$$
\cdots G
$$

ОБЪЕДИНЕННЫД̆
 ИНСТИТУТ ЯДЕРНЫХ
 ИССЛЕДОВАНИЙ

Дубна
(1inilidTITNA

D.Robaschik and A.Uhlmann

PLUS PARITY MESONS AND THE 189-PLET OF SU(6)

D.Robaschik and A.Uhlmann

PLUS PARITY MESONS AND THE 189-PLE' OF SU(6)

Submitted to "High Energy Physics"

The classification in the $S U(6)$ 189-plet of the positive parity mesons was proposed by Dao Vorg Duc, Pham Quy Tu/ $1 /$ and on the basis of a relativistic extension of $\mathrm{SU}(6)$ by Delbourgo $/ 2 \mathrm{a} /$ and by R. Delbourgo, MoA.Rashid, A.Salam, J.Strathdee $/ 2 \mathrm{~b} /$. Using bootstrap ideas R.C.Hwa, S.H.Patil ${ }^{/ 3 /}$ have given arguments in favour of this particle assignment. A more elementary consideration is the following : Assume the low-lying plus parity mesons to be bourd states of the 35 -plet mesons. Then these bound states are composed of $\mathrm{s}-$, d-and higher states. The p-state and higher odd angular momentum states are parity forbidden. If the s-state is the dominant state, one is allowed to hope that a $S U(6)$ classification is a relevant one. Therefore the plus parity mesons should fit into the Kronecker product 35×35. On the other hand using $U(6) \times U(6)$ it is reasonable to value the representation 6×6 and 15×15 as minus ard plus parity meson states, respectively. The SU(6) content of 15×15 is just $1+35+189$ ard this is contained in 35×35 indeed. In the following, we restrict ourselves to the 189 -plet, having in mind, that the existence and the quantum numbers of some of the recently discovered plus parity mesons seem to be not well established.

2. Labelling of States

Following the ideas of F.Girsey, A.Pais, L.A. Radicatil $/ 4 /$ we use the p-chain (physicai chain) and the u-chain (unphysical chain) to get two different systems of basis vectors of the 189 -plet. The former will be used to fix the structure of the mass formula, the later one is assumed to give the physical particle states. The p-chain reads $S U(6) \geq S U(3) \times(\vec{J}) \geq(\vec{I}) \times Y \times(\vec{J})$, where (\vec{T}) denotes the group generated by the generators \vec{T}. Let us concentrate on the 189-plet. One knows the $S U(3) \times(\vec{J})$ content to be $189=(1,1)+(8,1)+(27,1)+(8,3)+(10,3)+\left(10^{x}, 3\right)+(1,5)+$ $(8,5)$. Therefore we characterize a basis set of states by $J^{2}, J_{3}, I^{2}, I_{3}, Y$ and by their $S U(3)$ representation. There remains a degeneracy for the spin one octets so that it is possible to rotate them in the linear space spanned by themselves. The u-chain reads $S U(6) ? S U(4){ }_{w} \times(\vec{S}) \times(Y) \supseteq(\vec{N}) \times(\vec{S}) \times(\vec{I}) \times(Y)$ and we
may fix a basis of the 189 -plet by using $J^{2}, J_{3}, I^{2}, I_{3}, N^{2}, S^{2}, Y$ and C_{2} In the 189 -plet $\mathrm{C}_{2}^{(4)}$ is not a function of the other quantum numbers of the u-chain. We cons ider the u-chain states as particle states. This may be further confirmed by the possibility to give the $Y=0$ members of them a definite value of the G-parity. The G-parity is calculated as shown in ref. 5. In the p-chain
decomposition there is a mixture of plus- and minus G-parity states, because
the 10 -plet is mapped onto the 10^{*}-plet by the G-parity operator. In table
I the physical states and their quantum numbers are listed. In tabie II we have collected the mixing relations between the p - and the u-chain states for the 189 -plet according to the matrix scheme. See also ref. 1.

$$
p \text { - chain state) = (A) u-chain state). }
$$

3. Form of the Mass-Operator

It is rather an unconvenient task, to reduce out the 189×189 Kronecker product, to look for the $J=I=Y=0$ members of the occuring octets and last but not least, to discuss which of them should be neglected in order to get a useful mass operator. Therefore we do not give the mass operator \ln an expli+cit form but do the following: If M^{2} is the operator for the squared masses, we require:
A. M^{2} is diagonal in the particle states, e.g. in the bisis vectors constructed with the aid of the u-chain.
E. There exist constants $a_{0}, a_{1}, a_{2}, a_{3}$ such that

$$
a_{0}+a_{1} C_{2}^{(3)}+a_{2} J(J+1)+a_{3}\left[I(I+1)-\frac{Y^{2}}{4}\right]=\left(\omega_{p^{*}} M^{2} \omega_{p}\right)
$$

provided ω_{p} is a state of the basis that is constructed with the help of the p-chain.

This however does not fix the operator completely, because the p-chain gives rise to a degenerate system of diagonal operators: It remains to remove the degeneracy of the two $J=1$ octets. From this we get a new ronstant which expresses the mixing of these two octets. This parameter is essential for the $J=1, I=1 / 2$ mesons. Finally let us stress the fact, that in the p-chain representation only the diagonal terms of M^{2} are determined by the requirement B. For the $\mathrm{J}=1, \mathrm{I}=1$ mes ons this gives rise to a further constant. With the help of the mixing relations we get for the squared masses m_{u}^{2} of the particles (strates of the u-chain)

$$
m_{u}^{2}=b_{o}+b_{1} K_{1}^{u}+b_{2} K_{2}^{u}+b_{3} K_{3}^{u}+b_{4} K_{4}^{u}+b_{5} K_{5}^{u}
$$

The numbers $K_{1}^{u}, K_{2}^{u} \ldots$ are tabulated in table 1.

4. Particle Acsignments

To check particle assignments mass relations have been considered, if they are satisfied within 5% in the squared masses.

	Y	I	N	S	J	G	m
f^{\prime}	0	0	2	0	2	+	1500
f	0	0	1	1	2	+	1253
$\mathrm{~A}_{2}$	0	1	1	1	2	-	1324
$\mathrm{~K}^{*}$	1	$1 / 2$	$3 / 2$	$1 / 2$	2		1405

They have to satisfy the relation (squared masses)

$$
4 \mathrm{~K}^{*}=2 \mathrm{f}^{\mathrm{r}}+\mathrm{f}+\mathrm{A}_{2}
$$

which is well established (2%). One and only one place is in the 189-plet for the mes ons D and M_{1}

	Y	I	N	S	J	G	m
D	0	0	1	1	1	-	1286
M_{1}	2	1	0	0	0		1280

With these quantum numbers they should satisfy

$$
A_{2}+3 D=2 M_{1}+2 / 9 f^{\prime}+16 / 9 f
$$

which is in good agreement with the experment. Now we are able to calculate $\left(\mathrm{in}(\mathrm{MeV})^{2} 10^{3}\right)$

$$
b_{0}=1239, b_{1}=93, b_{2}=75, b_{3}=-135
$$

For this calculation we have used f, f, A_{2} and D.
For the 35 -plet it is well-known, that the determination of the coefficients in the mass formula suffers from large uncertainties (e.g. in the 35-plet a_{3}
varies between -140 and -150 if determined from the pseudo-vector or pseudoscalar mesons). The mass values calculated with the help of our $b_{k}^{\prime} s$ (look at table 1) are therefore to be considered as rough estimates only. Now let us look at the mesons A_{1} and B. If these are actuăl'y particles with $J=1$ the 189 -plet offers two possibilities

		Y	I	N	S	J	G	m
	$\mathrm{~A}_{1}$	0	1	1	1	1	-	1072
2.	A_{1}	0	1	1	0	1	+	1220
B	0	1	1	0	1	-	1072	
	0	1	0	1	1	+	1220	

From both the relations

$$
2 f^{\prime}+f+A_{1}+2 B=3 D+3 A_{2}
$$

follows, that is satisfied within 1% in the the squared masses! x) Assuming for the resonances $K^{* *}(1320)$ and C the quantum numbers

| | Y | I | N | S | J | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K | 1 | $1 / 2$ | $1 / 2$ | $1 / 2$ | 0 | 1320 |
| C | 1 | $3 / 2$ | $1 / 2$ | $1 / 2$ | 1 | 1215 |

one gets the relations

$$
\begin{aligned}
& C+1 / 6 \mathrm{f}^{\prime}+7 / 12 \mathrm{f}=1 / 3\left(\mathrm{~A}_{1}+2 \mathrm{~B}\right)+3 / 4 A_{2} \\
& 9 \mathrm{M}_{1}+5 \mathrm{C}+6 \mathrm{D}=11 / 3\left(A_{1}+2 \mathrm{~B}\right)+9 \mathrm{~K}^{* *} \\
& \mathrm{~K}^{* *}+1 / 4 A_{2}=M_{1}+19 / 54 \mathrm{f}^{*}+11 / 108 \mathrm{f}
\end{aligned}
$$

The first is satisfied within 1%, the others within 4%. For the experimental data we have used the table of $A . H$. Rosenfeld et al ${ }^{7}$). It is a pleasure to thank dr. U. Kundt for interesting discussions on recently discovered resonances.
x) From the well-satisfied relation 6) $A_{1}+A_{2}=2 B$ we obtain $b_{2}=b_{5}$ if the assignment I is true and $b_{1}+b_{3} \cdot 3+b_{5}=0$ if the other one is correct.

After this paper was completed we received a preprint of Chia-Hun Chan and Nguryen-Hun Xuong containirg the mixing matrices also.
References

1. Dao Vong. Duc, Pham Quy Tu. Ядэрная фнзнка 2, 748 (1065).

2a, R. Delbourgo. Phys. Lett. 15, 3347 (1965).
2b. R. Delbourgo, M.A. Rashid, A. Salam and J. Strathdee. Preprint IC (65) 57.
3. R.C.Hwa, S.H. Patil. Phys. Rev. 139, B969 (1965).
4. F. Giursey, A. Pais, L_A. Radicati. Phys. Rev. lett. 13, 299 (1965).
5. A. Uhlmann Preprint, Dubna E-2545.
6. T. Gatto, L. Maiani. Preprint 1965.
7. A.H. Rosenfeld et al. Preprint UCRL - 8030.

Table 1. Particle states

Transformation matrices

Notation: $\quad S U(3)$ pret $=(A) \quad N, S, C_{2}^{(4)}$

