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1. Introduction 

The first microscopic calculAtion of . the equilibrium deformation of nuclei, 

based on the Nilsson model/1/ was performed by Mottelson and Nilssorf~/ They 

calculAted the energy of a nucleus for a given deformation by SI..Qilllling up the 

Nilsson single-particle energies corresponding to this deformation. For every 

configuration the dependence of the energy on the deformation was obtained and 

the point of minimal energy was .considered the equilibrium defonnation of the 

configuration. 

Marahalek, Person and SheJ f have extended the calculations to a wide 

region of nuclei. predicting sOme new regions of deformed nuclei. 

In all these calculAtions the pairing corTel.ations which were found to be 

very important. for example, for moments of inertia/ 
4

/ , have not been taken into 

account. The expllcit Coulomb term hB.s also been dropped. However, the single

- particle energy levels used, were different for neutrons and protons and fitted 

to experimental odd nuclei data. The theoretical estimations by Belyaev / s/ indi

cated that the pairing correlations might be important for equilibrium deformations. 

especially at the boundaries of the defonnation regions. 

Detailed calculations taking the pairing forces into account and including 
\ I /6/ 

the explicit Coulomb term have been performed by Bes and Szymanski . and 

s~/7/ for even nuclei and by Hassan, Skladanowski and ·szyrna~ki/S/ 
for odd nuclei. 

' , 
The Hamiltonian used by Bes and Szymanski has the form 

for neutrons and for protons separately. 
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Here 

state l'v > 

<v 
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• cv 

force strength. 

is the energy of a twofold degenerate single-particle Nilsson 

is the corresponding creation operator and G is the pairing 

The minimization of the mean value of the Ham.IJ.tonian ( 1) in the BCS 

ground state/ gf under the condition that the mean value of the number of partic

les in this state is given, leads to the expression for the energy 

'where 

with 

3 3 
lj, • I •v hv - l1 /G , 

v 

3 ' 
2v v • 1 - ( t v - .\ l/E v 

3 3 
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The chemical potential .\ and the energy gap 2!1 are obtained from 

the equations 

2/G • ; 1/E v 

ll - I 2v
3 

v v 
(3) 

where . " is the number of particles ( neutrons or protons) in the nucleus, 

After the inclusion of the Coulomb term lj, 0 , the expression for the 

energy of the nucleus is 

lj,.fi,,.+lj,p+lj,c ( 4) 

where /i,,. and /i, P are given by eq, ( 2) and correspond to neutrons and 

protons, respectively, The Coulomb term is assumed to be equal to the electro -

static energy of a charged ellipsoid, Its dependence on the deformation 'i of 

the ell1psoid is given, up the third order in ; , ~Of 
4 _a 

lj, c <'il - (1 -45 f ~ ;•>/i,c(O). 
2835 

(5) 

Here /i,
0

(0) is the Coulomb energy of the sphere with a spherically sym

metric charge distribution, The trapezoidal form of the radial charge density 

distribution has been accepted, taking the parameters 

data/ ll/ 

4 

• 

from electron scattering 

~ 

The deformation parameter • of the charge density of a nuclew 

tained from the quadrupole moment Q0 , calculated for a given defom 

of the single- particle potential, The relation is 

- - I .. Oo (f) • tO+ "f) f-Z fp(r')r' dr' 

with 

a 
Q

0 
(t) • I qw (·t)hv (f) , 

V(pMto••) 

where p(r'l is the charge denaity and qw is the matrix element 

quadrupole moment operator in the single-particle state I v > , The inl 

over the sphere in eq, ( 6) has been calculated with the same trapezoi 

distributions as taken in the calculation of the energy lb 0 (0) in · eq. ( ! 

The calculation by &s and S~ski has showed a rather aoo 
t ~ 

tency between the potential deformation and the density one l,e, • • f 

calculated quadrupole moments are in good agreement with experiments 

middle of the deformation region and show some discrepancies at the t 

of the regiono 

It has been suggested/ 7 / that these discrepancies might be conr 

with the use of BCS wave functions which were not eigenfunctions of t 

number operator and that the use of projected wave functions might im1 .. 
results. 

The effect of projecting the BCS wave functions on the space of 

le number operator eigenfunctions has been. investigated by a number < 
/12-23/ authors • ln particular some of them have compared the BCS wa, 

tions and the projected ones with the exact solutions of the Hamiltoniar 

simple systems, The projectJd wave functions ( PBCS in the nomenclab. 

ref, / 23/ ) were obtained by projecting fixed- particle terms from the BC 

tions, Pawlikowski and Rybarska/ 14/ have studied the system of n• 

les located on the 0 • 5 equidistant, twofold degenerate levels. The sc 

imitated the situation in a deformed nucleus, It has been shown that th1 

ground state energy was much closer to the exact energy than the BC 

The improvement was the better, the stronger was the pairiJ force, Ft 

in the case of the weakest pairing forces considered in ref, 
14

/; G • 

( lit was the distance between the levels) the error of the PBCS gro 

energy amounted to 17o/o of the error of the BCS energy. For c -lit it 

to 1o8o/o of the BCS error, 

5 
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ber of particles ( neutrons or protons) in the nucleus, 

the Coulomb term {i, 0 , the expression for the 

is 

&~&,.+&p+&c ( 4) 

are given by eq, ( 2) and correspond to neutrons and 

, The Coulomb term is assumed to be equal to the electro -

,arged ellipsoid, Its dependence on the deformation 'i of 
- . not n, up the third order in t , by'-
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45 

92 
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the Coulomb energy of the sphere with a spherically sym

•Ution, The trapezoidal form of the radial charge density 

accepted, taking the parameters from electron scattering 

4 

• 

The deformation parameter t of the charge density of a nucleus ia ob-

tained from the quadrupole moment Q0 , calculated for a given deformation 

of the single-particle potential, The relation is 

- - 2 .. Oo (t) • tO+ "f) {-Z fp(r')r' dr' ( 6) 

with 

2 
Q 0 <•> • I qw (f)2v11 {f) , 

ll(pNio .. ) 

(7) 

where p{r'l is the charge density and qw is the matrix element of the 

quadrUpole moment operator in the sing!&-particle state I v > , The integral 

over the sphere in eq. ( 6) has been calculated with the same trapezoidal charge 

distributions as taken in the calculation of the energy {i, 0 (0) in · eq. ( 5), 

The calculation by B~s and szymar{ski has showed a rather good consis- . 

tency between the potential defo~tion and the density one I.e. ' • ; , The 

calculated quadrupole moments are in good agreement with experiments in the 

middle of the deformation region and show some discrepancies at the boundaries 

of the regiono 

It has been suggested I 7 I that these discrepancies mlght be connected 

with the use of BCS wave functions which were not eigenfunctions of the particle 

number operator and that the use of projected wave functions might improve the 
' results, 

The effect of projecting the BCS wave functions on the space of the partic

le number operator eigenfunctions has been. investigated by a number of 
/12-231 

authors , In particular some of them have compared the BCS wave func-

tions and the projected ones with the exact solutions of the Hamiltonian( 1), for 

simple systems, The projected wave functions ( PBCS fn the nomenclature of 

ref, I 231 ) were obtained by projecting fixed- particle terms from the BCS func-

tions. Pawlikowski and Rybarskal 
141 have studied the system of n• 6 partic-

les located on the n • 5 equidistant, twofold degenerate levels. The system 

imitated the situation in a deformed nucleus, It has been shown that the PBCS 

ground state energy was much closer to the exact energy than the BCS one, 

The improvement was the better, the stronger was the pairing force, For example, 

in the case of the weakest pairing forces considered in ref.l 141; C • 0.5 At 

( At was the distance between the levels) the error of the PBCS ground state 

energy amounted to 17o/o of the error of the BCS energy, For c .& it reduced 

to 1o8o/o of the BCS error, 
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S.lmJJ.ar results have been obtained by Rho and Rasmusser/
22

/ for the 

system of (} • 6 equidistAnt twofold degenerate levels with n• 6 particles. 'lhey 

have shown that with the pairing force strength G tending to its critical value, 

at which the nontr~ solution in the BCS approximation diaappears, the PBCS 

and BCS ground state energy errors tend to the same limit, the PBCS error 

being always lower than the BCS one. 

/236-8/ In all the calculations of the equilibrium defonnation, quoted above ' ' 

axlAJ. symmetry of the nuclei has been assumed. 'lhus, only the dependence of 

the energy on the ' defonnation has been studied. 'lhe analysis by Das Gup

ta and Preston/ 
24

/ of the y -deformation dependence of the energy has revea

led that the assumption of the axlAJ. symmetry was well founded, possible except 

for the nuclei in the neighbourhood of the Os is!)topes, which appear to be quite 

soft with respect to the y-deformatioJ 
25

/. 'lhe same results have been obtained 

in the calculations based on the pair.lfl!t-plus-quadrupole forces model/ 
261. 

'lhe aim of the present investigation is to . calculate the ground state equili

brium deformations and deformation energie~ for the ~ symmetric even nuc

lei, using the PBCS wave functions instead of the BCS ones. 

2. Description of the Calculation 

We choose the part of the BCS function corresponding to a definite number 

of particles as the ground state wave function. After the normalization it is of 

the form/ 17,23/ 

+ + + + 
IPBCS>-~1 .... ~ 2 N I y

111 
••• y 11k{J,1 ••• ~,.k Inc> • 

v 1<v8 < .•• <vt 

+ + + 
where y

11
•Y

11
/a

11 
,(1

11 
•c 11+c 11 _ and the normalization factor 

8 8 -K 
N • ( I Yvt .•• Yvt l 

.... , <~-. <. •• <"!. 

( 8) 

'lhe indices I • 1 ••• 1 enumerate the levels for which " 1 •1 • while the 

indices 111 > t correspond to the levels for which 0 < v
111 

< 1 i.e. the levels 

between which the scattering of particles, due to the pairing forces, takes place. 

We have the equality 2 (t +k) • n, where • is the number of particles 

(neutrons or protons). 'lhe summation extends over aU the combinations of Jr. 

states { ordered with respect to the energy) chosen from the states for which 

0 <Y 111 <1 • 'lhe symbol Inc> denotes the vacuum for the particles described 

by the creation operators c! or c i 
I 

6 

-

]lr 
"ll ,,: 

'lhe occupation fActors " ! ( • ~ • 1 - "! ) obtained from the 

and ( 3) c:orreepond to the 1111nimization of the erwray in the BCS 

One COUld obtAin a beu.r -v. function lllinlnUslrw the ener'Ji 

the projecWd ..... 'lhe -vw fUnction obtained in IIUCh a liiCllVler 

~ of ret./ 231 ) hlq been atLd1ed by Mans et a.l. ln 

tiorw fw- heavy -.nenta/ 
23

/. 'l1wy haV8 shown that for the -, 

pi"Otorw and the ll)'lltam N •Ill rwutrona the error of the PBCS g 

energy ( calculated with respect to FBCS energy) CIIIIOUnla to 13~ 
the BCS error, reapective.ty. 'The I'ILBI1bere z • !16 and N • 111 ar. 

oa.es ol the maxJmai BCS error, ln connection with a decrease .irl 

of the NU.s.on level& (and corwequenUy with the laMtllt pairing e1 

~ of particl- at the defonnstion 'I • 5 uaedo For Iaraer •I• 

( Z • as_ 901 N • 132, 1341 136) the PBCS eJTOr reduces tO, abc 

BCS one. 

'lhe reauUa of Mang et a.L. correapond to the picture obtainec 
I 14 22/ L Jationa for almple systems ' , where the PBCS ground ataw • 

~ than the BCS one. 

Moreover, the d.Jfference between the PBCS and FBCS energ 

to be quite aman. 

For the energy in the state ( 8) we obtain 

J.t I ~ I 

i. I 11 1 + N I Ilhv1 + ··""'"t lrv1 ••• Y11t t•l v 1 <.,1 < .•. <vt 

I I I 
- G I Y11 Y11 I Yv, ••• Yvt 111

,,1 1 I 111 <v, < ..• <a-k i'u
1 

.11
1 

anc1 for the quadrupole 1aoment ,_, 
I I I 

Q • I lq 11 + N I 2(q~ 11 + ••• + 'ly 
11 

ly
11 

••• y
11 t•l l l k k l k 

.... , <111.< ••• <lilt 

To obtQin the pure effect of ~ing the PBCS wave functions t 

BCS onea. we perfonn all the calcu&ations In full analogy with tho&4 

Szyma~ / 61 • We use only the fonnula ( 9) ir1llteed ol ( 2) for the 

&. and G10 in eq. { 4), and the formula ( 10) ( with the slllllll18tio 

over protons) instead ol ( 7) for the quadrupole moment. All the va. 

parameters are taken the -.ne as in the variant ( W+ VI) of ret.f 6/ 

thef"e the best agreement with experiment. 

7 
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und state energy errors tend to the same limit, the PBCS error 
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e calculations of the equilibrium deformation, quoted above/ 2•3•6- 8 / 
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n/24/ of the y -deformation dependence of the energy has revea
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ect to the y -deformatior/ 
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/ • The same results have been obtAined 
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of the present investigation is to . calculate the ground stAte equll~ 

tiona and deformation energie~ for the axiaJJ.y symmetric even n\'c

PBCS wave functions instead of the BCS ones, 

2, Description of the Calculation 

se the part of the BCS function corresponding to a definite number 

the ground state wave function. After the normalization it is of 
3/ 
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1 
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the scattering of particles. due to the pairing forces. takes place, 

quality 2 (l + k) • n, where a is the number of particles 

rotons). The summation extends over all the combinations of k 

d with respect to the energy) chosen from the states for which 

e symbol I vac > denotes the vacuum for the particles described 

operators c+ .... 
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6 

'lbe occupation factors , ! ( ·~ • 1 - , ! ) obtained from the fonnulae ( 2a) 

ard ( 3) corr..pond to the raJnlmisation of the erwray 1n the BCS •tate. 

On. cOuld obtAin a better -va function 111in1mJz1rw the enet'8Y ~y 1n 

the ptojec:ted IRate, The wava function obkUned 1n euc::h a lllai'Vler ( FBCS 1n the 

nDalel'lC1ature ol ret./ 
23

1 ) hlllt been aludJed by Mang et ai. in their cal~ 
tiorw for heavy elemental 

23
/. '!bey hava shown that for the system of Z • H 

prokma ard the ~ N •Ill neu1rona the e&TOr ol. the PBCS ground •tate 

energy ( calculated with l'ellp8Ct to FBCS energy) CllllOUntll to 13% and 25% of 

the BCS error, raapectively. '1'he BAIIlbera Z • !16 and N • lSI are juat the 

011.ee11 ol. the maximal BCS e&TOr, 1n connection with a decreaee 1n the density 

ol the ~n level& ( ard corwequently with the lOWffat pairing dect) for th-e 

OUDbera ol. particl- at the deformation 'I • 5 uaect. For larger level denaitles 

( Z • as. 90; N • 132, 134, 136 ) the PBCS e&TOr reduces to about 8% of the 
BCS one, 

'l'he reau.lte of Mang et ai. correepond to the picture obtAined in the calcu
/ 14 22/ 

JAtton. for eJmple systems ' , where the PBCS ground alate energy .1& much 
better than the BCS . one, 

Moreover, the dJfference between the PBCS and FBCS energies appeera 
to be quite lllllllll. 

For the energy .[n the &tate ( 8) we obtAin 

""- 1 ~ a 
i. I 11 1 + N I Ithv1 + ..... ,.,., lYv

1 
••• Y..,t -

1•1 v1 <v1 < .•. <vt 

I 2 I 
- G I y 11 y 11 I Yv1 ••• Yvt 

"•·"t I I "'• <v, < ... <~,\ i'al '"• 

and for the quadn.lpale lll<llllent 

,,., 
I a I 

Q • I lq 11 +N I t<crv.v+···+'ly., ly., ... y.., 
1•1 I I k k 1 k 

v 1 <v1< .•• <vlt 

(9) 

( 10) 

'I'o obtain the p..- effect of uaing the PBCS -ve functions inateQd of the 

BCS onea. we perform all the calcu&!ltions in full analogy with those of B~s ~nd 
Szyma~/ 6/ • We use only the fonnula ( 9) lnateed ol. ( 2) for the expresalone 

i. and i., in eq. ( 4), and the formula ( 10) ( with the summation extended 

over protons) instead ol. ( 7) for the quadrupole moment. All the values of the 

parameters .are taken the S4me as in the variant (ill+ VI) of ref.' 6/ which g.:we 

thef'e the best agreement with exper.imPnf. 
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3. Results and Discussion 

As an example the dependence of the energy on the deformation is pre

sented in Fig.1 for Gd 158 • The independent particle curve ( IP) has been ob

tained by summing up the energies of the twofold degenerate Nilsson levels from 

the lowest one to the Fermi level, just as in refs./
2

•
3
/. No Coulomb term has 

been included. The comparison of the PBCS and BCS curves shows that the 

dependence of the PBCS energy on the deformation does not differ much from 

that of the BCS energy, although the PBCS energy itself is lowered significantly 

with respect to the BCS energy (just this lowering of the ground state energy 

was the significant improvement obtained by taking the PBCS wave function 

insted of the BCS one in the calculations for simple systems/ 
14

•
22

/ ). 

Comparing the IP curve with the PBCS and BCS ones, one can see that 

the inclusion of pairing forces decreases the equilibrium deformation slightly 

( from 0.31 to 0.29) and that the incluaion of pairing forces together with the 

Coulomb term increases it (from 0.31 to 0.34 for BCS). 

The dependence on the deformation of the ground state energy change due 

only to the pairing forces (A& NO) and to the pairing forces together with the 

Coulomb term (A& 0 ) is presented in fig. 2. It is seen that the tendencies to 

change the deformation in the opposite directions by pairing forces on one hand 

and the Coulomb term on the other, approximately compensate each other in a 

rather wide region of deformation ( from f • 0.15 to 1 • 0.30 for Gd 
118 

) • 

However, at the equilibrium deformation obtained in the independent particle case1 

the tendency of increasing the deformation by Coulomb tenn already predominates 

over the tendency of lowering the deformation by pairing forces. 

'This situation is rather typical for the whole region of deformed nuclei 

excluding only the region of the lowest equ.l.iibrium deformations, where the paW

ing forces seem to be dominant ( see e.g. the Pt isotopes in table 1). 

For the most strongly deformed nuclei the influence of the Coulomb term 

seems to be dominant, so that the equilibrium deformations of these nuclei obtai

ned in the IP case are more close to the deformations obtained in the case with no 

Coulomb term ( NC) than to the deformations obtained with the Coulomb term ( C). 

Table 1 gives the equilibrium deformations calculated with the PBCS wave 

functions both in the ( C) and ( NC) case. The equilibrium deformations calculated 

in the BCS case by B~s and Szyma!:ski/ 
6

/ [ their variant (Ill + VI) l and in 

the IP case - by Marshalek, Person and Sheline/ 
3

/ (their single-particle level 

8 

• 

t
i',, 
• 
d 

:'' 1 

scheme is quite cloae to var.l.ant ( m + VI) of ref./ 6 / ) are also given 

riaon. Since the PBCS and BCS energy curves are rather flAt ( cf.fi 

defined only in the six po.lnts ( 'I • 0,2,4,5,6, 7) the minimum poinu 

are not very ax.act, so that the purpoae of table 1 ia only to illustra 

ftll tencienc:.les • 

The 'eq values in the independent particle case are especial 

read from the d.l.agram of ref./ 3/. 

The quacln.lpole moment. are a.tven in fig. 3• The experimental 

deduced from the Coulomb excitation data quoted in the table of Lind 

in ref) 
27

/. If more than one experimental point is ava.Uable the ))Oin 

west experimenlzll error was chosen. For Os 188 fig. 3 gives two eJI 

points measured with almost the same acs;uracy• For Os 110 
1 

the lc 

mental point given in flg.3 was measured with larger error than the \ 

but in two lndepenclent e:xperimerlta. The theoretical PBCS resulte lfi1 

Coulomb term ( C) are always larger than the corresponding BCS. irl 
discrepancy with the experiment in the beginning of the deformation r 

increases. Moreover, the PBCS calculation predicts a large deformatJ 

for the Ce
141 

nucleus. 

A better agreement with the experiment in the beginning of the 

region and also for the most strongly deformed nuclei ( i.e. for the n\ 

-.hlch the inclusion or not of the Coulomb term has the largest effect 

equUibrium deformation) is obtained in the NC case. As the Coulomb 

to some extent taken already into account in the single.. particle level 

experiment. it is possible that the addition of the electrostatic Coulom 

the energy overestimates the real Coulomb repulsion. How.rver, it is 1 

probable that the part of Coulomb effect, included through the single-
~ 

levels has the correct dependence on deformation. 

Fig.4 illustrates the dependence of the quadrupole moment calc 

the PBCS wave function [ eq.( 10) l for Z • 64 on the deformation 

potential. The BCS V8.1ues of Q [ eq. ( 7) l are found to be quite cl 

PBCS ones, so that- the corresponding curve would not be distingula, 

the curve plotted in f.igo 4. 

Fig.5 gives the defonnation energy defined as the difference in 

of a nucleus at the zero and the equilibrium defonnatlons i.e. li> dor • 

Two of the five curves are calculated with the PBCS wave functions, 

the Coulomb term ( C) and not ( NC) • The next curve cruculated in it' 

9 
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ation in the opposite directions by pairing forces on one hand 
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) • 
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of lowering the defonnation by pairing forces. 

:n is rather typical for the whole region of deformed nuclei 

region of the lowest equilibrium defonnations, where the paW
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strongly defonned nuclei the influence of the Coulomb term 

nt, so that the equilibrium defonnations of these nuclei obtai

more close to the deformations obtained in the case with no 

than to the deformations obtained with the Coulomb tenn ( C). 

s the equilibrium defonnations calculated with the PBCS wave 

e ( C) and ( NC) case. 'The equilibrium defonnations calculated 
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Marshalek, Person and Sheline/ 3 / (their single-particle level 

8 

• 

~~ 
\' 
7 

:1,,, 
.j): 

'~~) 

~~ 
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·':~. 

scheme i& quite close to verlant ( lU+ VI) of ref.f 6/) are also given for compa

rison. Since the PBCS and BCS energy curves are rather flat ( ct.fig. 1) and 

deflned only in the six points ( 'I • 0.2,4,5,6, 7) the minimum points ( * •• ) 
are not very altact, so that the purpose of table 1 is only to illustrate the gene

re.l tlendenc::.lea • 

'Ihe t •• values in the independent particle case are especially rough as 

read from the diagram of ref./ 3 / • 

'l'he quadrupole moment. are afven in fig. 3• '!'he experimental points are 

deduced frQm the Coulomb excitation dAta quoted in the table. of Lindskog et a1. 

in ret) 
27

/. lf more than one exper.lmentai point is available the ):)Oint witt: the lo

west experimentlll. error was chosen. For Os 188 flg. 3 gives two experimental 

points measured with almost the same ac~uracy-. For Os tto , the lower experi-

mental point given in fig.3 was measured with larger error than the upper one, 

but in two independent experimenta. '!'he theoretical PBCS results with the 

Coulomb tenn (C) are always larger than the corresponding BCS. Thus the 

di&crepancy with the experiment in the beginning of the defonnation region 

increases, Moreover, the PBCS calculation predicts a large deformation already 

for the Ce 
141 

nucleus. 

A better agreement with the experiment in the beginning of the defonnation 

region and also for the most strongly deformed nuclei (i.e. for the nuclei, for 

which the inclusion or ,.,t of the Coulomb term has the largest effect on the 

equilibrium defonnation) is obtained in the NC case. As the Coulomb effect is 

to some extent taken already into account in the single-particle levels, fitted to 

experiment, it is possible that the addition of the electrostatic Coulomb tenn to 

the energy overestimates the real Coulomb repulsion. Howtrver, it is not very 

probable that the part of Coulomb effect, included rrough the single- particle 

levels has the correct dependence on defonnation. 

Fig.4 illustrates the dependence of the quadrupole moment calculated with 

the PBCS wave function [ eq. ( 10) l for Z • 64 on the deformation 11 of the 

potential. The BCS values of Q [ eq. ( 7) l are found to be quite close to the 

PBCS ones, so that the corresponding curve would not be distinguishable from 

the curve plotted in figo 4. 

Fig.S gives the deformation energy defined as the difference in the energy 

of a nucleus at the zero and the equilibrium deformations i.e. & det • & (O) - &<q •• > • 

Two of the five curves are calculated with the PBCS wave functions, including 

the Coulomb tenn ( C) and not ( NC) • 'The next curve cwculated in the indepen-

9 



dent particle case ( IP J is read from the diagram of the paper by Marschalek, 

Person and Sheline/ 3 • The last two curves are deduced from the recent ex

tensive semJ,...empirical analysis by Myers and SwlateckJ 
28

/ (see also ref~.29 ' 3 ~· 
The mass of a nucleus and its dependence on deformation have been obtained 

in Myers and Swl.atecki analysis from the four parameter liquid drop formula, 

supplemented by the three parameter shell correction. The shell correction was 

assumed to come from the bunching of the energy levels and the effect of bun

ching was assumed to disappear with increasing deformation of the nucleus. 

Such a shell correction has allowed to reduce significantly the systematic dis

crepancy between the liquid drop masses and the experimental ones for almost 

the whole region of the stable nuclei (excluding only the light nuclei, for which 

the Wigner term appears to be important) • 

The curve denoted in fig.5 as "semi-emp MS" was obtained from the cal

culated curve ( "calc MS" ) by taking the experimental mass of a nucleus instead 

of the mass calculated in the equilibrium point. 

The comparison of the PBCS results with the semJ,... empiric~;~.! ones shows 

much better agreement for the NC variant. 

Table 2 shows the rather good consistency of the potentlal and the density 

deformations i,e, r .. 'i , similarly as was the case for BCS functions/ 
6

/ • 

The results of this paper show that the projecting itself of the wave func
tions improves the values of the quadrupole moments only in the second half of 

the rare .earth region i.e. for Yb and heavier isotopes. 
The comparison of the experimental quadrupole moments and the semi- em-

pirical deformation energies with the results of the two variants of the calcula

tion: C and NC shows much better agreement for the variant with no Coulomb 

term, especially at the beginning of the investigated region. 

The author wishes to express his gratitude to V.G.Soloviev and Z.Szymari

ski for suggesting the problem and for valuable remarks and to P. Vogel in col

laboration with whom the work was started, He would also like to thank Z,Boch

nacki, I.N. Mikhailov, N.I.Pyatov and W,Rybarska for helpful discussions. The use 
~ \ 

of not published numerical tables of >. , tJ. and q 1111 calculated by D.R,Bes 

and Z.Szyma~ski is greatfully acknowledged, ln conclusion it is a pleasure for 

the author to thank I.N. Kukhtina for performing the numerical calculations on an 

electronic computer. 
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'!'able 1 
Equilibrium deformatlona t oq • The second and the third columna give 
the values for the PBCS cases with the Coulomb term in~uded and 
not, re&pectlvely, The results of var~ ( W+ VI) of ref. 6/ are quoted 
in the fourth column and those of ref. 3/ in the fifth 

PBCS BCS IP 
lfucleua 

c 1£ c .we 

ce142 o.J2 o 0.14 

Nd144 0.)4 0 0.22 
Na146 a) 0 0.22 

ld
148 

a) 0.29 . 0.27 
sm146 0.)0 0 0 0.22 
5•148 a) 0.2) 0.)0 0.29 
s.15o a) 0.26 O.)) o.Jo 
5•1'2 a) 0.29 O.J4 o.Jl 
s•1'~--- a) 0.)2 0 • .)2 

Gd1' 2 a) 0.26 0.)1 O.JO 
1,4 Gd 0 • .35 0.29 O • .)J O.JO 

Gd
1

'
6 

o.Jo o.n 
158 

Gd o.J5 o.29 o.J4 o.J1 
160 

Gd o.J4 o.29 o.J4 o.Jo 
160 D.1 o.JJ 0.29 o.J1 o.Jo 

».1162 0.)2 0.28 0.)1 O•JO 
164 D.r o.J1 0.27 _g~Q . o.29 
164 

Br · o.n 0.27 o.Jo o.Jo 
166 Br o.Jo o.26 o.29 o.28 

Br168 0.29 0.26 0.28 0.27 
~r170 0.28 0.25 o.2z 0.26 
Yb170 0.28 0.25 0.27 0.26 
n172 0.28 0.2, 0.26 0.26 
n174 0.27 0.24 0.2, 0.2, 
n176 0.25 0.22 0.24 0.25 

12 

• 

. \ 

Nucleus PBCS BCS 

c we c 

Hf176 0.24 0.21 0.24 

Hf178 o.2J 0.20 0.22 
IH'l80 0.22 0.19 0.21 

wlBO 0.22 0.19 0.21 
w182 0.20 0.18 0.20 
w184 0.18 0.17 0.18 
wle6 0.17 0.16 0.17 

08186 0.17 0.15 0.17 

081ee 0.16 0.14 0.14 

08190 0.15 O.lJ o.n 

--
pt190 o.u 0.10 .. 
Pt192 0.10 0.09 

a) The energy curve decreases with deformation in the whole ro 
investigated 0 :!S t :!S 0.35, so that the equilibrium deformation is probe 
than 0.35. 

13 
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Tab 1 e 1 

t oq • The aecond and the third columna give 

I Nucleus PBCS BCS IP 
cases with the Coulomb tenn in~uded and 

of var~ ( W+ VI) of ref. 6 are quoted c lC c lC 
those of ref. 3 in the fifth 

H!l76 0.24 0.21 0.24 0.25 

PBCS BCS IP I 
Hfl78 0.2J 0.20 0.22 0.22 

1£ c ,r«: Hfl80 0.22 0.19 0.21 0.22 

0 0.14 

0 0.22 J 
wl80 0.22 0.19 0.21 0.21 

0 0.22 w182 0.20 0.18 0.20 0.20 
w184 0.18 0.17 0.18 0.17 

0 0 0.22 I w186 Oo17 0.16 0.17 0.16 
0.2J o.Jo 0.29 
0.26 o.JJ o.Jo I 08186 
0.29 O.J4 O.Jl 0.17 0.15 0.17 0.17 

08188 0.16 0.14 0.14 0.14 

0.26 o.Jl o.Jo • 08190 0.15 o.D o.n 0.14 
0.29 O • .)J o.Jo 
o.Jo 0 • .31 I pt190 
0.29 0 • .34 o.J1 Oo11 0.10 0.12 

~ 

Ptl92 0.10 0.09 0.11 ,. 
0.29 o.J1 o.Jo 
0.28 ().Jl 0•.30 

a) The energy curve decreases with defonnation in the whole region 
investigated 0 :; f :; 0.35, so that the equilibrium defonnation is probably greater 

0.27 0 • .30 o.Jo • than 0.35 • ;. 

0.26 0.29 0.28 

0.26 0.28 0.27 
0.25 o.2z 0.26 

0.25 0.27 0.26 
0.25 0.26 0.26 
0.24 0.25 0.25 
0.22 0.24 0.25 

12 13 
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Tab 1 e 2 

-24 2) ~ole moments ( 1n unit& of 10 em calculated with the help 
of eq. ( 10) and the values of the denaity defonnetlon parameter i' 1 

obtolned from the quadrupole momenta by eq. ( 6), for the defonna -
Uona of the potential: f • 0.10, 0.20 and 0.30. The integMJ. ln eq~( 6) 
has been calculated wlth the tftlpezoldal charge distribution. 

f .. 0.10 f • 0.20 f • 0.)0 
z 

- f -Oo • Ou Oo f 

'8 1.99 0.11 4.28 0.22 6.64 O.)) 

60 2.16 0.11 4.6) 0.2) 6.99 0.)) 

62 2.)2 0.12 4.94 0.2) 7o21 O.)) 

64 2.47 0.12 ,.22 0.2J 7.42 O.J2 

66 2.60 0.12 ,.46 0.2) 7.62 0.)1 

68 2.70 0.12 5.62 0.2) 7.8J O.Jl 

70 2.78 0.11 5.69 0.22 8.0J o.Jo 

n 2.82 o.ll 5.64 0.21 8.12 0.29 

74 2.82 0.11 5.52 0.20 7.66 0.27 

76 2.76 0.10 5.J8 0.19 7.86 0.26 

78 2.55 0.09 5.08 Oo17 8.14 0.26 

1_4 

• 

I 
I 
I 

' 

Fig. 1. 

f.. I [f. c:!J.J 
b94 

I \ 

\ 

b93 I \\ Gcl.IS"8 

BCS 

Gn1 
-~NC 

,.., 
c \ 

"PBC.S 

\'\ t 
I 

,,1 I NC 

"l 

Q l. ~ ~1,.\ I 
The ground state energy ( 1n w., • 41A MeV) for Gd 
lated using three types of wave functions: independent 
BCS and PBCS. The IP solid line corresponds to the 
giving the absolute minimum• The IP dotted- dashed linE 

the ground state energy points for 'I • 0,2,4,5. 
The solid lines of the BCS and PBCS cases correspo1 
energy with no coulomb term ( NC). The dashed line 01 
case cprresponds to the energy with the decrease [ i.4 
&o ('I)- &o (0) 1 of the Coulomb term included (c). 
indicate the minimum points. 

15 



Table 2 

-24 2) •le moments (in units of 10 em calculAted with the '!-lp 
10) and the values of the dens.tty deformation po.ramete" 1 

1 
from the quadrupole momenta by eq. ( 6), for the defonna-

the potentl.sl: r • 0.10, 0.20 and 0.30. The integreJ. in eq~( 6) 
calculated with the trapezoidal charge diatribution. 

f "' 0.10 f • 0.20 f • o.Jo 

-Oo f Oe 'i' Oo ; 

1.99 o.u 4.28 0.22 6.64 o.JJ 
2.16 0.11 4.6) 0.2) 6.99 0.)) 
2.)2 0.12 4.94 0.2) 7.21 O.J) 
2.47 0.12 5.22 0.2) 7.42 0.)2 
2.60 0.12 5.46 0.2) 7.62 0.)1 
2.70 0.12 5.62 0.2) 7.8) o.n 
2.78 0.11 5.69 0.22 8.0J 0.)0 

.82 0.11 5.64 0.21 8.12 0.29 

.82 0.11 5.52 0.20 7.66 0.27 
o76 0.10 5.)8 0.19 7.86 0.26 

·" 0.09 5.08 0.17 8.14 0.26 

1.4 

• 

I 
I 
I 

• 
• 
I 

I 

Fig. 1. 

E. I [f.~.J 
b9'-t 

I \ 

I \ 

6911 \\\ Gcl.IS"8 

BCS 

Ggl 

"PBC.S 

"~' 

'1 
0 l. I.( 6 

o ·It\ Ill 
The ground state energy (in hAI0 • 41A MeV) for Gd , calcu-
lated using three types of wave functions: independent particle ( lP) 
BCS and PBCS• The lP solid line corresponds to the configuration 
giving the absolute minimum. The lP dotted- dashed line connects ' 

the ground state energy points for '1 • 0,2,4,5. 
The solid lines of the BCS and PBCS cases correspond to the 
energy with no coulomb term ( NC). The dashed line of the BCS 
case cprresponds to the energy with the decrease [ i.e. 

lb 0 ('I ) - lb 0 (0) 1 of the Coulomb term included ( C). The arrows 
indiQI!t.te the minimum points. 
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0 'l ~ ' 1 
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The dependence of JV~ energy d.111erences (in h.::0 l. on tne defos. 
rnation: LI.Q,NcJ.'I)•i :o 8 (11)- i 1P(II) and L\lho('l)• ["":

0
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The arrows indicate the equilibrium deformation point in the indepen

dent particle case. 
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G.o I (101
"' tw\l.] 

8 ~ 

Z=6'1 / 
6 ~ 

4 

l 

0 
~ 

0 l 4 6 

Fig. 4. Example of the dependence of the quadrupole moment on the deforme.
tion, for Z • 64. 
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Fig. 5. Deformation energy in MeV vel'Sus neutron number N. Os: 
closed trlangles COZTespond to the deformation energy deduc 
the Myers and Swiatecki semi- empirical analysis. 
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of the dependence of the quadrupole moment on the deforrne.
z. 64. 
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Fig. 5. Deformation energy in MeV versus neutron number N. Open and 
closed tr.iangles con-espond to the deformation energy deduced from 
the Myers and Swlatecki semi- empirical analysis. 
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