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1. Introduction

The first microscopic calculation of the equilibrium deformation of nuclei,
based on the Nilsson model was performed by Mottelson and Nilssor{%/ They
calculated the energy of a nucleus for a given deformation by summing up the
Nilsson single-particle energies corresponding to this deformation, For every
configuration the dependence of the energy on the deformation was obtained and
the point of minimal energy was .considered the equilibrium deformation of the
configuration, '

Marshalek, Person and Sheu.neb / have extended the calculations to a wide
region of nuclei, predicting séme new regions of deformed nuclei,

In all these calculations the pairing correlations which were found to be
very important, for example, for moments of lnertla/ 4 ,» have not been taken into
account, The explicit Coulomb term has also been dropped, However, the single-
~particle energy levels used, were different for neutrons and protons ard fitted
to experimental odd mnuclei data, The theoretical estimations by Belyaev Il indi-
cated that the pairing correlations might be important for equilibrium deformations,
especially at the boundaries of the deformation regions,

Detailed calculations taking the pairing forces into account and including
the explicit Coulomb term have been performed by Bes and Szymar:sk.l/ ‘6/ and
Szymar;sld/ 7 for even nuclei and by Hassan, Skladanowski and 'Szymar:ski/ 8/
for odd nuclei, k

The Hamiltonian used by Bes and Szymar{skl has the form

+ + +  +
Ha B, +H -3:“’ (epypopy +ey_cpn )“‘:’zw"'w°v—°m-°m+ (1)

for neutrons and for protons separately.



Here ¢, is the energy of a twofold degenerate single-particle Nilsson
state v> , c: is the corresponding creation operator and G is the pairing

force strength.

The minimization of the mean value of the Hamiltonian (1) In the BCS
ground state/ o/ under the condition that the mean value of the number of partio-
les in this state is given, leads to the expression for the energy

a 2
6= 3¢, 2v, ~A /6, (2)

v

;
where

2v) = 1= (e, =AVE, ‘ " (2a)

with a2 3
E, = V{e, =2 +A

The chemical potential A and the energy gap 2A . are obtained from
the equations '
2/6 = X 1/E
/ 2 1/E,

» = 52y (3)

v 1 4

where . n is the number of particles (neutrons or protons) in the nucleus,

After the inclusion of the Coulomb term 50 , the expression for the

energy of the nucleus is
Enb,+8&, +6; (4)

where &, and &, are given by eq. (2) and correspond to neutrons and
protons, respectively, The Coulomb term is assumed to be equal to the electro -

static energy of a charged ellipsoid, Its dependence on the deformation ¢ of

the ellipsoid is given, up the third order in « ' of

DL 72 N2 e 0. 5
Ec(@=01- ms:)c() (5)

Here 50(0) is the Coulomb energy of the sphere with a spherically sym-
metric charge distribution, The trapezoidal form of the radial charge density

distribution has been accepted, taking the parameters from electron scattering
11/
data/ .



The deformation parameter ¢ of the charge density of a nucleus is ob-
tained from the quadrupole moment Qg , calculated for a given deformation
of the single-particle potential, The relation is

1

i - I’ ',
oo(c)..(nxn;_zfp(r')r ar (6)
with
Q, ()= 2 qm,('t)lvtJ (), (7)
Y(pretons)

where p(r) is the charge density and g,,, is 'the matrix element of the
quadrupole moment operator in the single-particle state |v> . The integral

over the sphere in eq. (6) has been calculated with the same trapezoidal charge
distributions as taken in the calculation of the energy &, in-eq.(5).

The calculation by Bes and Szymn.r{skl has showed & rather good consis- .
tency between the potential defox:mntlon and the density one ie. ¢ - +» The
calculated quadrupole moments are in good agreement with experiments in the
middle of the deformation region and show some discrepancies at the boundaries

of the region;

It has been suggested/ 7/ that these discrepancies might be connected
with the use of BCS wave functions which were not eigenfunctions of the particle
number operator and that the use of projected wave functions might improve the
results, *

The effect of projecting the BCS wave functions on the space of the partic-
le number operator eigenfunctions has been, investigated by a number of
uuthorsﬂ' 2-23/ . In particuiar some of them have compared the BCS wave func-
tions and the projected ones with the exact solutions of the Hamiltonian(1), for
simple systems, The projected wave functions (PBCS In the nomenclature of
ref, /23 ) were obtained by projecting fixed-particle terms from the BCS func-
tions, Pawlikowski and Rybarska/ 14/ have studied the system of ne 6 partic-
les located on the =5 equidistant, twofold degenerate levels, The system
imitated the situation in a deformed nucleus, It has been shown that the PBCS
ground state energy was much cloger to the exact energy than the BCS one,
The improvement was the better, the stronger was the pairing force. For example,
in the case of the weakest pairing forces considered in ref./ 14/ ; 6 = 0.5A¢
( Ac was the distance between the levels) the error of the PBCS ground state
energy amounted to 17% of the error of the BCS energy. For ¢ =A¢ it reduced
to 1.8% of the BCS error,
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Similar results have been obtained by Rho and Rasmu.ssen/ 22/ for the
system of (I =6 equidistant twofold degenerate levels with n= 6 particles, They
have shown that with the pairing force strength ¢ tending to its critical value,
at which the nontrivial solution in the BCS approximation disappears, the PBCS
and BCS ground state energy errors tend to the same lmit, the PBCS error
being always lower than the BCS one,

In all the calculations of the equilibrium deformation, quoted above/ 2,3,6-8/

axial symmetry of the nuclei has been assumed, Thus, only the dependence of
the energy on the ¢ deformation has béen studied, The analysis by Das Gup-
ta and Preston/ 24 of the y - deformation dependence of the energy has revea-
led that the assumption of the axial symmetry was well founded, possible except
for the nuclei in the neighbourhood of the Os Isotopes, which appear to be quite
soft with respect to the y-deformat.ion/ 25/ . The éume results have been obtained

in the calculations based on the pairing-plus- quadrupole forces modell 26/ .

The aim of the present investigation is to calculate the ground state equili-
brium deformations and deformation energiess for the axially symmetric even nuc-
lei, using the PBCS wave functions instead of the BCS ones,

2, Description of the Calculation

We choose the part of the BCS function corresponding to a definite number
of particles as the ground state wave function, After the normalization it is of

the form 17,23/
: + +* + +
| PBCS> = 8, ""ﬁt N X Yoy ¥y, B, "'ﬁ"k |vae> , (8)
v i<y <. <y
+ + + e
where y, = v, /uv , Bv mo,4Cy and the normalization factor
2 3 ~¥
N =(X Yvy e y"x)
vy Y, <<y
The indices i=1...1 enumerate the levels for which v =1, while the
indices v, >f correspond to the levels for which 0 < Yy, <1 lLe, the levels

between which the scattering of particles, due to the pairing forces, takes place,
We have the equality 2 (! +k) = n, where a is the number of particles

( neutréns or protons). The summation extends over all the combinations of k
states (ordered with respect to the energy) chosen from the states for which

0 <'v| <l ., The symbol |vac> Fienotes the vacuum for the particles described

by the creation operators c:' or OT .



The occupation factors v) (-:,-l-v:) obiained from the formulne (2a)
and (3) correspond to the minimization of the energy in the BCS siate,

nomenclatire of ret. 2 ) nag been studied by Mang et alL in thelr calcula
tions for heavy elements’ 2%/, They have shown that for the mystem of Z =9
protons and tho.tysesm N =152 neutrons the error of the PBCS ground siate
energy ( calculated with respect to FBCS energy) amounts to 13% and 25% of
the BCS error, respectively. The mumbers Z = 9 and N=152 are just the
ca.esofthemaxlmuBCSenw.Mwnmcuonww:ndecremmuleen-uy
of the Nilsson levels (and consequently with the lowest pairing effect) for these
numbers of particles at the deformation 1 =5 used, For larger level densities
(za 88 90; N = 132, 134, 136) the PBCS error reduces to about 8% of the
BCS one,

The reeults of Mang et al, correspond {o the picture obiained In the calcu-
lations for simple systems/ 14,22 » where the PBCS ground siate energy is much
better than the BCS .one,

Moreover, the difference between the PBCS and FBCS energies appears
o be quite amall,

For the energy in the state (8) we obtain

[ ’ 2 R
& -'_5:l 2, +N l:’(l‘yéuiu ke Yy ey, -

vy <y . <y,
1 3 k (9)

-C

3 3
"E":rol Yo, X Yoy » ¥y, }
Ve <vy <... 04 foy .0,

ard for the quadrupole moment
=t 2 2 ]
Qe |§|"“ +N X l(qylvli»... ta, )yv‘ Yy - (10)
Vy<vy<... <v,

To obtnin the pure effect of using the PBCS wawve functions instead of the
BCS ones, we perform all the calculations in full analogy with those of Bés and
Szylnnr{skll 6/‘ We use only the formula (9) instead of (2) for the expresaions
6, and 8, in eq. (4), and the formula (10) ( with the summation extended
over protons) instead of (?7) for the quadrupote moment, All the values of the
parameters are taken the same as in the variant (0I+ VI) of ref./ 6/ which gave
there the best agreement with experimen,



3. Results and Discussion

As an example the dependence of the energy on the deformation is pre-
sented in Fig.1 for Gd1%8, The independent particle curve (IP) has been ob-
tained by summing up the energies of the twofold degenerate Nilsson levels from

/ 23/ . No Coulomb term has

the lowest one to the Fermi level, just as in refs,
been included, The comparison of the PBCS and BCS curves shows that the
dependence of the PBCS energy on the deformation does not differ much from
that of the BCS energy, although the PBCS energy itself is lowered significantly
with respect to the BCS energy (just this lowering of the ground state energy
was the significant improvement obtained by taking the PBCS wave function

insted of the BCS one in the calculations for simple systems/ 14,22/ ).

Comparing the IP curve with the PBCS and BCS ones, one can see that
the inclusion of pairing forces decreases the equilibrium deformation slightly
( from 0.31 to 0,29) and that the inclusion of pairing forces together with the
Coulomb term increases it ( from 0.31 to 0,34 for BCS),

The dependence on the deformation of the ground state energy change due
only to the pairing forces (A& xo) and to the pairing forces together with the
Coulomb term (Aéc) is presented in fig, 2, It is seen that the tendencies to
change the deformation in the opposite directions by pairing forces on one hand
and the Coulomb term on the other, approximately compensate each other in a
rather wide region of deformation ( from ¢=0.5  tq ¢ ~ 0,30 for G&'** ) |
However, at the equilibrium deformation obtained in the independent particle case,
the tendency of increasing the deformation by Coulomb term already predominates
over the tendency of lowering the deformation by paliring forces,

This situation is rather typical for the whole region of deformed nuclei
excluding only the region of the lowest equilibrium deformations, where the pair-
ing forces seem to be dominant (see e.g. the Pt isotopes in table 1),

For the most strongly deformed nuclei the infiuence of the Coulomb term
seems to be dominant, so that the equilibrium deformations of these nuclei obtai-
ned in the IP case are more close to the deformations obtained in the case with no

Coulomb term (NC) than to the deformations obtained with the Coulomb term (c).

Table 1 gives the equilibrium deformations calculated with the PBCS wave
functions both in the (C) and (NC) case. The equilibrium deformations calculated
in the BCS case by Bbs and Szymaraki! ® [ their variant (I + vi)] and in
the IP case - by Marshalek, Person and Sheline/3/ (their single-particle level



scheme is quite close to variant (I0+VI) of ref./ 6/ ) are also given for compa-
rison, Since the PBCS and BCS energy curves are rather flat ( cf.fig, 1) and
defined only in the six points ( 5 = 0,2,4,5,6,7) the minimum points ( €, )
are not very exact, so that the purpose of table 1 is only to illustrate the gene-
ral  tendencies .,

The ¢,, values in the independent particle case are especially rough as
read from the diagrem of ref./ 3/ .

The quadrupole moments are ghven in fig, 3; The experimental points are
deduced from the Coulomb excitation data quoted in the table of Lindskog et al
in ref./ « If more than one experimental point is available the point witr: the lo-
west experimental error was chosen, For Os !%° fig. 3 gives two experimental
points measured with almost the same acguracy, For Os'*® » the lower experi-
menial point given in fig,3 was measured with larger error than the upper one,
but in two independent experiments, The theoretical PECS results with the
Coulomb term (C) are always larger than the corresponding BCS, Thus the
discrepancy with the experiment in the beginning of the deformation region

increases, Mox‘eover, the PBCS calculation predicts a large deformation already
for the Co'* nucleus,

A beiter agreement with the experiment in the beginning of the deformation
region and also for the most strongly deformed nuclei (ie, for the nucleij, for
which the inclusion or rot of the Coulomb term has the largest effect on the
equilibrium deformation) is obtained in the NC case, As the Coulomb effect is
to some extent taken already into account in the single-particle levels, fitted to
experimeht, it is possible that the addition of the electrostatic Coulomb term to
the energy overestimates the real Coulomb repulsion, However, it is not very
probable that the part of Coulomb effect, included g'l.rough the single-particle
levels has the correct dependence on deformation,

Figid illustrates the dependence of the quadrupole moment calculated with
the PBCS wave function [ eq.(10)] for Z « 64 on the deformation 7 of the
potentlal, The BCS values of Q [eq. (7)] are found to be quite close to the
PBCS ones, so that the corresponding curve would not be distinguishable from
the curve plotted in fig, 4,

Fig.,5 gives the deformation energy defined as the difference in the energy
of a nucleus at the zero and the equilibrium deformations i.e, & 40t = 6(0) - &1, ).
Two of the five curves are calculated with the PBCS wave functions, including
the Coulomb term (C) and not (NC). The next curve calculated in the indepen-
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dent particle case ( IP? is read from the diagram of the paper by Marschalek,
Person and Shelme/ 3 . The last two curves are deduced from the recent ex-
tensive semi-empirical analysis by Myers and Swiateckl/ 28/ ( see also refs, 29, 33/
The mass of a nucleus and its dependence on deformation have been obtained
in Myers and Swiatecki analysis from the four parameter liquid drop formula,
supplemented by the three parameter shell correction, The shell correction was
assumed to come from the bunching of the energy levels and the effect of bun-
ching was assumed to disappear with increasing deformation of the nucleus,
Such a shell correction has allowed to reduce significantly the systematic dis-
crepancy between the liquid drop masses and the experimental ones for almost
the whole region of the stable nuclei (excluding only the light nuclei, for which
the Wigner term appears to be important),

The curve denoted in fig.5 as "semi~-emp MS" was obtained {rom the cal-
culated curve ("calc MS") by taking the experimental mass of a nucleus instead

of the mass calculated in the equilibrium point,

The comparison of the PBCS results with the semi-empirical ones shows

much better agreement for the NC variant,

Table 2 shows the rather good consistency of the potential and the density
deformations i.e, ¢ » ¢ , similarly as was the case for BCS functions

The results of this paper show that the projecting itself of the wave func-
tions improves the values of the quadrupole moments only in the second half of

the rare earth region i.e, for Yb and heavier isotopes,
The comparison of the experimental quadrupole moments and the semi- em-

pirical deformation energies with the " results of the two variants of the calcula-
tion: C and NC shows much better agreement for the variant with no Coulomb

term, especially at the beginning of the investigated region,

The author wishes to express his gratitude to V.G, Soloviev and Z.Szymar(—
ski for suggesting the problem and for valuable remarks and to P,Vogel in col-
laboration with whom the work was started, He would also like to thank Z,Boch-
nacki, LN,Mikhailov, N.LPyatov and W,Rybarska for helpful discussions, The use
of not published numerical tables of A, Iy and 4, calculated by D.R.Bés
and Z.Szymarqski is greatfully acknowledged, In conclusion it is a pleasure for
the author to .tha.nk LN, Kukhtina for performing the numerical calculations on an

electronic computer,
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Table

Equilibrium deformations ¢,, . The second and the third columns give

the values for the PBCS cases with the Coulomb term in
(m+ V1) of ref. 5/ are quoted

not, respectively, The results of var

uded and

inthe fourth column and those of ref, 3 in the fifth
BCS 1P
Nucleus .
c ™ c IC

cel4? 0.32 0 0.14
Nal44 0.34 0 0.22
Nal46 a) 0 0.22
mal4e a) 0.29 0.27
sm146 0.30 0 0 0.22
sml48 a) 0.23 0.30 0.29
sm:20 a) 0.26 0.33 0.30
sm1?2 a) 0.29 0.34 0.31
sul’* a) 0.32 0,32
cal?? ) 0.26 0.31 0.30
cal®4 0.35 0.29 0.33 0.30
cal’6 0.30 0.31
cal’8 0.35 0.29 0.34 0.31
ga 60 0.34 0.29 0,34 0.30
py160 0.33 0.29 0.31 0.30

162 0.32 0.28 0.31 0.30
pyl64 0.31 0.27 0.30 _0.29
Brl64 0.31 0.27 0.30 0.30
Er166 0430 0.26 0.29 0.28
grl68 0.29 0.26 0.28 0.27
gri70 0.28 0,25 0.27 0.26
Yp170 0.28 0.25 0.27 0.26
Y172 0.28 0.25 0.26 0.26
rl74 0.27 0.24 0.25 0.25
Yv176 0.25 0.22 0.24 0.25
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PBCS BCS IP

Nucleus
c N c N

url76 0.24 0.21 0.24 0.25
nel78 0.23 0.20 0.22 0.22
nel80 0.22 0.19 0.21 0.22
w180 0.22 0.19 0.21 0.21
wls2 0.20 0.18 0.20 0.20
wlsé 0.18 0.17 0.18 0.17
w186 0.17 0.16 0.17 0.16
0s186 0.17 0.15 0.17 0.17
0s188 0416 0.14 0.14 0.14
08190 0.15 0.13 0.11 0.14
pt190 0.11 0.10 0.12
pt192 0.10 0.09 0.11

a) The energy curve decreases with deformation in the whole region
investigated 0<e¢ < 0,35, so that the equilibrium deformation is probably greater

than 0,35, .
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Table 2

ole moments (in units of 10~ 2% cm?) calculated with the help
of eq, (10) and the values of the density deformation paremeter ¢ ,
obtained from the quadrupole moments by eq. (6), for the deforma -
tions of the potential: ¢ « 0,10, 0.20 and 0.30. The integral in eq.(6)
has been calculated with the trapezoidal charge distribution,

« = 0,10 « = 0,20 e = 0,30
z

Qe ] Qq F Q, ¢
58 1.99 0.11 4.28 0.22 6.64  0.33
60 2.16 0.11 4.63 0.23 6.99  0.33
62 2.32 0.12 4.94 0.23 7.21  0.33
64 2.47 0.12 5.22 0.23 7.42  0.32
66 2.60 0.12 5.46 0.23 7.62  0.31
68 2.70 0.12 5.62 0.23 7.83  0.31
70 2.78 0.11 5.69 0.22 8.03  0.30
72 2.82 0.11 5.64 0.21 8.2  0.29
74 2.82 0.11 5.52 0.20 7.66  0.27
76 2.76 0.10 - 5.38 0.19 7.86  0.26

78 2.55 0.09 5.08 0.17 8.14 0.26
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Fig. 1. The ground state energy (in bw, = 41A MeV) for ca'™ , calcu-
lated using three types of wave functions: independent particle(IP) -
BCS and PBCS; The IP solid line correspords to the configuration
giving the absolute minimum; The IP dotted-dashed line connects:
the ground state energy points for 7 = 0,2,4,5. '
The solid lines of the BCS and PBCS cases correspond to the
energy with no coulomb term (NC), The dashed line of the BCS
,, case ceorrespords to the energy with the decrease [i.e,

Y Egln) - &gl ] of the Coulomb term included (C). The arrows
ind'tltte the minimum points,
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The arrows indicate the equilibrium deformation point in the indepen-

dent particle case.
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Fig, 4, Example of the dependence of the quadrupole moment on the deforma-
tion, for Z =64,
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