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I, Introduction

Difficulties of the relativistic genecralization of SU(6) symmetry have recent-

ly led to the development of an approach/ 1- 6/ which may be characterized by

two postuwates:

1) one postuates some algebra of charges, i.e. one postulates the equal
time commutators between the space integrals of the components of the densities
of some currents (e.g., the commutation relations, which correspond to the gene-

rators of the group U(6)xU(6));

2) one supposes that the sum over intermediate states in these commutation

relations can be restricted to some intermediate states chosen in a special way.

This approach allows to derive all the results of SU(6) and also some new
relations (e.g.,, between the magnetic moment of the proton and its radius). How -
ever, as it is noted in 6/ the choice of the intermediate states in equal-time com-
mutators has no dynamical foundation, since even the mass of an intermediate
state by no means affects its role in the sum, A further step in this direction
has been made in ref./ 4/ where the authors have proposed to consider the dis-

persion relations for the equal tine commutators, In doing so, they express the

corrections due to the disregarded states in terms of dispersion integrals off the
mass shell. Therefore the estimation of the corrections from experiment is rather
difficult,

In ref./ 7/ a simple approach has been proposed in which no algebra is
postulated, It is based on the sum rules, following from the usual one-dimensional
dispersion relations for a fixed momentum transfer under some assumptions about
the high energy behaviour of physical amplitudes., As far as in these relations
the law of conservation of energy is fulfilled the intermediate states with smaller
masses correspond to the nearest singularities and give, generally speaking, the
main contribution to the amplitudes at low energies. For each process one may
choose such amplitudes for which the contribution of far singularities is relatively
smallest, In ref./ 7/ it was shown, that if inthe sum rules for such amplitudes we
confine ourselves to the nearest intermediate states, we can obtain the relations

of two types:

1) a set of relatlons, which usually follow from SU(6) symmetry,



2) new relations, which together with the results of Su(6) allaw to ob-
tain the magnetic moments of the proton and the neutron,

In this approach we are dealing only with observables therefore our assump-
tions about high energy behaviour permit an experimental test.

This paper is devoted to the development of the approach outlined ln/ 7 and
to application to the interactions of the baryons N.A, X and E  with

pions and photons.

In § 2 the sum rule for the spin-flip pion-baryon scattering amplitudes is
used to obtain the relations between the pion-baryon coupling constants and the
decay widths of the nearest p —wave resonances., The relation for N and

N*(1236 ) is in good agreement with experiment. The relations for other bary-
ons allow one to obtain the coupling constants through the resonance widths. In
§ 3 the sum rules for the longitudinal amplitudes for the virtual photoproduction
of pions on baryons are considered. They lead to the following resulis. 1) The
isoscalarPaull form factor of the nucleon is equal to zero; together with SU(6)
this gives the proportionality betweefthe electric and magnetic Sachs form-fac -
tors of the proton in agreement with experiment, and predicts the magnetic mo-
ments of the proton and the neutron/ 7/ . 2) We obtain relations between the form
factors of baryons and those of decays B* 5 B +y . At =0 (Le. for mag-
netic moments) these relations for the nucleon are In good agreement with ex-
periment. For all baryons they agree well with the predictions of SsU(6) Sym-
metry, In Conclusion other possible applications of the considered approach and
the limits of its applicability are discussed.

2., Pion- Baryon Scattering

Let us consider the elastic scattering of pions on the baryons N, A , X

and E . The amplitudes for these processes in the Breit coordinate system
have the formx/
3
- Ver+m
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where A and B are invariant amplitudes, introduced in , e is the unit

vector perpendicular to the baryon momentum ; ., om ic the mass of the bary-
on, E is the energy of the pion, and ,\-\/E2 —;’ -1 .

We see that for a given behaviour of the amplitude Tu, Tu, at E o
and fixed ;2 the amplitude B decreases faster than A . At the same

time it corresponds to a spin-flip process, i.e, to an inelastic process, Therefore

there is no contradiction with the well-known (or supposed) high energy behaw

viour of the total scattering amplitude if we assume that at E » « and fixed
-»2
3
IB(E, 7 )| g comst o>, (2.2)
Eh®E

This assumption enables us to write dispersion relations both for B and EB

/2]

without subtractions, Combining these relations in the same way as in , we get

the following sum rule:

mﬂmB(E.;a)dE-O. (2.3)

This equation is nontrivial only for the amplitude B which is an odd

function under the crossing transformation (for which . Im B(E) = Im B(~E) )

Writing down the isotopic structure of B, we have for #N and o=
scatterings
5 187
B=8, B ., +%lrp .7 1B ", (2.4)
for nZX scattering

B=38y 8”(80“ +',~£(8u S.p+8, 8,3 )B4 +

(2.5)
+%(By Byg -8, 8,018

and for rnA scattering

B =5y By - (2.6)
where i,f and j,k are the isotopic indices of pions and 2 particles, and
the subscript "odd" denotes the amplitudes we are interested in, Writting the sum
rule (2.3) for these amplitudes in terms of the usual Mandeistam variables s

and t and picking out the one-particle terms, we get for each reaction™
o0
ga + _’l,_ f ImBgyq (s,t)ds =0

(m+1)? (2.2)

x/

For the reaction 7% + % m=m,



rule for the amplitude B is discussed below), where g’ stands for
.\ gomg s 5222” and sgA” in mN .72 , 2 and rA scatterings,
ctively. The normalization of the constants corresponds to the Lagrangians
-
r

- -
Lepr = €ppr iV‘IB Vs ¢B¢,B=N,E.

L =g '/: Y, ¥, Py €
I3 5 Ty ik
2Zn ok (2.8)

LsAn ™ BsAr¥A Y5 ¥ 5@ +he-

In calculating Im B _,, we shall take into account only the contributions of

x/

ants s’ and the resonance decay widths, For calculating the contributions

sarest resonant states . Then this equality gives connections between the
. resonances in integrals (2.,7) we restrict ourselves to the 8 -approxi-
1. Then we can use the effective Lagrangians of interaction of resonances

aryons and pions, It is easy to express the constants in these Lagrangi-

1 terms of the decay widths, For the interaction of N* with N and 7
we

L - 3 - be

NN T Entwe ﬁ.‘ﬁ#‘ i BX X, X the (2.9)

the particle fields are written in the form of the product of the coordinate
b
**  and ¢x.b are the filelds of nucleon, reso -~

jotopic parts. ¥x o ¢F X
and pion respectively, x.b and x‘bo are the completely symmetric ten-
»f the second and third ranks and eb,c =1,2. The isotopic functions are

1ined as follows

X =P X =0 ;
11 — 12 3 — -
X -—\/2n+ . X «n® x’ =y2 ; (2.10)
222
xl”-N“H ”’-7;__N“+ , xma_vl_'“.o VX e
3

» antiparticles there correspond the functions with lower indices the lowenr

which is performed by means of the tensor L

For other resonances the coordinate part of the Lagrangian is the same

(2.9) (they all have spin 3/2) and the isotopic structure coincides with

ZNote that from the view point of SU(6) symmetry this corresponds to the
it of the states entering the 56-plet.



that of the Lagrangians (2.8) (the isotopic spins of E*, & and £*, %

=] a
equal to each other, respectively).
The decay widths of the resonances are equal to (BaN, 2,3 )
2 L] 3 3
r - Eprgy 1 @+ E) r _ Bsxpy @ (m+E) (2.11)
BB 6 M S*An 127 M

where E s the baryon energy, 1 ls the plon momentum in the rest system

of the resonance and M is the resonance mass,

The contribution of the resonance to the amplitude B_,, er ‘ing (2.7)
corresponds to the diagram Fig. 1y

N *
i B ’/92
8 /P P NS

Fig.l

where the propagator of the resonance (without taking into account the isotopic
functions) s equal to

Py, =t M-UP g - y gy, vl r —y P
w W;’W u w Y T e v Ty (2.12)

+:7P“P,,f.

Finding this contribution and using (2.11) we finally get from (2.7)
2

fer . M1 _ % gp =0, (2.13)
4 B84 E w~m E+m B*Br
where
2 1 1
N TT e TF 0 Czea =1 ez e g (2.14)
and x

is the cosine of the scattering angle in the center-of-mass system, We

see, that the dependence on x in (2,13) practically falls outx/ .

2
Inserting BN /4m = 14,6 into (2,13) we get for the width of the decay

x/ For example, for N scaftering the square bracketin (2.13) has the
form [5-0.2x]. In other cases the dependence on «x is even weaker, In or
der not to do with the region of unobservable angles inthe dispersion relations

we can,from the very beginning,set x = 1 (the forward scattering); the figu-
res written below correspond to this case,



N* » Nrm a value I"N,‘N” = 117 MeV, which is in good agreement with the

xperimental data 120.0 + 1.5 MeV/ 9/. For other reactions we can derive the
oupling constants knowing the decay widths., The results of the calculations are
ollected in the table, In the last column of the table there are data for the ba~
yon coupling constants obtained in the scheme of SU(6)

10/ . The differences are considerablex/

symmetry, broken in

. In what follows we shall
ee, that for electromagnetic interactions the results of SU(6)

. special wa

symmetry and
he considered approach are in good agreement with each other,

Table
82
g’ Error BET
B B —_BBW 4n
44 B‘Bﬂ (Mev) in
in broken SU(6)
% symmetry
25 3,09 7,5 22 0,74
38
p) 4,3 4,4 26 0,75
A 11,42 39,6 7 12,51

3. Flertro- and Photonroduction of Pions on Baryons

It is possible to apply a similar approach to other processes., Let us con-
sider the electroproduction of plons on baryons

e +B +¢ +B+rn

(Fig. 2)

It is described by the aniplitude

of the virtual photoproduction/ 11/

T, =<ap’lip @]p>= -Z 3Gy, Ry uwp)Fy (s, 6,0 ), (3.1)
; . [
where iy is the electromagnetic current, and

X, . . X

rRemmd, that for BBnm interactions nonbroken SU{6) symmetry is not
applicable, The introduction of breaking is generally speaking not unique. On
the other hand, we do not consider here the higher resonances.
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R,, = ‘k —-p’
1w =PuP p“pk.

Roau=illp, £p} )vk=y, (p2p0k] ,

(3.2)
R - - k,
w )‘k)'“ )‘“)‘
2
RH“-('p“ —p'“)k —k“(p—p')k )
He“ - -—iykR‘“

a ’ >
At k =0 the components of T which are transversal with respect to k

describe the usual photoproduction, Let us assume now, that at s
fixed t

> oo and

[T“[.gconuta-ln‘s, a <-1.

(3.3)
forward
electroproduction in the lab.,system at high energy is independent of the time- and

the longitudinal polarization of the virtual photon. It is shown in! 117/

As is shown lnlll/ this means that the differential cross section for the

, that in

a
this case the sum rule (2,3) holds for the amplitude F, at not very high &
The isotopic structure of F, has the form: for electroproduction on N and E

(V) (8) (=)
Fy =8y, Foua +r, Foag +%lrg »rg IF (3.4)
for electroproduction on X
vy ,
F, =bp 8jk Foaa + %(8yy 8up +84, 8,9 YF 4, +
(3.5)
(=) (8)

+ %8y, 8,y =8, 80 )F 4l Foyy

and for electroproduction on A
)
Fo = B Foya- (3.6)

Picking out in the sum rules for Fegeq the one-particle terms (the amp-

lilude F’ is discussed in Conclusion) we have
v.8) 3 o v.8) ]
8 1 -
+ Fu ")+ f JmFosa (s,t.k dds =0, (3.7)
{(m4+1)
(v.8) 3 V.8,
where g are the same constants as in (2,7) and Fu (k) mpl, oFy (k ),
(v.8)
3 are the isovector and isoscalar Paull form factors of baryons and y'v_ g are the



corresponding anomalous magnetic momentsx/ . Let us take into account in integ-
ral (3.7) the same resonances, as in the scattering, with the aid of the effective

Lagrangians introduced in § 2 and the following Lagrangiansx'x/

Logegy =7y vs ¥y + 111 \0750“ ¥y Py L +he. (3.8)

where I s, contains the form factors and the isotopic functions:
(v) - b de
IN‘N - cn“'ﬂ X Xabe (rl )d € ’
@ o . (3.10)

[ b
[E‘E = GE‘E’.W"II +GE‘E P g, ¥,

(8) ) .
12‘2 = (G z_: + “ua Gz‘z ’ W’ l/l‘ .

(v)

*A = CX-A'FS [}

a abo -

X and X are determined in (2.,10), ¥ and ¢  are the isospi
nor functions of =E* and 2 , ¥, and ¢, are the isovector func-
tions of 3* and X

Generally speaking, from the requirements of Lorentz and gauge invariance
it is possible to construct three mdependent Lagrangians describing the interac-
3* /

and photon
(T P

cordance with the experimental data on photo- and electroproduction on nucleons,

tion of the baryon, resonance 12] . But if we require in ac-
that the electric and longitudinal quadrupoles should not contribute to electropro-
duction of pions on baryons at energies close to the resonance ones,then these
three Lagrangians are reduced to the only effective Lagrangian (3.8) which cor-

responds to the magnetic -dipole transition.

o -
x/ v.8 ) I o e E &>
For nucleon F, -%(F“ T Fyu ) , for 2F, = %(F, , FFy Y.
) EH 37 ® S
o Eh for2F, = %(F, gF, ), F, =F,
and for A F“ - F“ y where the last form factor Is normalized by the
condition LGN
Lsay= 7 Fu ¥s ¢ \F,, +h.c.
SAy T p v YA v
xx/

Note, that these Lagrangians can be transformed to

L (3.9)

1 -
stay =" T wop l/la“ ¥, aaAP IB.B + h.c.

10



As it is shown in Appendix the magnetic moments (the form factors) of the

transitions B* + B +y are connected with the form factors, entering (3.10), as

follows:
+.0 2y2 (M
y(N”"o-»N +y)= v Gny
Y g o, ® vy
“(::"u- - = +y)=\/_§__(c:,c10:,*:,)

_ +. Y (s) )
p(E**t 43 +y)=\/,§_(02,210é:\; }.

(3.11)
— (8)
(£%0 ,x° -
® - +y) \/23_ GE"E )
(V)
(£*0 4A -y2
» +A +y) \/TGZ"A .
(S5
The constant GN.N and the magnetic moment of transition N* + N +y

can be found from experiment in the following manner, With the aid of the diag-

ram'Fig, 3
¥ x
y B* -9

P
B /0 pr B

we can find the contribution of the magnetic dipole transition to the total cross

Fieg. 3

section for photoproduction of neutral pions on protons near the resonance:

(ST ]

= q
o BWTIMH_ [ (3.12)
+) .
. GN.N Brumr V(E + mXE’+ m) , (3.13)
tq on M- - mMT )

where E  and E’° are the initial and final nucleon energies in

the centre-of-
mass system, W is the total energy, T°

is the width of the resonance N*,
Then taking Into account (3.11) and (2.,11) we have at the resonance

2 k(E'+m)

{3.14)
T Twr

B I (N* N+ y).
On the other hand it is known from experiment that near the resonance this pro-
cess corresponds almost completely to the magnetic dipole transition.

Therefore,
it is possible to substitute in (3.,14) the total experimental cross section

11



c = 025 + 0,01 mb/ 13/

. Using for the decay width N* +N + n the expe-
rimental value TI'= 120+ 1,5 Me\// 9f we get the experimental value of the mag-

wetic moment of the transition N* s N +y

B (N* 2 Nuy) = 2\42 (1,25 + 0,02)p) . (3.15)
Let us return now to the dispersion sum rules (3.7). From the sum rule
for the isoscalar amplitude for electroproduction on nucleons we immediately de-

duce the relation

(o) 2

23]
» p (& )=0. (3.86)

2
Fu (k™) +F
If we combine this relation with the following relations for the Sachs form fac-

tors of proton and neutron, which are predicted by SU®) symmetry/14/

» 3,17)
Gy (x?) (

]
Fn, F T’
™ (k™)
we get that the ratio between magnetic and electric form factors of proton is
2
constant, independent of L ., what is in good agreement with experiment, and

this ratio is equal to

®» 3
Gy k)

3
Gy (k) (3.18)

2
If we consider the equations (3.17) and (3,18) at & =« 0 we get the following

values for magnetic moments of proton and neutron/ 47/

Ko =3, g, ==2 (3.19)
xx/

(in nuclear magnetons) which are in good agreement with experimert

2
We consider the other sum rules (3.7) at k =0 . Calculating the contri

(v.8)
bution of resonances into the amplitudes F,, (s.t.k%) in (3.7) using
the diagram of Fig, 3 we get
\V,8)
g 8 G 2 Mm 2
_BBT 4 (B)~b__ L B'ST "B*s m _3 ™ aaq )=
2 Hvs BB AT b+ TS 120

(3.20)

x[ The experimental estimate of this moment given in papexj 15/ with refe-
nce to pape:j 16/ geems to be erroneous.
xx/ Note that in paper 4 the equations (3.19) are obtained from the sum rule
r the photoproduction amplitude A (in notations of/ 17 ) off the mass shell,
nile on the mass shell the one-nucleon term in this amplitude contains no magne-

/
: moments (see formula (8.4) of ref, 17/ ).

12



4
}>E =b22=bm=l, bNNET'

Taking into account (2,11) and (3.11) we deduce from this equation

+,0 79
w0 LN +y)-1,zs.2_3\[£“(p),

(307 LB ey ety (B
u(= - +y)=1.09 .2 u (5 ),

o (3.21)

— =20 —_ *
p(2TH0 L s e s wyzps ),

p(E*° S Ary) o L1 2 pu(E At y) .

The first relation is in good agreement with experiment (3.15). All relations

are in good agreement with the predictions of SU(6) symmetry, which gives 1
instead of the first factor on the right-hand sides of (3.21) for all particles, ex-
cept =2 and £7 . For ® and I SUG6) symmetry gives 0 on the
left- hand sides of these relations and /1'(2-)-;.:’(3—)-0.026#(1;) for the

right-hand sides, Therefore, the relations for 2~ and I~ also do not con-

tradict the results of  SU(6) symmetry,

Conclusion

We see that the simple dynamical approach considered above makes it

possible to obtain many relations which are usually derived from SU(6) symmetry.

We have also applied this method to the reactions 7% +rA and eXoeAn
and ‘have got the relations between the constants g P and By, and
between the magnetic moments p(2* »3y) and /4'2 which are in full agree-

ment with the table and (3.21).

This approach can be applied to other reactions, first of all, to the Comp-
ton scattering on baryons. This will give directly the relations between electro-

magnetic constants without using the results for scattering,

Let us discuss the limits of applicability of the present approach., First of
all, it works only for the amplitudes which are odd under the crossing transfor-
mation, Such amplitudes are absent in scattering and photoproduction of mesons

on mesons, At the present time the predictions for mesons can be made only
on the basis of symmetries., Therefore, the experimental test of these predictions

13



seems to be most interesting. It should be noted that up to now the predictions
of SU{(6) for mesons are supported experimentally much weaker than for ba-

ryons.

Further, the present method does not permit to connect the properties of

baryons with different strangenesses.

In this paper we have considered the amplitudes for which high energy
contributions are relatively unimportant and have taken into account the nearest
resonances with masses not bigger than that of the corresponding baryons plus

2m, . But these amplitudes have kinematical factors which strongly redu-
ce the § -wave contributions at low energies, Therefore, we can not use the
present method for the amplitudes B’ _4q @nd F’odd in which the nearest
resonance  A(1405) appears in the S ~wave, For these amplitudes as

well as for determination of the ANK coupling constant one should consi -

der other intermediate states along with the nearest resonances.,

The authors are sincerely grateful to N.N, Bogolubov for the attention to

this work and to D.V.Shirkov for a valuable discussion,

APPENDIX

The wave function of a particle with spin 3/2 satisfies the equations/ 18/

(Y - +My, =0,
B
(A1)
Yu 111# =0.
We go over to the momentum representation
ipx 2
l/l“ (:).__La_n__fuﬂ (ple dp . (A )
(2m)
hen in accordance with the equations (A.1) Uy (p) may be written in the form
v 1
p,+M EN
Uy (p) = v 2 o p . (A.3)
Po + M
wvhere four two-dimensional spinors satisfy the conditions
22 . GG
¢ -1 Ge. TP (As)
Po Po {pg+ M)
Po+ M

and the factor corresponds to the normalization

2M

14



- +
E‘U#(p)U#(p)=l. E¢#¢“=l. (A5)

The conditions (A.4) exclude the particle with spin 1/2. In the particle rest

system they have the form

by =0, ;;5"0' (A.6)

In the same system ¢# are connected with the functions describing the states

with fixed spdn projections as follows

®a/2
- (p, -idy )=
vz v % ¢y
1
- P
(b, + igg) = V3 * (AZ)
V2 ¢-a/=
) ]
- \/g_ %
¢y

Let us con51der now the Lagrangian (3.9) describing the interaction of
the resonance (s ) with baryon and photon, We go over in this Lagrangian
to the momentum representation and write it in the resonance rest sy.:tem taking
into account (A.6) and (A.7) and assuming that the magnetic field i is
directed along the axis =z . We get:

? E+m B (~.8)
LB.” - l\/.r\/ (¢ ¢“ +¢ ¢_“ Mpw B,
where E is the baryon energy in the decay B* + B+ y in the resonance
rest system. A similar expression for baryons has the form
. B B B B
L By(p)- (b by ~d_y ¢_u)H . (A9)

From comparison of (A.8) and (A.9), by analogy with baryons we determine

15






