2a}
\end{equation*}
$$

($E_{\bar{\nu}}=$ level energy, $\quad j_{\nu}=$ total angular momentum, $\quad{ }^{m}{ }_{\nu}=3$ component, $8_{\nu}=$ "octet" quantum number, $i_{\nu}=$ isospin, $i_{3 \nu}=3$ component, $y_{\nu}=$ hypercharge, $\quad \pi_{\nu}=$ orbital parity). Besides we use often the symbols

$$
\begin{array}{rlr}
-\nu=\mathrm{E}_{-\bar{\nu}} \mathrm{j}_{\nu}-\mathrm{m}_{\nu}, 8_{\nu} \mathrm{i}_{\nu}-\mathrm{i}_{8 \nu}-\mathrm{y}_{\nu},-\pi_{\nu} \\
\bar{\nu}=\mathrm{E}_{\nu} \mathrm{j}_{\nu} & 8_{\nu} & \pi_{\nu} \tag{2b}\\
-\bar{\nu} & =\mathrm{E}_{\nu} \mathrm{j}_{\nu} & 8_{\nu}
\end{array}
$$

The necessity to include the orbital parity π_{ν} will soon come out. For the nonrelativistic situation it is clearly $\pi=(-1)^{\ell}$. In our relativistic situation $\left(\epsilon-500 \mathrm{MeV}\right.$) we define it by $(-1)^{\ell_{\mathrm{up}}}$, where ℓ_{up} is the orbital angular momentum of the upper components of the Dirac spinor of the central potential solutions. This definition is rotational invariant.

The use of the discrete terms of a potential means physically, that we have a closed system within a finite volume. So our model has a characteristic length given by the extension of the potential (harm. osc. $\mathrm{R}=\left(\mathrm{s}^{2} / \mathrm{m} \epsilon\right)^{1 / 2}$). By this we avoid all peculiarities of the quasiparticle method arising from the inequivalent representitions in the case of infinite volume. The cut off of our discrete spectrum (fig. 1) limits our problem to it finite Hilbert space. Its sense is, to limit the discrete starting termsystem, corresponding to the upper end of the resonance region.

Finally we note, that the replacement of barions by quarks means up to now only the replacement of 8 - barions by 3 -barions; $8 \nu \rightarrow 3_{\nu}$ in (2).

For the flamiltonian $H=H_{0}+H_{\text {int }}$ we take H_{0} as the energy of the independent particles on their levels:

$$
\begin{equation*}
\mathrm{H}_{0}=\sum_{v} \mathrm{~F}_{\nu}\left(\mathrm{N}_{\nu}^{*} \mathrm{~N}_{\nu}+\overline{\mathrm{N}}_{v} * \overline{\mathrm{~N}}_{\nu}\right) . \tag{3}
\end{equation*}
$$

Kemurk, that the level energies $k \bar{\nu}$ do not depend on the third components, compare (2 b), but depend on $\pi_{\nu}(F, \neq F-\vec{\nu}$), and are equal for barions and antibarions. For $H_{\text {int }}$ we take a bariontantibarion - scattering

$$
\begin{equation*}
H_{i n t}=\frac{\Sigma}{k \lambda \mu \nu} r_{k \lambda \mu \nu} V_{k}^{*} \bar{N}_{\lambda} * \bar{N}_{k} s_{\nu} ; \tag{1}
\end{equation*}
$$

later we add similarly barion-barion scattering etc.:

$$
\mathrm{H}_{\text {int }}^{\prime}=\sum_{k \lambda \mu \nu} \mathrm{~F}_{\mathrm{k} \lambda_{\mu \nu}} \mathrm{N}_{k}^{*} N_{\lambda}^{*} \mathrm{~V}_{\mu} \mathrm{N}_{\nu}+\sum_{k \lambda_{\mu \nu}} \overline{\mathrm{F}}_{\mathrm{k} \lambda_{\mu \nu}} \bar{N}_{k}^{*} \bar{N}_{\lambda}^{*} \overline{\mathrm{~S}}_{\mu} \overline{\mathrm{N}}_{2}
$$

The coefficicints G (similarly F, \bar{F}) have the following properties. Firom hermiticıty

$$
\begin{equation*}
r_{i}^{*}{ }_{k} \lambda_{\mu \prime}=\sigma_{v \mu \lambda_{k}} \tag{b}
\end{equation*}
$$

For our ciosed system we have to require total angular moneritum conservition instead of the usual momertum ornservition. 'Ihis and sty -invariance are fut filfed by

Where trw C are Clebsh-Gordarm coefficients:

$$
C_{k \lambda}^{\mathrm{K} \rho}=c\left(\begin{array}{cc}
\mathrm{j}_{\mathrm{k}} \mathrm{~J} & \mathrm{j}_{\lambda} \tag{7b}\\
\mathrm{m} \\
\mathrm{k} & -\mathrm{M}-\mathrm{m} \lambda
\end{array}\right) \cdot \mathrm{C}\left(\begin{array}{cc}
8_{\mathrm{k}} & 8 \mathrm{x} \rho 8_{\lambda} \\
\phi_{\mathrm{k}}-\phi_{\mathrm{k}}-\phi_{\lambda}
\end{array}\right) \quad \dot{\phi}=\mathrm{ii}_{\mathrm{s}} \mathrm{y}
$$

$\rho=1,2$ distinguishes both sets of $\mathrm{SU}_{3} \quad-C G$-coefficients for the octel repre sentations B and 8 , out of $8 \times 8: C^{P}\left(\theta_{k} 8_{K}{ }^{8}{ }_{\lambda}\right)$ couples both octet particles κ, λ again to an octet, so that we have written down an "octet-interaction ${ }^{\prime}$. $C\left(8_{k}{ }^{1} \mathbf{I}^{8}{ }_{\lambda}\right)$ on the other hand would have given a "singlet-interaction". Formulas analogous to (6), (7a) and (7b) have to be written down for the $F-$ and $F-$ interactions. (Up to now, the formulation is the same for quarks, only $\left.C^{\rho}\left(8_{\mu} 8_{K} 8_{\nu}\right) \rightarrow C\left(3_{\mu} 8_{K} 3_{\nu}^{*}\right)\right)$.

III. Barion Quasiperticies

a) General considerations

Acconding to point 4 we separate off from $H_{i n t}$ the pairing interaction

$$
\begin{equation*}
H_{v}=\sum_{\nu \mu} G_{\nu \rightarrow \nu \mu-\mu}^{K_{0}} N_{\nu}^{*} \bar{N}_{-\mu}^{*} \bar{N}_{\mu} N_{-\mu} ; K_{0}=008000 \tag{8}
\end{equation*}
$$

Comparing this with (7) one reads off from the CG-coefficients, that H_{p} transfers no angular momentum from the destructed to the created $N \bar{N}$-pair, because the upper index \mathbf{K}_{0} in (8) means, that each pair separately is coupled to angular.momentum $J=0 \quad(I=0)$. On the other hand, H_{p} transfers $\mathrm{SU}_{3}-s p i n$, because according to (7) or (8) both octet particles (or triplet particles) of each pair are coupled together to " 8 " by out "octet-interaction". (Only a singlet-interaction makes no transfer). This difference in the transfer-properties of angular momentum and SU_{g}-spin determines de: decisively the type of symmetry breaking, us we shall see.

The lowest order quasiparticle approximation leading to "individual" quasiparticles (point 5) may be called an approximate diagonalization of $H_{0}+H_{p}$ by partly averaging of H_{p} in the following way: H_{p} is replaced by

$$
\begin{align*}
& =\sum_{\nu} \Lambda_{\nu} \mathrm{N}_{\nu}^{*} \overline{\mathrm{~N}}_{\boldsymbol{-}}^{*}+\sum_{\nu} \Delta_{\nu}^{*} \overline{\mathrm{~N}}_{-\nu} \mathrm{N}_{\nu}, \tag{9}
\end{align*}
$$

where the brackets (\rangle_{0} mean the expectation value with a vacuum state 10) which is to be determined. Lhy this averaging $H_{0}+\bar{H}_{p}$ gets obviously a quadratic form in the unerators $N_{\nu}, N_{\nu}^{*}, \bar{N}_{-2}, \bar{N}_{-\nu}^{*}$. which can be transformed to principal axis by a Bogolubovetransformation which leadi- to new operators

$$
\begin{equation*}
\Omega_{i}=0_{2} N_{1}+v_{1} \bar{n}_{-1} \quad \vec{a}_{2}=a_{1} \bar{x}_{7}-v_{1} N_{7} \tag{10,x}
\end{equation*}
$$

$$
\begin{gather*}
{\left[\mathrm{H}_{\mathrm{red}}, \Omega_{\nu}\right] \approx\left[\overline{\mathrm{H}}_{\mathrm{red}}, \Omega_{\nu}\right]=-\omega_{\nu} \Omega_{\nu}} \tag{10b}\\
\mathrm{H}_{\mathrm{red}}=\mathrm{H}_{0}+\mathrm{B}_{\mathrm{p}}=\overline{\mathrm{H}}_{\mathrm{red}}=\mathrm{H}_{0}+\overline{\mathrm{H}}_{\mathrm{p}}=\sum_{\nu} \omega_{\nu}\left(\Omega_{\nu}^{*} \Omega_{\nu}+\bar{\Omega}_{\nu}^{*} \bar{\Omega}_{\nu}\right) \tag{10c}
\end{gather*}
$$

The new (approximate) destruction operators Ω_{ν} define a new vacuum state, the vacuum of free quaslparticies, by

$$
\begin{align*}
& \left.\left.\Omega_{\nu} 10\right)=\bar{\Omega}_{\nu} 10\right)=0 \tag{11}\\
& 10)=\prod_{\nu}\left(\mathrm{a}_{\nu}-\mathrm{v}_{\nu} \mathrm{N}_{\nu}^{*} \overline{\mathrm{~N}}_{-\nu}^{*}\right) 10>
\end{align*}
$$

($10>\quad-\quad$ bare vacuum, $N_{\nu} 10>-\bar{N}_{\nu} 10>=0$).
It contains correlated bare barion-antibarion pairs $\nu-\nu(\bar{n}, \mathrm{p} \overline{\mathrm{p}}, \Lambda \bar{\Lambda}$ etc.)
analogously e.g. to the corresponding electron pairs $p \sigma,-p-\sigma$ in the superconductor. The quasiparticle states themselves are then given by

$$
\begin{equation*}
\left.\left.\left|1_{\nu}\right|=\Omega_{\nu}^{*}(0), \quad \mid \overline{1}_{\nu}\right)=\bar{\Omega}_{\nu}^{*} 10\right) \tag{12}
\end{equation*}
$$

Requiring

$$
\begin{equation*}
u_{\nu}^{2}+v_{\nu}^{2}=1, \quad u_{\nu}=u_{-\nu} \quad v_{\nu}=v_{-\nu}, \quad u_{\nu}, v_{\nu} \text { real. } \tag{13}
\end{equation*}
$$

the transformation (10a) gets canonical

$$
\begin{equation*}
\left\{\Omega_{\nu}, \Omega_{\nu}^{*},\right\}=\delta_{\nu^{\prime}}, \quad\left\{\Omega_{\nu}, \Omega_{\nu}\right\}=0 \quad \text { etc. } \tag{14}
\end{equation*}
$$

and unitary:

$$
\begin{align*}
& \left.\Omega_{\nu}=U^{-1} N_{\nu} U \quad 10\right)=U^{-1} 10>, \\
& U=\exp \left[\sum _ { \nu } \theta _ { \nu } \left(N_{\nu} \sim_{\nu}=\cos \theta_{\nu}\right.\right. \tag{15}\\
& \left.\left.U N_{\nu}^{*} \bar{N}_{-\nu}^{*}\right)\right], \quad v_{\nu}=\sin \theta_{\nu} .
\end{align*}
$$

It conserves barion number, because it mixes destruction of a barion with creation of an antibarion. So here the mixing of destruction and creation maintains a conservation law, quite opposite to the superconductor and nucleus case, where it destroys the conservation of particle number, because no antiparticles come into play. From this we get an interesting remark concerning the applicability of the quasiparticle method in the relativistic domain. The method is usut ally applied to problems with conservation of particle number (superconductor, nucleus), though it volates this conservation law. In our case the situation is reversed: There is no such violation, and instead we have a conservation law which is absolutely needed.

Ouasiparticle operators of the type nucleon+(antinucleon)* were first considered extensively by Bacry and Mandelbrojt ${ }^{x / /}$, though these authors run into parity difficulties Namely fermion and antifermion always have opposite relative (intrinsic) parity.

[^2]Correlated pairs with opposite momenta, $N_{\bar{b}}^{*} N_{-\frac{\pi}{D}}^{*} 10>$, are in in $=-\operatorname{state}$, und live therefore total parity-1. So their presence in the vacuum state analogous to (11) leadis to a parity mbed vacuum. Our formulation in terms of angularmomenta is able to avoid this by placins both particles of a pair into orbits with opposite orbital parity: $\nu,-v$, compare the definition of $-v$ in (2b).

From our requirement that $H_{0}+\bar{H}_{n}$ takes the form (10 c), one gets the eigenvalues ω_{ν} of the states $\left.\mid 1_{\nu}\right)$ and the coefficients

$$
\begin{align*}
& \begin{array}{r}
u_{\nu}^{2} \\
v_{\nu}^{2}
\end{array} \quad=1 / 4\left(1 \pm \frac{E-\bar{\nu}+E+\bar{\nu}}{2 \omega_{\nu}+\Delta E_{\bar{\nu}}}\right) \quad \Delta E_{\bar{\nu}}=E_{-\bar{\nu}}-E_{\bar{\nu}} \tag{1Ga}\\
& \mathrm{u}_{\nu} \mathbf{v}_{\nu}=\frac{\Delta_{\nu}}{2 \omega_{\nu}+\Delta \mathrm{E}_{\vec{\nu}}} \tag{16b}\\
& \omega_{\nu}=-\frac{\Delta F_{\bar{\nu}}}{2} \pm \sqrt{1 / 4\left(F_{\nu}+F_{-\bar{\nu}}\right)^{2}+\Delta_{\nu}^{3}} \equiv-\frac{\Delta F_{\nu}}{2} \bar{\nu}_{ \pm} R_{\nu} \tag{10c}\\
& \mathrm{F}_{0}=\sum_{v}\left[\left(\mathrm{~F}_{\bar{\nu}}+\mathrm{F}_{-\bar{\nu}}\right) \mathrm{v}_{\nu}^{2}-2 \Delta_{\nu} \mathrm{u}_{\nu}, v_{\nu}\right]=\sum_{V}\left(\mathrm{E}_{\bar{\nu}}-\omega_{\nu}\right) \tag{iod}\\
& د_{\nu}=\sum_{\nu^{\prime}} \mathrm{G}_{\nu \rightarrow \nu^{\prime}-\nu} \cdot \frac{\Delta \nu^{\prime}}{\Delta \mathrm{F}_{-\prime}+2 \omega_{y}} . \tag{a}
\end{align*}
$$

Exactly the same results come out, if one uses the equation of motion method: One requires (10 b)

$$
\left[H_{v e d}, \Omega_{\nu}=-\omega_{\nu} \Omega_{v}\right.
$$

inserts ($10 a$) and uses the equations of motion for $N \nu$ and $\vec{N} *$, in which exactly as in (9) pairs of particles ere replaced by their vacuma expectition values. So one gets the linear homogeneous equations for u_{ν}, v_{v} :

$$
\begin{aligned}
& \left(\underline{E}-\omega_{v}\right) u_{v}-\Delta_{v}^{*} v_{v}=\sigma \\
& i_{-Z}+\omega_{v}!v_{v}+\Lambda_{v} u_{v}=\sigma
\end{aligned}
$$

winch again lead to (16).
All formalas in (16) are very similar ir form to tie anulogous exprespions \therefore the supercomuctor or nucleus. Indeed, they would tee ideritical with thern, if we taci not $F \bar{\nu} \neq F_{-i}$ according to oui lermsy iem Fig. 1.

Zue fnergy spectrum (16c) guvets for each , it duthet, whose eplitirgs \therefore roivs with growing $\& \bar{L}$: (Firs, 2). So the lonesit.

Fig. 2.
state is completely cutoff dependent ($\beta<0$ quantum mechanically forbidden): Addition e.g. of a fourth higher level in Fig. 1 would produce a new lowest state. This is unphysical, but fortunately can be brought in order by a hole theory in the well known Dirac manner. Namely the second commutation relation (14) means $\Omega_{\nu}^{2}=0$. so that each of our states ω_{ν} can be occupied oniy once. Defining the state in which all levels ω_{y} below $-\frac{\Delta E_{\bar{\nu}}}{2}$ are occupied, above emply, as the new vacuum state -

$$
\left.\overline{10)}=\Omega_{\nu}^{*} \ldots . \Omega_{n}^{*} 10\right)
$$

$$
\omega_{\nu}<-\frac{\Delta E_{n}}{2}, \ldots \ldots, \omega_{n}<-\frac{\Delta E_{n}}{2},
$$

changes the eigenvalue spectrum into

$$
\begin{equation*}
\omega_{\nu}^{ \pm}= \pm \frac{\Delta E_{\bar{\nu}}}{2}+\sqrt{\frac{1}{4}\left(E_{\bar{\nu}}+E_{-}\right)^{2}+\Delta_{\nu}^{2}} \equiv \pm \frac{\Delta E_{\bar{\nu}}}{2}+R_{\nu} \tag{18}
\end{equation*}
$$

So $\boldsymbol{\Omega}$-holes appear now as $\overline{\mathbf{\Omega}}$ - and $\overrightarrow{\mathbf{\Omega}}$-holes as $\boldsymbol{\Omega}$-states. The neces sity of a hole theory is clearly characteristic of a theory treating barions and antibarions (or quarks and antiquarks).

It is important to note, that all steps done up to now can be repeated for the continuous case too, i.e. for free spherical waves instead of bound ones. The formulas are not changed by this.

b) Eigenvalues

We begin the concrete application to the barion spectra with some general remarks. The form of $\boldsymbol{\Omega}=\mathrm{nN}+\nabla \vec{N} *$ shows, that $\boldsymbol{\Omega}$ automatically has the same quantum numbers as N, the bare $\quad 8$-bsrion. Therefore we get as indivt dual quasiparticles Ω only octet barions, $\bar{\Omega}$ as octet antibarions \bar{x}. (Anologously with $N=$ triplet barion = bare quark, the $\boldsymbol{\Omega}$ are quarks). No other individual quasiparticles are possible.

Secondly, what means the vacuum state 10) physically? Having barion number O, he could be a meson in principle, But we consider our individual
$x /$ This statement is to be corrected a little, as we shall see later.
quasiparticles as an approximation for the physical barion and barion-resonance states. Therefore $\overline{10)}$, the state with no quasiparticle present is necessarily our approximation for the physical vacuum (within our small volume). Therefore its energy $(\overline{01} H \overline{10})=\overline{\mathrm{E}}_{0} \quad$ is to be taken as the zero point of the energy scale, instead of $\langle 01 \mathrm{H} 10\rangle$, as up to now. The energy relations are then that of Fig. 3:

Fig. 3.

Fig. 5.

Fig. 4 shows the eigervalues predicted by (18) for the term system of Fig, 1. Let us confirm this first with the observed nucleon resonances of Fig. $5 a^{x /}$. The most remarkable fact is the absence of $1 / 2-, 3 / 2+$ states. The usual interpretation $\mathrm{XX} /$ is, that states $1 / 2-, 3 / 2+5 / 2$ - , ... do not appear as a consequence of a definite exchange character of the interaction indeed lei us assume for H_{lnt} the exchange character

$$
G_{k \lambda \mu \nu}= \pm G_{-\lambda-k \mu \nu} \quad \begin{align*}
& \frac{1}{2}+\frac{3}{2}- \tag{19}\\
& \frac{1}{2}-\frac{3}{2}+
\end{align*} \quad \text { for } k, \lambda .
$$

Then it is easlly seen, that $H_{p}(8)$ does not contain contributions from $\frac{1}{2}-, \frac{3}{2}+$ at all.

Next we read off directly that

$$
\epsilon=1490-940=550 \mathrm{MeV}
$$

This corresponds to an extension of our system of

$$
\mathrm{R}=\left(\frac{\mathrm{h}^{2}}{\mathrm{~m} \epsilon}\right)^{1 / \mathrm{L}}=2,5 \cdot 10^{-14} \mathrm{~cm} \quad\left(\mathrm{~m}=\mathrm{m}_{\text {bare }}=\mathrm{m}_{\mathrm{N}}\right) .
$$

The system we describe is therefore essentlally the dense "core" of the nucleon, while the meson cloud is not included. On the other hand " cannot be determined, because the higher partiner of the $\frac{3}{2}-$ dublet lacks. Either this means, that it exists, but was not observed up to now. This is well possible, for with $\epsilon^{\prime \prime}=\epsilon$ we predict a $\frac{3}{2}-$ state around $1520+550 \sim 2100 \mathrm{MeV}$, which could be masked by the $\frac{7}{2}+$-resonance at 2190 MeV . Or the dublet partner lacks, because the splitting vanishes: $=0$. Therefore we discuss always two cases:
case $A: \quad \epsilon^{\prime}=\varepsilon(\beta=1 / 3)$, case $B: \varepsilon^{\prime}=0 \quad(\beta=0)$.
Besides e, ϵ^{\prime} our model contains the energy parameter a, the bare mass m, and the eight interaction parameter $x \times x x /$

$$
G \bar{\nu} \bar{\nu} \bar{\nu} \bar{\mu}-\bar{\mu} \quad \bar{\nu}, \bar{\mu}=\frac{1}{2}+\frac{3}{2}-; \rho=1,2 ; K_{0}=008000 .
$$

It is useful to take instead of the G'S the eight parameters

$$
\Delta_{\nu} \quad \nu=\frac{1}{2}+N \Lambda \Sigma \Xi, \quad \frac{3}{2}-N \Lambda \Sigma \Xi
$$

Namely as in other applications of the quasiparticle method the gap constants ${ }^{\text {xax/ }}$
$\Delta_{\nu}=\delta_{\nu} \cdot \epsilon$ are the dynamically decisive parameters determining the energy
$x /$ Fig. 5 was drawn according to Rosenfeld et al. UCRL 8030, Aug. 65. Only states with $J \leq s / 2$ are given. Notes of interrogation mean non-established quantum numbers. xx/E.g. Frautschi, Regge Poles and S-Matrix Theory, New, York, 1963, xxx/ We call Δ gap constant, though in our theory it has pol48.
We call gap constant, though in our theory it has lost this sense by our transition to hole theory.
xoxx/ This high number of parameters can be reduced to four (coupling constant, 2 potential parameters, m) using the local special case of our (4). This requires computer work (for the G's).
spectrum. Equating our eigenvalues $\omega_{\nu}(18)$ with the observed masses $\mathrm{E}_{\text {oxp }}=\mathrm{e} . \mathrm{c}$, we get the relations:

$$
\begin{align*}
& J=\frac{1}{2}+: \delta^{2}=\left(e_{B}+y_{2}\right)^{2}-\left(a+y+c\left(a \beta_{\mu_{0}}\right)\right)^{2} \tag{20a}\\
& J=\frac{3}{2}-; \delta^{\prime 2}=\left(e_{B^{*}}+y_{1}\right)^{2}-(a+\beta+1+c)^{2} \tag{20b}\\
& e_{B}=1,71(N), \quad 2,02(\Lambda) ; 2,16(\Sigma) ; 2,42(\Xi) \\
& e_{B^{*}}=2,76\left(N_{1520}^{*}\right) ; 2,76\left(\Lambda_{1820}^{*}\right) ; 3,02\left(\Sigma_{100 d}^{*} ; 3,30\left(\Xi_{1815}^{*}\right)\right. \\
& c=c_{0}+c_{1} a+c_{2} \beta \quad c_{0}=321-191 \mu_{0} \quad c_{1}=-1 \quad c_{2}=382
\end{align*}
$$

compare Flg. 5. Remarkably the requirement $\delta^{2} \geq 0$ determines the parameter $\mu_{0}=\mu-e_{0}\left(m=\mu \cdot \epsilon, E_{0}=\theta_{0} \cdot \epsilon\right) \quad$ within very narrow limits:

$$
\text { A: } 2,67 \leq \mu_{0} \leq 2,70 \quad \text { B: } \quad 1,67 \leq \mu_{0} \leq 1,70 .
$$

Now $e_{0} \leqq 1$ according to FMg. 3. So the bare mass will be around

$$
\text { A:m } m e=1500 \mathrm{MeV} \quad \text { B: } m=2 \epsilon=1000 \mathrm{MeV} .
$$

Table 1 gives the numerical δ-values for $\mu_{0}=2,68(A), 1,69(B)$.
Table 1: $\quad \Delta=\boldsymbol{\delta} \cdot \boldsymbol{\epsilon}$

CASE A: $\beta=1 / 2$				CASE B: $\beta=0$		
	$\delta(1 / 2+)$		$8^{\prime}\left(\frac{3}{2}-\right)$	$\delta\left(\frac{1}{2}+\right)$	$8^{\prime}\left(\frac{3}{2}-\right)$	
N	2,15		2,89	1,64	3,1	
Λ	2,46		2,89	2,02	3,1	
Σ	2,61	*	3,19	2,20	3,4	
戊	2,88		3,40	2,50	3,6	

If necessary, the corresponding G value can be determined with the help of equation ($16 e$), which is an inhomogeneous linear system of equations for the unknown G's. Inspection of table 1 shows that the $\delta^{\prime} s$ are always of the order of ϵ. So certainly we are not in a weak coupling situation.

Returning to the comparison of Fig. 4 and 5 , we find in the Λ famity an $1 / 2$ - state at 1405 MeV . Lacking its lower dublet partner near the Λ-mass, he does not fit into our scheme and must have another dynamical origin $x \times$ $x / \mathrm{C}=\mathrm{c} \cdot \boldsymbol{\mathrm { x } = \mathrm { m } - \overline { \mathrm { E } } _ { \mathrm { o } } (\beta \mu _ { 0 }) - \mathrm { V } _ { 0 } (a \beta) \text { , compare Fig. 3. a drops out in } \delta ^ { a } , \delta ^ { \prime 2 } .}$ Therefore in table 1: case Am harm. Oscillator $\left(\alpha=\frac{3}{2}\right)$.
$x x /$ Usual interpretation: singlet barion, i.e.quasiparticle of 3. order. At the Oxford conference there appeared a new resonance $\mathrm{N}^{*} / \mathrm{H}_{(1 / 2-)}$ at 1700 MeV . If it exists, one has to apply an analogous argumentation to it.

1Yis intergretation is confirmed by the lack of any $1 / 2-$ in \mathbf{Z} - and mily. Finally $\Sigma^{*}(1385)$ and $\Xi *(1530)$ are members of the decuplet, 50 that now there is no term against our assumption of exchange character (19). The $1 / 2+$ dublet splitting of $\epsilon=550 \mathrm{MeV}$ clearly has to appear in all members of the dubiet (icr A and B). So $N^{*}(1480)$ gets predicted octet partners

$$
3_{4}=1^{*}(1665), \quad \Sigma^{*}(1740), \quad \exists^{*}(1865) \quad \text { (predicted) }
$$

い!euing in Fig. 5 as broken lines. An analogous prediction of a higher $\frac{3}{2}-$ octet remuith in case 1 .

$$
\text { c) Dynamical Breaking of } \mathrm{Su}_{8} \text { - Syimmetry }
$$

Wre thern frow to some que tions of principle, giving insight into the problem, how the gurnurticle upproxination breaks symmetry, and from this, what this

Altady tire mus, tormuld (10) showed the presence of symmetry breaking, becurso ω_{1} contion:s

$$
\Lambda_{\nu}=\Lambda_{f_{\nu}}{ }_{\nu}{ }^{8} v_{\nu} i_{\nu \nu} i_{2}
$$

und so depends on the "third comporents" mive and $\phi_{\nu}=i_{\nu}{ }_{H_{\nu}} y_{\nu}$. Writing A_{ν} expiiciljy
wry find, thet the deforderny on the third ν-components is containesi exclusively in the co - coeffciartis. Mureover bocalise of

$$
\left.4.1_{j}^{j} \begin{array}{ll}
1 & 1 \\
n & n
\end{array}\right)=1
$$

 sytsterin oin the wits, i.rt.

$$
, f\left(\begin{array}{lll}
\theta_{2} & x_{2} \\
\phi_{2}, 0 & d_{2} & 2
\end{array}\right.
$$

 toly सxpsesesem be wrilis:

[^3]a GMO-formula for the gap constants:
\[

$$
\begin{equation*}
\Delta_{\mathrm{N}}+\Delta_{\mathrm{E}}=\frac{3}{2} \Delta_{\Lambda}+1 / 1 \Delta_{\Sigma} \quad \text { for } \frac{1}{2}+, \frac{3}{2}- \tag{22b}
\end{equation*}
$$

\]

Anslogously for quarks we have $8_{\nu} \rightarrow 3_{\nu}$:
so that

$$
\Delta_{\nu}=\mathrm{C}\left(\begin{array}{lll}
s_{\nu} & \mathrm{B}_{\phi_{\nu}^{*}}^{\phi_{\nu}} & 0
\end{array} \phi_{\nu}\right) C_{\nu}
$$

$$
\begin{gather*}
\frac{\Delta_{1}}{C_{1}}=\frac{\Delta_{2}}{C_{2}}=\frac{\Delta_{8}}{C_{8}}=C_{\nu}, C_{1}-C_{2}=\frac{1}{\sqrt{6}} \quad C_{8}=-\frac{2}{\sqrt{6}} \tag{23a}\\
\Delta_{1}=\Delta_{2}=-1 / 2 \Delta_{8} . \tag{23b}
\end{gather*}
$$

It is important to note, that both relations (22) and (23) are completely independent of the coupling strength. Let us see, whether our "experimental" δ_{ν}, δ_{V} of table 1 fulfil the relation (22B). One finds:

Table 2

| | left-hand
 side | right-hand
 side of $(22 \mathrm{~b})$ | error |
| :--- | :---: | :---: | :---: | :---: |

Having a GMO-formula for the gap constants Δ, what about the masses? According to (18), Δ appears squared under a root in the mass. So obvious ly only in the strong coupling limit $\Delta_{\nu} \gg E \pm \bar{\nu}$ we get the right GMO-formula for the barion masses:

$$
\omega_{\nu}^{ \pm}= \pm \frac{\Delta \mathrm{E}_{\bar{\nu}}}{2}+\Delta_{\nu}\left(1+\frac{\left(\mathrm{E}_{\bar{\nu}}+\mathrm{E}_{-\nu}\right)^{2}}{8 \Delta_{\nu}^{2}}\right) \text {, strong coupling }
$$

because now the main dependency on the third components is $-\Delta_{\nu}$. (The small term $-\frac{1}{\Lambda_{\nu}}$ leads to small deviations from the GMO-formula. An additional singlet interaction would not contribute to the breaking: $\Delta_{\nu}=\Delta_{D}^{(1)}+\Delta_{\nu}^{(8)}$). The relative small errors in table , 2 are now easily understandable: The δ of table 1 were calculated from the experimental masses $e_{B}\left(e_{B}{ }^{*}\right)$, which fulfil the GMOformula within 1% (8%), and in this caiculation we assumed values of μ very near the strong coupling value $\mu_{0 \text { str }}$ 2,683(A); 1,683 (B),
defined by $\delta^{a}=\max$ or $c\left(a \beta \mu_{0}\right)=-a-1 / 2$, compare (20a).
In the weak coupling limit, on the other hand, the breaking term is propon tional to Δ_{ν}^{2}, giving a "rooted" GMO formula (a const):

$$
\left(m_{N}-a\right)^{1 / 2}+(m=-a)^{1 / 2}=\frac{3}{2}(m \Lambda-a)^{1 / 2}+1 / 2\left(m \Sigma^{-a)^{1 / 2}}\right.
$$

weak coupl. ${ }^{m}{ }^{m}{ }^{m} \Sigma$.
So we can note the important fact, that the appearance of a GMO formula for the masses is not necesiarily a proof for a weaker first order breaking interaction, as is usually believed, the standard method of derivation using a first order breaking. Further we note, that our results concerning symmetry breaking are independent of the choice of the (discrete) states of the bare particles. For the form (21) of A_{ν} und the mass formula (18) do not depend on this choice. So these results are characteristic of the quasiparticle approximation with bare barions in generdl.

For quarks the strong coupling limit gives according to (23b):

$$
\begin{aligned}
& \frac{m_{1}-b}{C_{1}}=\frac{\mathrm{m}_{2}-\mathrm{b}}{\mathrm{C}_{2}}=\frac{\mathrm{m}_{8}-\mathrm{b}}{\mathrm{C}} \quad \text { strong coupl., } \\
& m_{1}=m_{a}=y_{2}\left(3 b-m_{3}\right)^{x x /}
\end{aligned}
$$

the weak coupling the same with C_{1} replaced by C_{1}^{2}. Here we have no compelling reason to prefer the strong coupling, because nothing is known about the masses of the quarks $\Omega^{*} \overline{101}$.

After we hive seen the consequences of the fact, that our approximation leads to a GMO symmetry breaking for the gap constants \wedge_{ν}, we wish to understand in detail, how the quasiparticle approximation leads to this breaking. The partly averaging of H_{p} to \bar{H}_{p} (9) replaces one of the two $N \bar{N}$ pairs interacting in H_{D} by a vacuum expectation value, i.e. by a classical function, leading to a "potential" in $\overline{\mathrm{B}}_{\mathrm{p}}$ in a generalized sense, Fig. 6. (9) shows, that Δ_{ν} is just this potential. Between both pairs there was no transfer of angular momenturn, as already stated. So the potential now exchanges no angular momentum with the remaining pair, and we have angular momentum conservation. On the other hand the pairs exchanged unitary spin because of the octet character of the chosen interaction. So there is now transfer of unitary spin between the potential and the remaining pair. Consequently there is breaking of unitary spin conservation in an analogous way, as we would have breaking of angu-lar-momentum conservation, if we had a potential exchanging angular momentum x /

[^4]

Fig. 6.
with the remaining pair. The replacement of a dynamically interacting pair of particles by the "stiff" vacuum expectation value is the origin of the dynamical breaking.

So we have found a simple method to read off directly from H_{p} which of its symmetries will be broken by the quasiparticle method: only the symmetries transferred "within" H_{p}. Keversing the argument, the appearance of a GMO-breaking gives information about the "internal" structure of H_{p}, about its transfer properties. It may well be, that this statenent is more general than our quasiparticle approximation.

Suinmarizing we can stite: lif we use (bare) barions as building blocks, and assume that the averaging of the quasiparticle approximation is illowed, we wre led to strong coupling within the dense matter of the core. It is quite natur ral, that in such a dense packed strongly interucting mediun dveraging methods ure useful. But let us not forget, that we assumed ticitly, that the (suppressed) moson cloud does not contribute considerably to the masses. For quirks as buil-ding-biocks on the other hand our considerations give no limit to prefer the strong (or arry other) coupling.

Finally we have to remove an important incompleteriess of our treatinent. Having states with broken symmetries, one awaits that the quasiparticle vicuum 10) itself is not invariant. An invariant pairing of two particles nis hos necessarily the form:

$$
\begin{aligned}
\left|\mathrm{P}_{\bar{\nu}}\right\rangle & \left.=\sum_{\mathrm{m}_{\nu}} \sum_{\nu} \mathrm{C}\left(\begin{array}{ccc}
\mathrm{j}_{\nu} & 0 & \mathrm{j}_{\nu} \\
\mathrm{m}_{\nu} & 0 & \mathrm{~m}_{\nu}
\end{array}\right) \mathrm{C}\left(\begin{array}{ccc}
8_{\nu} & 1 & 8_{\nu} \\
\phi_{\nu} & 0 & \phi_{\nu}
\end{array}\right) \mathrm{N}_{\nu}^{*} \overline{\mathrm{~N}}_{-\nu}^{*} 10\right\rangle= \\
& \left.\left.=\sum_{\mathrm{m}_{\nu}} \sum_{\nu} \mathrm{N}_{\nu}^{*} \overline{\mathrm{~N}}_{-\nu}^{*} 10\right\rangle \equiv \sum_{\mathrm{u}_{\nu} \psi_{\nu}} \mathrm{P}_{\nu}^{*} 10\right\rangle .
\end{aligned}
$$

in which both CG - coefficients are equal to unity. Instead we have in 10)

So, as far as ${ }^{u}{ }_{\lambda}, v_{\lambda}$ depend on the third components m_{ν}, ϕ_{ν} - i.e. breaking really occurs- we have not the invariant expressions $\left|\mathrm{P}_{\bar{\nu}}\right\rangle$ in 10$)$. The consequences of this noninvariance have to be settled.

First we can state, that this makes no essential change $\ln \Delta_{v}$, because according to (21) the $\quad \nu$-dependency depends not on the vacuum expectation value in Δ_{ν} at all. So our considerations about Δ_{ν} and ω_{ν} are unchanged. Secondly the noninvariant vacuum leads in a well known manner to superflous states with energy $=0$, called "spurious states" (nuclear physics ${ }^{x /}$) or Goldstone mesons (particle physics ${ }^{x x}$).

Third let us study a first order breaking

$$
g_{\lambda} \equiv \frac{v_{\lambda}}{u_{\lambda}}={ }^{g}{ }_{\lambda}+\gamma_{\lambda} \quad \gamma_{\lambda} \ll{ }^{g_{\lambda}} .
$$

This leads to

$$
10)=10)_{\operatorname{Inv}}-\Sigma \gamma_{\lambda} P_{\lambda}^{*} 10>,
$$

therefore to

$$
\left.\left(1_{\nu}\right)=\Omega_{\nu}^{*}(0)=\Omega_{\nu}^{*} 10\right)_{\operatorname{tnv}}+\gamma_{\nu}{ }_{\nu} N_{\nu}^{*} 10>-u_{\nu} \sum_{\lambda} \gamma_{\lambda} N_{\nu}^{*} N_{\lambda}^{*} \overline{\mathbb{N}}_{-\lambda}^{*} 10>
$$

The first two terms transform clearly as an octet, but the last term represents a small admixture of type $8 \times 8 \times 8$, i.e. of $1+\ldots+64$. The breaking therefore shifts not only the eigenvalues, but also mixes the representations. This will have consequences in the calculation of matrix elements in general. All our statements concerning SU_{a} multiplets therefore have to be understood in this sense.

d) Supplementary Remarks

If one includes the pure barion-barion and antibarion-antibarion interactions F and \vec{F}, one anaits no essential changes. For our quasiparticles, pairing N and \bar{N}. depend mainly on the barion-antibarion interaction. Indeed, the mass formula (18) retains its form, only the replacement

$$
E_{\bar{\nu}} \rightarrow E_{\bar{\nu}}+\epsilon \quad \epsilon_{\nu}=2 \sum_{\mu} F_{\nu \mu \mu \nu}\left(N_{\mu}^{*} N_{\mu}\right)_{0}
$$

is to be periormed. Restricting analogously to our choice of H_{p} to the terms $\mathrm{F}^{\mathrm{K}_{0}}, \overline{\mathrm{~F}}^{\mathrm{K}_{0}} . \mathrm{K}_{0}=008000$, one gets $\lambda \epsilon_{\nu}=\epsilon_{-\nu}-\epsilon_{+\nu}=0$. The only change in (1i3) is the appearance of ϵ_{ν}-containing terms under the root. They contribut
$x /$ Baranger, I.c.
$\mathrm{xx} /$ Kibble, Proc. Oxford cont. (1965), Gotdstone I.c.
te to deviations from GMO in the strong coupling limit, because ϵ_{ν} contains $\mathrm{c}^{\rho}\left(\begin{array}{ccc}8_{\nu} & 8 & 8_{\nu} \\ \phi_{\nu} & 0 & \phi_{\nu}\end{array}\right)$ squared. So these deviations give some information about $\mathrm{F}, \overline{\mathrm{F}}$.

Some preliminary remarks about renormalisation can be made. The mass renormalization we performed automatically in calculating the physical mass ω_{ν}. So for each level extra we can define a mass renomalization either

$$
\delta \omega_{\nu}=\omega_{\nu}-\mathrm{m} \quad(\mathrm{~m}=\mathrm{m} \text { bare })
$$

or

$$
\delta \omega_{\nu}=\omega_{\nu}-\mathrm{E}_{\bar{\nu}}
$$

The wave function renormalization constant z_{ν} of a level is the probability to find a bare particle N_{ν} in the state $\left.\left(1_{\nu}\right)=\Omega_{\nu}^{*} 10\right)$. It can be read off, if one expresses Ω_{ν}^{*} and 10) by bare particles (abbreviated)

$$
\left.\left.\left(1_{\nu}\right)=\Omega_{\nu}^{*} 10\right)=\left(\mathrm{Z}_{\nu} \mathrm{N}_{\nu}^{*}+\mathrm{Y}_{\nu} \mathrm{N}_{\nu}^{*}\left(\mathrm{~N}^{*} \overline{\mathrm{~N}}^{*}\right)+\mathrm{X}_{\nu} \mathrm{N}_{\nu}^{*}\left(\mathrm{~N}^{*} \overline{\mathrm{~N}}^{*}\right)\left(\mathrm{N}^{*} \overline{\mathrm{~N}}^{*}\right)+\ldots\right) 10\right\rangle
$$

One gets

$$
z_{\nu}=\frac{u_{1} \ldots \cdots u_{v}}{u_{\nu}}
$$

The full renormalization problem arises only, if we go beyond the bound state approximation and include the scattering states. Because we do not use perturbation theory (according to which our 4-fermion interaction would be nonrenormalizable), we are confronted with a completely new situation: Our bound state approximation separates off the mass (\equiv sell energy) problem from the scattering problem.

It is easy to write down propagators along the standard way, using

$$
\Omega_{\nu}(t)=e^{1 \mathcal{H}_{0 t}} \Omega_{\nu} e^{-1 H_{0} t} \quad H_{0}=\sum_{\nu} \omega_{\nu} \Omega_{\nu}^{*} \Omega_{\nu}
$$

The Fourier transform $\mathcal{F}_{t-t^{\prime}}$ of the propagator gets

$$
\mathscr{F}\left(0 \mid T\left(\Omega_{\nu}(t) \Omega_{\nu}\left(\mathfrak{t}^{\prime}\right)\right) 10\right)=\frac{1}{\omega_{\nu}-\mathrm{F}+\mathrm{i} \delta},
$$

the usual form for a particle of mass ω_{ν} in its rest system. Besides often another "propagator with regard to the bare vacuun" is defined:

$$
\mathcal{F}\left\langle 0 \mid \mathrm{T}\left(\Omega_{\nu}(t) \Omega_{\nu}\left(t^{\prime}\right)\right) 10\right\rangle=\frac{u_{\nu}^{2}}{\omega_{\nu}+E-i \delta}-\frac{v_{\nu}^{2}}{\omega_{\nu}+E+i \delta}
$$

IY. Meson Quasiparticles
a) General considerations

The next step of proceeding (point 6) is the construction of higher order quasiparticles (superconductor: excitons, nucleus: collective states) taking individual quasiparticles Ω as building-blocks, which are bound by the interactions
of $H_{\text {reat }}$. For instance the destruction operator of a meson for $\boldsymbol{\Omega}=$ barion has the form $\left(K=J M_{\mathrm{g}} \mathrm{II}_{\mathrm{g}} \mathrm{Y}\right)$

$$
\begin{equation*}
M^{\mathrm{K}}=\sum_{\nu \nu},\left(\mu_{\nu}^{\mathrm{K}}, \Omega_{\nu} \bar{\Omega}_{\nu}^{\prime}+\nu_{\nu \nu^{\prime}}^{\mathrm{K}} \Omega_{\nu}^{*} \bar{\Omega}_{\nu^{\prime}}\right) \tag{24}
\end{equation*}
$$

The coefficients μ, ν contaln convenient Clebsh-Gordan coefficients, e.g.

$$
\mathrm{C}\left(\mathrm{j}_{\nu} \mathrm{j}_{\nu}, \mathrm{J}\right) \cdot \mathrm{C}^{\rho}\left(8_{\nu} 8_{\nu}^{\prime-8}\right)
$$

if M is an octet meson. The rest of the coefficients is determited from the requirement, that M behaves as destruction operator with regard to the full Hamiltonian:

$$
\left[H_{\text {rod }}+H_{\text {Rest }}, M^{\mathbf{K}}\right]=-\omega_{M}^{\mathbf{K}} M^{K} .
$$

This leads to equations for μ, ν of a similar type, as we had for u, v (17):

$$
\begin{equation*}
\left[\left(\omega_{1}+\omega_{2}-G_{12}\right)^{2}-\omega_{M}^{2}\right] \mu_{12}=\Sigma \text { (interaction terms) } \tag{25}
\end{equation*}
$$

Remark, that autonatically the meson mass appears squared.
The decuplet-barions require clearly quasiparticles of 3 . order:

$$
\mathrm{D}^{\mathrm{K}}=\sum_{\nu \nu_{\nu}^{\prime \prime}}\left(\delta_{\nu}^{\mathrm{K}} \nu_{\nu}^{\prime \prime} \Omega_{\nu} \Omega_{\nu}, \bar{\Omega}_{\nu \prime \prime}+\epsilon_{\nu}^{\mathrm{K}}, \Omega_{\nu}^{*} \Omega_{\nu}^{*}, \bar{\Omega}_{\nu, \prime}^{*}\right)
$$

For $\Omega=$ quarks on the other hand the barions themselves are of third order

$$
\mathrm{B}^{\mathrm{K}}=\sum_{\nu^{\prime} \nu \nu^{\prime \prime}}\left(\beta_{\nu \nu^{\prime} \nu^{\prime \prime}}^{\mathrm{K}} \Omega_{\nu} \Omega_{\nu}, \Omega_{\nu}^{\prime \prime}+\gamma_{\nu \nu^{\prime} \nu^{\prime \prime}}^{\mathrm{K}} \Omega_{\nu}^{*} \Omega_{\nu}^{*}, \Omega_{\nu^{\prime \prime}}^{*}\right),
$$

while the mesons retain the form (24).
b) Preliminary Treatment of Meson Spectra

Let us study in an orientating manner the octet mesons. Clearly equations like (25) can be solved only approximately. Here we restrict ourselves to the simplest possible treatment, which gives the quantum numbers and the succession of levels right, but the energies of the levels bad in general. It approximates $\omega_{\mathrm{M}}^{\mathrm{s}}$ by

$$
\begin{equation*}
\omega_{M}^{8}=\omega_{1}+\omega_{2}-G_{12}, \tag{26}
\end{equation*}
$$

compare (25). In the simpler case (17) the corresponding approximation is $\omega_{\nu}=E_{\nu}=$ energy of the independent particle. That means, that in this case all interaction is neglected (exept that creating the levels). In our present case not all interaction between the individual quasiparticles is neglected, as is showrı
by the appearance of G_{12}, a matrix element of the rest interaction, in (26), which means a crude "binding energy" between the quasiparticles in M. Knowing nothing about G_{12}, we approximate it by an overall binding energy
$G_{1 a} \approx G \approx$ const.
Then the mass ω_{M} is essentially the sum of the masses of both bound individual quasiparticles, shifted down by G. For case A we give the resulting term system in Fig. 7. For case B the upper two lines of terms are absent. The corresponding observed established mesons are indicated.

Fig. 7.
Besides this overal orlentation we mention two specific predictions. From parity considerations and the exclusion of $\frac{1}{2}-\frac{8}{2}+(19)$ it follows that there should be no $0+$ and $3+$ mesons, at least as long as only the j-coupling of Ω and $\bar{\Omega}$ in (24) is admltted. The observation of scalar mesons $0+$, like s_{0} and $K_{1} K_{1}$, therefore points to the necessity of other coupling types in M, e.g. $L-S$-coupling. This remark is important, for $L-S$ - coupling is intimately related to SU_{θ}-symmetry, because it decouples spin from angular momentum.

The second remark proves right for all quasiparticles of order 2 or higher. All field operators $\mathrm{M}, \mathrm{D}, \mathrm{B}$ etc. have no "eiementary" commutation relations, for instance

$$
\left[M^{K}, M^{K^{\prime}}\right]=\delta_{K K^{\prime}} 1+\text { gperators }
$$

From this one derives easily, that the states created by them are not strictly orthogonal one to another. This leads to mixture of states withln each column in Fig. 7, so between ω and ϕ, or η and x, even if ϕ and x
are assumed to belong to an octet, as we did in Fig. 7.

V.Conclusion

As we have seen, the quasiparticle approximation provides us with a simple complete dynamics, applicable to either barions or quarks, and leading spontaneously to the right symmetry breaking. It is "constructive", calculating the field operators and states of all physical particles in terms of the fundamental field. Further it can be easily used for other symmetries than SU_{8}. For all symmetry properties are contained in the CG-coefficients. So the method is applicable to all compact groups. Further it can be generalized to Yukawa Interactions ins tead of four fermion interactions.

We considered the resonances only in the "stable" approximation. The stu dy of the scattering problem is therefore one of the next steps, embedding our discrete solutions into the continuum scattering states. This leads to a reactancematrix instead of an S-matrix scheme. Further this problem is intimately connected with the question of the deeper sense of our approximation "by partly averaging".

> Acknownedgemen

The author would like to thank many members of the Laboratory for Theoretical Physics at Dubna for valuable discussions, especially Dr. Michailow, Dr. Paschkewitsch and I. Rotter. He is very indebted to Academician Prof.Bogolubov, Prof. Van Hove, Prof. Markov, and Prof. Blokhintsev for the interest and encouragement given to this work at different phases of development. Especially it is due to Prof. Bogolubov, that things came fast into a relatively simple form, by his hint to the paper of Bacry and Mandelbrojt and other invaluable criticism and help.

Received by Publlshing Department
on April 6, 1966.

[^0]: x Nimbu, Jorki Lasinio, Phys.kev. I2, 345 (1961).
 xx/Guldstore, N.C. 19, 15.4 (1961)
 xxx/ Weinbers, Phys.Rev. 130, 776 (1963).
 xxxx/Manowaik, Anrı. of Phys. 30, 10 (1964).

[^1]: x/e.g. Bogolubov, Shirkov, Tolmatchov, New Method in the Theory of Superconductivity, Moskwa 1958 and Fortsch.Phys. 6, 605 (1958), for the continuous case; Lane, Nuclear theory, New York, 1964, for the discrete case.

[^2]: x/ Bacry, Mandelbrojt, N.C. 23 , 564 (1962). See also Nambu I.c.

[^3]:

[^4]: ${ }^{x /}$ Example Zeeman effect: $v \sim L_{s}$.
 $x \mathrm{x} / \mathrm{So} 3 \mathrm{~b} \geq \mathrm{m}_{\mathrm{f}}-\mathrm{m}_{\mathrm{t}} \geq-\frac{3}{9} \mathrm{~b}, \quad \mathrm{~b}>0$

