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I , Introduction 

Difficulties of the relativistic generalization of SU {6) symmetry have recent-

ly led to the development of an approach/ 
1

-
6

/ which may be characterized by 

two postulates: 

1) one postulates some al.gebra of charges, i.e. one postulates the equal 

time commutators between the space integrals of the components of the densities 

of some currents (e.g., the commutation relations, which correspond to the gene-­

rators of the group U{6) x U{6) l; 

2) one supposes that the sum over intermediate states in these commutation 

relations can be restricted to some intermediate states chosen in a special way. 

This approach allows to derive all the results of SU {6) and also some new 

relations (e.g,, between the magnetic moment of the proton and its radius). How -

ever, as it is noted Jd 6
/ the choice of the intermediate states in equal- time com­

mutators has no dynamical foundation, since even the mass of an intermediate 

state by no means affects its role in the sum, A further step in this direction 

has been made in ret/ 
4

/ where the authors have proposed to consider the dis­

persion relations for the equal time commutators, in doing so, they express the 

coiTectlons due to the disregarded states in terms of dispersion integrals off the 

mass shell, Therefol'e the estimation of the corrections from experiment is rather 

difficult. 

In ref/ ?/ a simple approach has been proposed in which no algebra is 

postulated, It is based on the sum rules, following from the usual one-- dimensional 

dispersion relations for a fixed momentum transfer under some assumptions about 

the high energy behaviour of physical amplitudes. As far as in these relations 

the law of conservation of energy is fulfilled the intermediate states with smaller 

masses correspond to the nearest singularities and give, generally speaking, the 

main contribution to the amplitudes at low energies, For each process one may 

choose such amplitudes for which the contribution of far singularities is relatively 

smallest, In ref/?/ it was shown, that if in the sum rules for such amplitudes w e 

confine ourselves to the nearest intermediate states, we can obtain the relations 

of two types: 

1) a set of relations, which usually follow from SU {6) symmetry, 
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2) new relations, which together with the re suits of 

tain the magnetic moments of the proton and the neutron. 

SU(6) allow to ob-

In this approach we are dealing only with observables therefore our assump­

tions about high energy behaviour permit an experimental test. 

This paper is devoted to the development of the approach outlined Jr/ 7 / and 

to a ppllcation to the interactions of the baryons N , A , I 

pions and photons. 

and 2 with 

In § 2 the sum rule for the spin- flip pion- baryon scattering amplitudes is 

used to obtain the relations between the pion- baryon coupling constants and the 

decay widths of the nearest p -wave resonances. The relation for N and 

N • (J2S6 l is in good agreement with experiment. The relations for other bary-

ons allow one to obtain the coupling constants through the resonance widths. In 

§ 3 the sum rules for the longitudinal amplitudes for the virtual photoproduction 

of pions on baryons are considered, They lead to the following results. 1) The 

isoscalarPau1i form factor of the nucleon is equal to zero; together with SU(6)w 

this gives the proportionality betwee~the electric and magnetic Sachs form- fac -

tors of the proton in agreement with experiment, and predicts the magnetic m<>­

ments of the proton and the neutron/
7
/. 2) We obtain relations between the form 

factors of baryons and those of decays B* .. B + y • At lr.
2 

•0 (i.e. for mag-

netic moments) these relations for the nucleon are in good agreement with ex-

For all baryons they agree well with the predictions of su (6) sym-per!ment. 

metry. In 

the llmits 

Conclusion other 'possible applications of the considered approach and 

of its applicability are discussed. 

2, Pion- Baryon Scattering 

Let us consider the elastic scattering of pions on the baryons N, A , I 

and 2 • The amplitudes for these processes in the Breit coordinate system 

have the formx/ 

a 2 Tu 1 

--2 

-'~+m ( 1 .. [-+ .. p J .\ _ E I B , •- v__ A + a e • Iii ( 2.1) 
m 

x7 We set b•c•m,•l 
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w h ere A a nd B a r e invariant amplitudes, intro duc ed in/ B/ , .. 
e i s the unit 

vector per p endicular to the baryo n momentum p , m is the mass o f the bary-

o n, E i s the e nergy o f the pio n, a nd >.- y E ~ - ;~ -I 

We see that for a giv e n beha viour o f the amplitude o ~ To 1 

and fixed --~ p the a mp litude B decreases fa ster tha n A 

a t E .. -

At the s ame 

time it corr esponds to a spin- flip p r o cess , i.e . to a n inela stic pro ces s, Therefo re 

there i s n o contra diction with the w ell-know n ( o r s upposed) high energy beha '-' 

viour of the to t al s c a tte ring amplitude if ""' a s s ume tha t at E 

--~ p 

I B(E , p~ll s~ a > I . 
E loa E 

and fixed 

( 2 ,2 ) 

This a s s umption enable s us to w ·rite dispersion relations both for B and EB 

without s ubtra ctions. Combining these relations in the same way a s in/ 7 /, we g et 

the follow ing sum rule: 

- ~ flm B (E , p ) dE • 0 • ( 2 .3) 

This equa tion i s nontrivial only for the amplitude B which is a n odd 

function under the crossing transformation (for whicb..._ lm B (E l - lm B ( - E ) ) . 

Writing down the isotopic s tructure of B 

scatterings 

sca ttering 

and for rrA scattering 

, w e h a ve tor rrN and "~ 

( 2 ,4) 

( 2,5 ) 

( 2 .6 ) 

wher e I , f a nd j , k are the isotopic indices of pions a nd I p articles, a nd 

" the s ubscript "odd denotes the amplitudes w e are interested in. Writting the sum 

rule ( 2 ,3 ) for these amplitudes in terms of the usual l'vlandeistam v a ria bles • 

and and picking out the one- particle terms, w e get for ea ch rea ction X / 

x/ 

8 ~ + .!... j lm B odd (a , I) do • 0 
IT (m+l)~ 

Fl::>r the reaction "I .. "I 

5 
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( sum rule for the amplitude B :..S• is discussed below) , where g 
2 

stands for 

g~Ntr • g~ g I!tr and giAtr in trN • tr2 • tri and trA scatterings, 

respectively. The normalization of the constants corresponds to the Lagrangians 

LBBfT • gBBtr iif;
8 

Y5 ;1/JB; ,BaN , 2 

LIItr- 8 IItrl/l k y5 "'J </>, • Ilk 

( 2.8) 

LIAtr • 8IAtr 1/1 A Y 5 1/1 I </> + h .e · 

In calculating lm B odd we shall take into account only the contributions of 

the nearest resonant states x/ . Then this equality gives connections between the 
2 

constants g and the resonance decay widths. For calculating the contributions 

of the resonances in integrals ( 2. 7) we restrict ourselves to the li -approxi-

mation. Then we can use the effective Lagrangians of interaction of resonances 

with baryons and pions. It is easy to express the constants in these Lagrangi-

an<S in terms of the decay widths. For the interaction of N* 
we have 

L - a bo 
N"Ntr • gN"Ntr ";i~ a,. </>)( )( obo )( + h.e . 

with N andtr 

( 2.9) 

where the particle fields are written in the form of the product of the coordinate 
a abo ab 

and isotopic parts. 1/Jx. • ifJ,. x. and c/lx. are the fields of nucleon, reso-

nance and pion respectively, X. •b and )( •b• are the completely symmetric ten­

sors of the second and third ranks and a ,b, e •1,2. The isotopic functions are 

determined as follows 

I 2 
X • P ~ • D t 

II - + 
)( - - y2 " ( 2 .10) 12 

)( - "0 
22 

)( - y2 " 

Ill 
)( •N•++ 112 1 )( • __ N•+ 

yS 
IU 1 O 222 

• X. ·-N* , )(_ ·N•-
y3 

To the antiparticles there correspond the functions with lower indices the lower­

ing of which is performed by means of the tensor • •b • 

For other resonances the coordinate part of the Lagrangian is the same 

as in ( 2 .9) (they all have spin 3/ 2) and the isotopic structure coincides w ith 

x/ Note tha t from the view point of SU (6) symmetry this corresponds to the 
account of the states entering the 56- plet. 
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that of the Lagrangians ( 2,8) . (the isotopic spins of 2 •. 2 

equal to each other, respectively). 

and I• , I 

The decay widths of the resonances are equal to ( B • N 2 , I ) 

a 

are 

q a (m +E) 

M ' ri•Arr 

q (m+E) ( 2.11) 

M 

where E is the baryon energy, q is the pion momentum ln. the rest system 

of the resonance and M is the resonance mass, 

The contribution of the resonance to the amplitude B odd entering ( 2. 7) 

corresponds to the diagram Fig. :t..,· 

F i g. l 

where the propagator of the resonance (without taking into account the isotopic 

functions) is equal to 

P,_. l+ ( 2,12) 

+kPI-' Pvl· 
Finding this contribution and using ( 2.11) we finally get from 

g a 
( 2.7) 

Barr _ • M [ 1 
B~q E-m ., _s_x_Jr • o. 

E + m a~rr 

( 2,13) 

where 

a nd 

s ee, 

1 
"I~ • r ( 2.14) 

is the cosine of the scattering angle in the center-of-mass system. We 

that the dependence on x in ( 2.13) practically falls outx/ • 

inserting g a I 4rr • 14 ,6 
NNrr into ( 2.13) we get for the width of the decay 

x/ For example, for rrN scattering the square bracket in ( 2,13) has the 
form [ 5 - 0.2 x l . in other cases the dependence on is even w~er. In or-
der not to do with the region of unobservable angles in the dispersion relations 
we can. from the very beginning, set x • 1 (the forward scattering); the figu­
res written below correspond to this case, 
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N° -+ NIT a value r N'"NIT • 117 MeV, which is in good agreement with the 

experimental data 120.0 : 1.5 MeJ 9
/ . For other reactions we can derive the 

coupling constants knowing ~e decay widths. The results of the calculations are 

collected in the table. ln the last column of the table there are data for the ba.­

ryon coupling constants obtained in the scheme of SU (6) symmetry, broken ln 

a special wayf
10

/ • The differences are considerablex/ • ln what follows we shall 

see, that for electromagnetic interactions the results of SU (6) symmetry and 

the considered approach are in good agreement with each other. 

B B 

:::a 
8888 

II 

I. A 

Tab 1 e 

a 
2 

8 BBIT 
Error 

8aarr 
--.;;--

'IT in 
ln broken su( 6) 

r • (MeV) 
B BIT 

')b 
symmetry 

3,09 7,5 22 0,74 

4,3 4,4 26 0,75 

-
11,42 39,6 7 12,51 

3. Electro- and Photoproduction of Pions on Baryons 

It is possible to apply a similar approach to other processes. Let us con-

sider the electroproductwn of on baryons 

where 

e+B -+e+B+rr 

.7[ __ .:.-
~ 

( Fig. 2) 

B 
It is described by the amplitude 

of the virtual photoproductio n / 
11

/ 

- 2 
T •< qp 'l ji'(Ollp > • -II.u(p')y 5 Rl!' u(p)F 1 (o,t , k l . 

I' 1•1 
( 3 .1) 

i I' is the electromagnetic current, and 

x/ Remind, that for BBrr interactions nonbroken SU (6) symmetry is n o t 
applicable. The intro duction of breaking is generally speaking not unique, On 
the o ther hand, we do not consider here the higher reson a n c es. 
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R2,11' •I[( pi' .±P~ )yk-yl' (p.±p')k] 

R 'I' • yky I'- y I' yk , 

2 
R II' • ("pI' - p;. ) k - k I' (p- p ') k 

1t 81' - - lyk R,l' 

( 3.2) 

the components of T which are transversal with respect to k 
describe 1he usual photoproduction. Let us assume now, that at 

fixed I 

a <- 1 • 

and 

I t I' I -40 Conal Mil a a , 

( 3.3) 

As is shown u/ 11/ thls means that the differential cross section for the forward 

electroproduction in the lab.system at high energy is independent of the time- and 

the longitudinal polarization of the virtual photon. It is shown in/ 
11

• 
7

/ , that in 

this case the sum rule ( 2.3) holds for the amplitude F 1 at not very high k 
2 

The isotopic structure of F 8 has the form: for electroproduction on N a nd :3 

( 3.4) 

for electroproduction on I 

( 3.5) 

a nd for el ectroproduction on A 

( 3.6) 

Picking out in the sum rules for F odd the one-particle terms (the amp-

litude F ~dd is dis cussed in Conclusion) we have 

where 
(V ,S) 

g (V,S) 2 
1 

.. (V,S) 2 

-.-- F I' (k ) + _ f lm F odd ( • , I, k ) do = 0 , 
• IT (m+l)2 

are the same constants as in ( 2. 7) and 
(V ,8) 2 

F I' (k 

( 3.7 ) 

2 
(k ) . 

F • are the isovector and isoscalar Paull form factors of baryons and I'~ ,s are the 
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corresponding anomalous magnetic momentsx/. Let us take into account in integ­

ral ( 3, 7) the same resonances, as in the scattering, with the aid o f the effective 

Lagrangians introduced in § 2 and the following Lagrangiansxx/ 

- 1 -
L a*ay • (Y,yll y 5 r/1 11 +-,;{ Y,y 5 all r/1 11 )Filii I8 ota + h.c . , ( 3.8) 

where Is*a contains the form factors and the isotopic functions: 

(V) • b do 

I N*N • GN*N X X abo (r a )4 1 

(8) . (V) . b ( 3.10) 

I 3'9 • G::! 'SIP • Y, +GE!-3 II'. (ra )bY, 

(8) (V) 

II~ • (GI*I .511 + i<lla GI~ l "'• .P, 

(V) 

II•A • ~·A 'l'a ~ 

x· a bo 
and X are determined in {2,10), '1'

0 

and Y, • are the isospi-

nor functions of 3 * a nd 2 , '1'1 and r/1 1 are the isovector func-

tions of I• a nd I . 

Gene rally speaking, from the requirements of Lorentz and gauge invar·iance 

it is possible to construct three ~dependent Lagrangians describing the interac­

tio n of the baryon, resonance ( ;.- ) and photon/ 
12

/ . But if we require in a c ­

cordance with the experimental data on photo- and electroproduction on nucleons, 

tha t the electric and longitudinal quadrupoles should not contribute to electropro­

duction of pions on baryons at energies close to the resonance onesy then these 

three Lagrangians are reduced to the only effective Lagrangian { 3,8) which col'­

responds to the magnetic - dipole transition. 
0 

<3 (V,8) (p) (a) (V,8) <3 ) 

x/ For nucleon r,. - ~<r,. + r,. > , for 2 r,. • ~(F ll + F ll ) 
+ - 0 

(V,8) <I > <I ) (8) <I> 
for I Fll • ~(Fil + F ll ), r,. • F ll 

A 
(V) ciA> 

and for F ll • F ll , where the last form factor is normalized by the 
condition 1 ciA>-

+h. c. LIAy • T F ll Y, I y p y v Y, A F pv 

xx/ Note, that these Lagrangians can be transformed to 

1 -
Ls*sy •-"Jl"<pv<Tp .pall r/111 auAp [

8
-ta + h.c. 

( 3.9) 
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As it is shown in Appendix the magnetic moments (the form factors ) o f the 

transitions B* .. B + y are connected with the form fa ctors, entering ( 3.10 )., as 

follows: 

The constant 

+ ,0 2,/2 (V) 
p. ( N*+,O .. N + y ) m -3- GN*N 

( "::I "o .­
p. -

"::1 0 • - 2 (S) (V) 
.. - + y ) = V 3 ( GS 'S i G'::l * '=~ ) • 

0 - (S) 
p. ( l; * 0 .. l; + Y) a V t Gl;*l; 

(V) 

p.(I* 0 
.. A +yl·V~GI*A 

( 3 .11) 

(V) 
G 

N*N 
and the magnetic moment of transition N • .. N + y 

can be found from experiment in the following manner. With the a id o f the diag... 

ram ' Fig. 3 

Fig. 3 

we can find the contribution of the magnetic dipole transition to the total cross 

section for photoproductlon of neutral pions on protons near the resonance: 

9rr 

./(E + m)(E '+ m) 

M
0

- 11 °- IMf 

( 3,12 ) 

( 3.13) 

where E and E' are the initial and final nucleon energies in the centre- of-

mass system, W is the total energy, r is the width of the resonance N* . 

Then taking into accoun~ ( 3.11) and ( 2,11) we have at the resonance 

( 3.14) 

On the other hand It Is known from experiment that near the resonance this p ro­

cess corresponds almost completely to the magnetic dipole transition. Therefore, 

it is possible to substitute in ( 3.14) the total experimental cross section 
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(1 = 0 ,25 + 0,01 mb/ 
13

/ . Using for the decay width N• -+ N + rr the expe--

rimental value r = 120+ 1,5 MeJ 
9

/ we get the experimental value of the mag-- xi netic mornent of the transition N• -+ N + y 

2../2 -3- (1.25.±,0.02)p.(p). ( 3.15 ) p. exp (N• -+ N + y) = 

Let us return now to the dispersion sum rules ( 3. 7). From the sum rule 

for the isoscalar a mplitude for electroproduction on nucleons we immediately de-­

duce the relation 

(p) ~ (n) ~ 

Fp.(k l+Fp.(k l•O . ( 3 .16 ) 

lf w e combine this relation with the following relations for the Sachs form fac­

tors of pro ton and neutron, which are predicted by SU (6) w symme~ 14/ 

(o) ~ 

GE (k ) • 0 

(p) 

G M (k ~) 

G(nJ (k~) 
ld 

3 
T 

( 3,17) 

we get that the ratio between magnetic and electric form factors of proton is 

constant, independent of k~ what is in good agreement with experiment, and 

this ratio is equal to 

(p) ~ 

G t.1 (k ) ___ .3 . 
(p) 2 

G E (k ) 

lf we consider the e quations ( 3.17) and ( 3.18) at k 
2 

• 0 

values for magnetic moments o f proton and neutron/ 4• 7 f 

p. p - 3 • p. n •-2 

( 3.18) 

we get the following 

( 3.19) 

xx/ 
( in nuclear magnetons) which are in good agreement with experimert 

We consider the other sum rules ( 3. 7) at k 
2 

• 0 Calculating the contri 

in ( 3,7) using 
(V,S) 2 

bution of resonances into the amplitudes F odd ( •, t • k 

the diagram of Fig. 3 we get 

~ p.'V,B (B)-bBB 
2 

.~.8) 

8a'Brr G a •a 
6M 

[ 
2 Mm a 

m + + _m __ ~-~-3(k ) J-o --r- 2M 2 2M q -

(3.20) 

x/ The e:.c;perr· ental estima te of this moment given in papej 15/ with refe-­
rence to paper/ 16 seems to be erroneous, 

xx/ Note that in paperl e.f the equations ( 3,19) are obtained from the sum rule 
for the photoproduction amplitude A (in notations off 17/ ) off the mass shell, 
while on the mass shell the one-- nucleon term in this amplitude contains no magne-­

/17/ 
tic moments (see formula ( 8.4) of ref, ) • 

12 
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b 
NN 

Taking into account ( 2 .11) and ( 3.11) we deduce from this equation 

~tCN*+,O .. N+,O+y)•l,28· 2V2 ~t(p) , 
3 

( 3.21) 
0 +- o - +.-.o 

~t<l*+.-... l · · +r> - !.15·v2~<T'£ >. 

The firs t relation is in good agreement with experiment ( 3.15). All relations 

are in good agreement with the predictions of SU(6) symmetry, which gives I 

instead of the first factor o n the righ~ hand sides of ( 3.21) for all particles, ex-

cept a • For a and I SU(6) symmetry gives 0 on the 

left-hand s ides of these relations and ~t ' CI l•~t 'C3 l•0.026~t(p) for the 

righ~hand sides, Therefore, the relations for a a nd I- also do not corr 

tradict the results of SU(6) symmetry. 

Conclusion 

We see that the simple dynamical approach considered above makes it 

possible to obtain many rela tions which are usually derived from SU( 6) symmetry. 

We h ave also applied this method to the reac tions tt I .. tt A a nd ei .. eAtr 

a nd nave got the relations between the constants 

between the magnetic moments ~t<I* .. I¥ ) a nd 

ment with the table and ( 3.21). 

and 8 IAtr and 

w hich a re in full agree-

This approach can be applied to other reactio ns, firs t o f all, to the Comp­

ton scattering on baryons. This will give directly the rela tions between electro­

magnetic constants without using the results for scattering. 

Let us discuss the limits of applicability of the present approach. First of 

an. it works only for the amplitudes which are odd under the crossing transfof'­

mation. Such amplitudes are absent in scattering and photoproduction of mesons 

on mesons. At the present time the predictions for mesons can be made only 

on the basis of symmetries. Therefore, the experimental test of these predictions 

13 



seems to be most interesting. It should be noted that up to now the predictions 

of SU(6) for mesons are supported experimentally much weaker than for ba-

ryons. 

Further, the present method does not permit to connect 1he properties of 

baryons with different strangenesses. 

In this paper we have considered the amplitudes for which high energy 

contributions are relatively unimportant and have taken into account the nearest 

resonances with masses not bigger than that of the corresponding baryons plus 

2m,. 

ce the 

But these amplitudes have kinematical factors which strongly rectu­

s -wave contributions at low energies. Therefore, we can not use the 

present method for the amplitudes B' odd and F ' odd in which the nearest 

resonance A0405 l appears in the 

well as for determination of the ANIC 

S -wave. For these amplitudes as 

coupling constant one should consi -

der other intermediate states along with the nearest resonances. 

The authors are sincerely grateful to N.N. Bogolubov for the attention to 

this work and to D.V.Shirkov for a valuable discussion. 

APPENDIX 

The wave function of a particle with spin 3/ 2 s a tisfies the equations/18/ 

<y,. _a_+ Mlr/lv • o, a.,. 
Y I' .P,. -o . 

We go over to the momentum representation 

1 r/1 (x)·~ 
I' (2rr) 

lpx 
f u I' (p). dp • 

(A.1) 

(A.2) 

Then in accordance with the equations ( A.1) U I' (p) may be written in the form 

-( 1 ) 
P + M ... ... u,. (pl • ..;_o_ ~ cf>,. 
2M Po+ M 

where four tw<>- dimensional spinors satisfy the conditions 

and the factor 

cf>• =I;; 
Po 

Po+ M 
2--M-

.... (;;)(pi) 
acf>-

p 0 (p
0

+M) 

corresponds to the normalization 

14 
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(A.s) 

The conditions ( A.4) exclude the particle with spin 1 / 2. In the particle rest 

system they have the fonn 

.... 
¢. • o, u¢ • 0. 

( A.6) 

In the same system ¢p. are connected with the functions describing the states 

with fixed spdn projections as follows 

--'- <¢ -1¢2 >- ( :·1•) ..[2' -<I>~ ..[3 

~<¢, + i¢2) = ( r. •-1 ( A.7) 
y2 ¢-3/ 2 

¢a - ..;2 r (:~) 
Let us consider now the Lagrangian ( 3.9) describing the interaction of 

+ 
the resonance ( i- ) with baryon and photon. We go over in this Lagrangian 

to the momentum representation and write it in the resona nce res t system taking .. 
into account ( A.6) and ! A. 7) and assuming that the magnetic field H is 

directed along the axis • We get: 

(A.B) s* s 
+ ¢ -li ¢ -li ) I s"s H • 

where E is the baryon energy in the decay B • .. B + y in the resonance 

rest system. A similar expression for baryons has the fonn 

(A,9) 

From comparison of ( A.B) and (A, 9), by analogy with baryons we determine 
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the magnetic moment of the transition 8 • .. B + y as follows 

2 
I" ( 8 • .. 8 + Y) • V T I B •a . ( A.10) 

From here taking into account the isotopic structure I s'B we get the re­

lations (3.11). Determining the magnetic moment (A.10), we do not introduce into 

it the factor y E +m 
2m 

which is close to unity. 
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