ОБъЕДИНЕННЫЙ ИНСТИТУТ яДЕРНЫХ ИССЛЕДОВАНИЙ
$990,1966,7.4,6.3$, c. 646-653. E-2521

Дубна

S.M.Bilenky, R.MRyndin

ON A RECONSTRUCTION OF THE MESON NUCLEON SCATTERING MATRLX FROM EXPERIMENTS WITH POLARIZED TARGET

Introduction

Use of the polarized proton targets considerably extends possibilities of measuring polarization effects in various reactions. So, in the case of the meson-nucleon scattering the polarized target makes it possible to measure the parameters R and A which can not be determined from experiments with unpolarized target. As is shown in ref./1/ the problem of a direct reconstruction of the meson-nucleon scattering matrix from experimental data at a given angle may be solved if the cross section for scattering of mesons by an unpolarized proton target, the nucleon polarizaton produced in the scattering from an unpolarized target (asymmetry in the scatering from polarized target) as well as the parameters R and A are measured. This method of reconstruction of . the scattering amplitude may turn out to be most effective in the region of high energies where unique phase shift analysis is difficult due to the large number of states involved and to the contribution of inelastic processes leading to the phase shifts being complex. The formulas for the reconstruction of the meson nucleon scattering matrix obtained in ref. $1 /$ are valid only in the nonrelativistic region. As is known, in the relativistic case while obtaining formulas which connect experimentally observed quantities with the scattering amplitudes in c.mos. it is necessary, in addition to the usual relativistic kinematics, to take into account also a specific spin rotation $/ 2-5 /$ In Section a we get relativistic formulas for the direct reconstruction of the elastic meson-mudeon scattering matrix from data at a fixed angle and enerry. In Section ris the pionwidileon scattering, is considered. Owing to the isotopic insariance the pion-rucleon scatterines matrix is characterized by four complex functions of the energy and the scattering angle. We shall show that to determine these functions (up to over-all phase) it is necessary for given value of the angle and the energy to measure nine quantities.

We consider the elastic scattering of mesons with spin zero on nucleons. Let \vec{a}_{ℓ} be unit vector in the lab. sys. The projection of the polarization vector of a recoil nucleon on the direction ${ }^{a} \ell$ measured in the lab. sys. is $/ 2 /$

$$
\overrightarrow{\mathrm{p}}^{\prime} \overrightarrow{\mathrm{a}}_{l}=\frac{1}{\sigma} \operatorname{Sp} \vec{\sigma}\left(\overrightarrow{\mathrm{a}}_{l}\right)_{R} M\left(\overrightarrow{\mathrm{k}}^{\prime}, \overrightarrow{\mathrm{k}}\right) 1 / 2(1+\vec{\sigma} \cdot \overrightarrow{\mathrm{P}}) M^{+}\left(\overrightarrow{\mathrm{k}}^{\prime}, \overrightarrow{\mathrm{k}}\right)
$$

where $M(\vec{k}, \vec{k})$ is the scattering matrix in $c_{,} m . s .\left(\vec{k} \quad\left(k^{\prime}\right)\right.$ is the unit vector in the direction of the momentum of the initial (final) mesons in c.m.s.), \vec{P} is the initial polarization $\sigma=\operatorname{Sp} M(\vec{k}, \vec{k}) 1 / 2(1+\vec{\sigma} \overrightarrow{\mathrm{P}}) M(\vec{k}, \vec{k}) \quad$ is the differential scattering cross section in carns. and

$$
\begin{equation*}
\left(\vec{a}_{\ell}\right)_{R}=\vec{R}_{\mathrm{a}}(\Omega) \vec{a}_{\ell} \tag{2}
\end{equation*}
$$

Here $R_{n}(\Omega)$ is the rotation operator at the angle Ω around the normal $\overrightarrow{\mathrm{a}}\left(\overrightarrow{\mathrm{n}}=\frac{\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{k}^{\prime}}}{|\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{k}}|}\right.$. The rotation (2) is consldered in detail in refs $/ 2-5 /$ ivhere a general expression for the rotation angle is obtained. By means of this expression it can be shown that in the case of elastic meson-nucleon scattering the rotation angle Ω in (2) is

$$
\begin{equation*}
\Omega=2 \Phi_{\ell}-\Phi \tag{3}
\end{equation*}
$$

where $\Phi=\pi-\theta$ is the recoil nucleon angle in c.ins. (θ is the angle between \vec{k} and \vec{k}) and Φ_{ℓ} is the angle between the momenta of the initial meson and the recoil nucleon in lab. sys. It is obvious that in the nonrelativistic limit Ω varishes. We note also that

$$
\begin{equation*}
\operatorname{tg} \Phi_{\ell}=\frac{\left(M^{2}+\mu^{2}+2 M E\right)^{1 / 2}}{E+M} \quad \operatorname{tg} \frac{\Phi}{2} \tag{4}
\end{equation*}
$$

where μ and M are the meson and nucleon masses, and E is the meson energy in lab. sys.

To determine experimentally measured quantities we introduce in the lab. sys. two orthonormalized sets of vectors

$$
\begin{align*}
\vec{n}_{\ell}= & \frac{\vec{k}_{\ell} \times \vec{k}_{\ell}^{\prime}}{\left|\vec{k}_{\ell} \times \vec{k}_{\ell}^{\prime}\right|}=\vec{n}, \quad \vec{k}_{\ell}^{\prime \prime}, \quad \vec{s}_{\ell}^{\prime \prime}=\vec{n}_{\ell} \times \vec{k}_{\ell}^{\prime \prime} \tag{5}\\
& \vec{n}_{\ell}, \vec{k}_{\ell}, \quad \overrightarrow{\mathbf{s}}_{\ell}=\vec{n}_{\ell} \times \vec{k}_{\ell} \tag{6}
\end{align*}
$$

Here $\vec{k}_{\ell}\left(\vec{k}_{\ell}^{\prime}\right), \overrightarrow{k_{l}^{\prime}}$ are the unit vectors in the directions of the momenth of the initial (final) meson and recoll nucleon respectively. We expand the final nucleon poiarization \vec{P}, in the set of vectors (5) and the initial one in the set (6).

Using the invariance considerations, from (1) we get

$$
\begin{align*}
& \sigma\left(\mathrm{P}^{\prime} \overrightarrow{\mathrm{n}}_{\ell}\right)=\sigma_{0}\left(\mathrm{P}{ }_{0}+\mathrm{D}\left(\overrightarrow{\mathrm{P}} \overrightarrow{\mathrm{n}}_{\ell}\right)\right) \\
& \sigma\left(\overrightarrow{\mathrm{P}}^{\prime} \overrightarrow{\mathrm{k}}_{\ell}^{\prime \prime}\right)=\sigma_{0}\left(\mathrm{~A}^{\prime} \overrightarrow{\mathrm{k}}_{\ell}+\mathrm{R}^{\prime} \overrightarrow{\mathrm{B}}_{\ell}\right) \overrightarrow{\mathrm{P}} \tag{7}\\
& \sigma\left(\overrightarrow{\mathrm{P}}^{\prime} \overrightarrow{\mathrm{a}}_{\ell}^{\prime \prime}\right)=\sigma_{0}\left(\mathrm{~A} \vec{k}_{\ell}+\mathrm{R} \overrightarrow{\mathrm{~B}}_{\ell}\right) \cdot \overrightarrow{\mathrm{P}}
\end{align*}
$$

Here

$$
\begin{equation*}
\sigma_{0}=1 / \mathrm{Sp}_{\mathrm{p}} \mathrm{M}^{+} \tag{8}
\end{equation*}
$$

is the differential cross section for scattering from an unpolarized target in c.m.s.,

$$
\begin{equation*}
P_{o}=\frac{1}{2 \sigma_{0}} \operatorname{Sp} \vec{\sigma}_{\tilde{n}_{\ell} M M} \vec{M}^{+}=\frac{1}{2 \sigma_{0}} \operatorname{Sp} M \vec{\sigma} \cdot \vec{n}_{\ell} M^{+} \tag{9}
\end{equation*}
$$

is the polarization of the recoil nucleons arising in this case (the left-right asymmetry arising in the scattering from a target polarized orthogonally to the scattering plane) and

$$
\begin{aligned}
& \sigma_{0} \mathrm{D}=y_{2} \mathrm{Sp} \vec{\sigma} \overrightarrow{\mathrm{n}}_{\mathrm{R}} \mathrm{M} \vec{\sigma} \overrightarrow{\mathrm{q}}_{\mathrm{M}}{ }^{+}
\end{aligned}
$$

$$
\begin{align*}
& \sigma_{0} R^{\prime}=k \operatorname{Sp} \vec{\sigma}\left(\vec{k}_{\dot{\ell}}^{\prime \prime}\right)_{\mathbf{R}} \mathrm{M}^{\mathrm{O}} \overrightarrow{\mathrm{~s}}_{\ell} \mathrm{M}^{+} \tag{10}\\
& \sigma_{0} A=H \operatorname{Sp} \vec{\sigma}\left(\vec{s}_{\ell}^{\ddot{\ell}}\right)_{\mathbf{R}} \mathrm{M} \vec{\sigma} \overrightarrow{\mathrm{~K}}_{\mathrm{l}} \mathrm{M}^{+} \\
& \sigma_{0} R=y_{2} \operatorname{sp} \vec{\sigma} \cdot\left(\vec{s}_{\ell 丷}^{\prime \prime}\right)_{R} M\left(\vec{\sigma}_{i}\right) M^{+}
\end{align*}
$$

Using the condition of invariance of the M matrix under the rellections in the reaction plane $/ 6 /$

$$
\begin{equation*}
\vec{\sigma} \vec{n} M \vec{o} \cdot \vec{n}=M \tag{11}
\end{equation*}
$$

it is easy to show that the parameters $D, A^{\prime}, R^{\prime}, A$ and R in the relativistic case obey the same relations as in the nonrelativistic one:

$$
\begin{equation*}
D=1, \quad A^{\prime}=R, \quad R^{\prime}=-A \tag{12}
\end{equation*}
$$

The matrix $M(\vec{k}, \vec{k})$ has, as is known, the following general form

$$
\begin{equation*}
M\left(\vec{k}^{\prime}, \vec{k}\right)=a+b \vec{\sigma} \vec{n} \tag{13}
\end{equation*}
$$

where a and b are the complex functions of the energy and the scattering angle.

We introduce also the functions

$$
\begin{equation*}
g=\frac{a+b}{\sqrt{2}}, \quad h=\frac{a-b}{\sqrt{2}} \tag{14}
\end{equation*}
$$

By means of (2) a nd (3) we find

$$
\begin{align*}
& \left(\vec{k}_{\ell}^{\prime \prime}\right)_{R}=\vec{k} \cos a+\vec{n} \times \vec{k} \sin a \tag{15}\\
& \left(\vec{s}_{\ell}^{\prime \prime}\right)_{R}=-\vec{k} \sin a+\vec{n} \times \vec{k} \cos a
\end{align*}
$$

where

$$
\begin{equation*}
a=\Omega-\Phi_{Q}=\Phi_{Q}-\Phi \tag{16}
\end{equation*}
$$

Using these relations, from eqs. (8) -(10), (13) and (14) we get the following expressions for the observables

$$
\begin{align*}
& \sigma_{0}=|g|^{2}+|h|^{2} \\
& \sigma_{0} P=|g|^{2}-|h|^{3} \tag{17}\\
& \sigma_{0} R=2 \operatorname{Re} g h^{*} \cos a-2 \operatorname{Img} h^{*} \sin a \\
& \sigma_{0} A=-2 \operatorname{Re} g h^{*} \sin a-2 \operatorname{In} g h^{*} \cos a
\end{align*}
$$

From where we easily find

$$
\begin{align*}
& |\mathrm{g}|^{2}=1 / 2 \sigma_{0}\left(1+\mathrm{P}_{0}\right) \\
& |\mathrm{h}|^{2}=1 / 2 \sigma_{0}\left(1-\mathrm{P}_{0}\right) \tag{18}\\
& \mathrm{gh}^{*}=1 / 2 \sigma_{0}(\mathrm{R}-\mathrm{iA}) \mathrm{e}^{-1 \alpha}
\end{align*}
$$

Thus, the measurement of the cross section σ_{0} and of the polarization P_{0} (the left-right asymmetry) for given value of the angle and the energy enable us to determine the moduli of the amplitudes g and h. Their relative phase is unambiguously determined by the parameters R and A.

In conclusion we note that the parameters R, A and P_{ρ} are connected by the quadratic relation:

$$
\begin{equation*}
R^{2}+A^{2}+P_{o}^{2}=1 \tag{19}
\end{equation*}
$$

which car be easily obtained by means of eq (18). From this relation it is seen that if P_{o} and R are measured with a sufficient accuracy then the absolute value of the parameter A is determined by means of (19) and to reconstruct unambiguously the relative phase it is necessary to determine only the sign of A

11N. Pion-Nucleon Scattering

In this section we consider the pion-nucleon scattering. Let us denote by m and m " the projections of the isotopic spin of the initial and final nucleon and by μ and μ^{\prime} those of the initial final meson. Due to the isctopic invariance transition amplitude is of the form

$$
\begin{aligned}
& \text {. (} 1 \mu \mathrm{Hm} \mathrm{~m} \text { ! } 1 / 2 \mathrm{~J} \mathrm{M} \text {) }
\end{aligned}
$$

Here J is the total isotopic spin of the system (J assumes the values $1 / 2$ and $3 / 2$) and ($1 \mu / 1 / \mathrm{m} \mid 1 / 2 \mathrm{~J} \mathrm{M}$) is the Clebsh-Gordan coefficient. The scattering matrix in the state with the total isotopic spin J is (cm.s.)

$$
\begin{equation*}
\vec{v}_{J}=b_{J} \vec{c} \vec{n} \tag{21}
\end{equation*}
$$

As in the above-considered case it is comvenient to introduce

$$
\begin{align*}
& g_{2 J}=\frac{1}{\sqrt{2}}\left(a_{J}+b_{J}\right) \tag{22}\\
& h_{2 J}=\frac{1}{\sqrt{2}}\left(a_{J}-b_{J}\right)
\end{align*}
$$

[^0]By means of $(20)-(22)$ we get the following expressions for the observables

$$
\begin{aligned}
& \left.-\left(\operatorname{Img}_{2 J} h_{2 J}^{*}+\operatorname{Img}_{2 J}, h_{2 J}^{*}\right) \sin a\right] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(\operatorname{Im} \mathbb{g}_{2 J} h_{2 J}^{h^{*}}+\operatorname{lm} \mathbb{E}_{2 J} \cdot \cdot_{9 J}^{b_{j}^{*}}\right) \cos a\right] \text {. }
\end{aligned}
$$

Here

$$
\begin{equation*}
F\left(\mu^{\prime} \mathrm{m}^{\prime} ; \mu \mathrm{m} ; \mathrm{JJ} \mathrm{~J}^{\circ}\right)=\left(\mu^{\left.\prime / 1 / 2 \mathrm{~m}^{\prime} \mid I / 2 \mathrm{JM}\right)\left(1 \mu^{\circ} / 2 \mathrm{~m}^{\prime} \mid 1 / 2 \mathrm{~J}^{\prime} \mathrm{M}\right) .}\right. \tag{24}
\end{equation*}
$$

The following processes are studied experimentally

$$
\begin{align*}
& \pi^{+}+p \rightarrow \pi^{+}+p \tag{25.1}\\
& \pi^{-}+p \rightarrow \pi^{-}+p \tag{25.2}\\
& \pi^{-}+p \rightarrow z^{0}+p \tag{25.3}
\end{align*}
$$

Let us look what experiments are to be done for an unambiguous (up to the over-all phase) reconstruction of the amplitudes g_{2} and $h_{2 J}$. It is obvious that $\left|g_{8}\right|$ and $\left|b_{b}\right|$ can be determined if the cross section and the polarization of the processes (25.1) with an unpolarized target are measured

$$
\begin{align*}
& \left|g_{8}\right|^{2}=y_{2}\left[\left(\sigma_{0}\right)_{\pi_{i} \pi^{+}}+\left(\sigma_{0} P_{0}\right)_{\pi^{+} ; \pi^{+}}\right] . \tag{26}\\
& \left|h_{8}\right|^{2}=y_{2}\left[\left(\sigma_{0}\right)_{\pi^{+} \pi^{+}}+-\left(\sigma_{0} P_{0}\right)_{\pi^{+} \pi^{+}}\right] .
\end{align*}
$$

From (23) we get elso that

$$
\begin{align*}
& |\mathrm{g}|^{2}=3 / 4\left[\left(\sigma_{0}\right)_{\pi-; \pi^{-}}+\left(\sigma_{0}\right)_{\pi^{0} ; \pi^{-}}-1 / 3\left(\sigma_{0}\right)_{\pi^{+} ; \pi^{+}}\right) \\
& +\left(\left(\sigma_{0} \mathrm{P}_{\mathrm{o}}\right)_{\pi^{-} ; \pi^{-}}+\left(\sigma_{0} \mathrm{P}_{\mathrm{o}}\right)_{\pi^{\circ} ; \pi^{-}}-1 / 3\left(\sigma_{0} \mathrm{P}_{\mathrm{o}}\right)_{\pi^{+} ; \pi^{+}} \quad\right) \\
& \left|h_{1}\right|^{2}=3 / 4\left[\left(\left(\sigma_{0}\right)_{\pi ; \pi^{-}}+\left(\sigma_{0}\right)_{\pi^{0} ; \pi}-1 / 3\left(\sigma_{\mathrm{C}}\right)_{\pi+; \pi^{+}} .\right)-\right. \tag{27}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Reg} g_{8} \mathrm{E}_{1}=3 / 8\left[\left({\left(\sigma_{0}\right)}_{\pi \mp \pi^{-}}-2\left(\sigma_{0}\right)_{\pi_{i}^{\mathrm{o}} \pi^{-}}+1 / 3\left(\sigma_{0}\right)_{\pi^{+}: \pi^{+}}\right)+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(\left(\sigma_{0} \mathrm{P}_{0}\right)_{\pi^{-} ; \pi^{-}}-2\left(\sigma_{0} \mathrm{P}_{0}\right)_{\pi^{0} ; \pi^{-}} \quad+1 / 3\left(\sigma_{0} \mathrm{P}_{0}\right)_{\pi_{+} \pi^{+}}\right)\right]
\end{aligned}
$$

Here $\left(\sigma_{0}\right)_{\pi^{+} ; \pi^{+}} \quad,\left(\sigma_{0}\right)_{\pi^{-} ; \pi^{-}} \quad,\left(\sigma_{0}\right)_{\pi^{\circ} ; \pi^{-}} \quad$ we denote, for the sake of brevity, the differential cross sections for the processes (25.1), (25.2), $(25,3)$ in coms. and by $\left(\sigma_{0} P_{o}\right)_{\pi^{+}, \mu^{+}} \quad,\left(\sigma P_{0}\right)_{\pi^{-} ; \pi^{-}} \quad .\left(\sigma_{0} P_{o}\right)_{\pi^{\circ} ; \pi^{-}}$ the products of the cross section on the polarization of the recoil nucleons for the corresponding processes.

Thus, the measurement of the differential cross sections " ${ }_{0}$ and of the nucleon polarizations $P_{\text {。 (the left-right asymmetry) in all the three processes }}$ (25) allows one to determine the moduli $|\mathrm{g}|_{\mathrm{a}}\left|,\left|\mathrm{g}_{\mathrm{i}}\right|,\left|\mathrm{h}_{\mathrm{a}}\right|,|\mathrm{h}|_{\mathrm{a}}\right.$ as well as the cosines of the differences of the phases

$$
\begin{align*}
& \arg g_{g}-\operatorname{grg} g_{1}=\phi \tag{28}\\
& \arg h_{3}-\arg h_{1}=\psi
\end{align*}
$$

i.e. the moduli of all the amplitudes and the absolute values of the two phase differences (we assume that the phases are determined in the interval from $-\pi$ to π). To determine the third independent phase difference and the signs of ϕ and ψ it is necessary to make use of other observables. As the third independent phase difference we choose

$$
\begin{equation*}
\arg g_{8}-\arg h_{z}=\eta \tag{29}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{Reg}_{3} \mathrm{~h}_{3}^{*}=1 / 2\left[\left(\sigma_{0} \mathrm{R}\right)_{\pi^{+} ; \pi^{+}} \cos \alpha-\left(\sigma_{0} \mathrm{~A}\right)_{\pi^{+} ; \pi^{+}}+\sin a\right] \tag{30}\\
& \operatorname{Img}_{3} \mathrm{~h}_{3}^{*}=-1 / 2\left[\left(\sigma_{0} \mathrm{R}\right)_{\pi^{+} ; \pi^{+}}+\sin \alpha+\left(\sigma_{0} \mathrm{~A}\right)_{\pi+; \pi^{+}}+\cos \alpha\right]
\end{align*}
$$

Hence it is seen that the measurement of the parameters R and A in the $\pi^{+}-p$ scattering allows one to determine unambiguously the phase difference η ? Finally, the signs of the phases ψ and ψ can be found if one of the remaining parameters is measured, for example $R_{\pi^{-} ; \pi^{-}}$. From (23) we get

$$
\begin{align*}
& \left(\sigma_{0} \mathrm{R}\right)_{\pi^{-} ; \pi^{-}}-1 / 9\left(\sigma_{0} \mathrm{R}\right)_{\pi^{+} ; \pi}+= \\
& =\frac{8}{9}\left(\operatorname{Reg} \mathrm{R}_{1} \mathrm{~h}_{1}^{*} \cos a-\operatorname{Im} \mathrm{g}_{\mathrm{i}}^{\mathrm{h}^{*}} \sin a\right)+ \tag{.31}\\
& +4 / 9\left[\left(\operatorname{Reg}_{1} \mathrm{~h}_{3}^{*}+\operatorname{Reg} \mathrm{g}_{8} \mathrm{~h}_{1}^{*}\right) \cos \alpha-\left(\operatorname{Im} \mathrm{g}_{1} \mathrm{~h}_{3}{ }_{3}+\operatorname{Im} \mathrm{g}_{8} \mathrm{~h}^{*}{ }_{1}\right) \sin a\right]
\end{align*}
$$

If we express the real and imaginary parts of this expression in terms of
 moduli then it takes the form:
$\begin{aligned} a & =b \epsilon \phi^{+c \epsilon} \psi+d \in \phi^{\epsilon} \psi^{\prime} \\ \text { Where } \epsilon & =\frac{\phi}{|\phi|} \quad \text { and } \epsilon \\ & =\frac{\psi}{|\psi|} \quad \text { are the signs of the phases } \phi \text { and } \psi\end{aligned}$
respectively, and

$$
\begin{aligned}
& \mathrm{a}=\left[\left(\sigma_{0} \mathrm{R}\right)_{\pi_{-}-\pi^{-}}-1 / 9\left(\sigma_{0} \mathrm{R}\right)_{\pi^{+} ; \pi^{+}}+\right]\left|\mathrm{g}_{\mathrm{a}}\right|\left|\mathrm{h}_{8}\right|-
\end{aligned}
$$

$$
\begin{align*}
& b=4 / 9 \sqrt{|g|_{a}^{2}|g|_{1}^{2}-\left(\operatorname{Reg}_{3} g_{1}^{*}\right)^{2}} \sin (\eta+a)\left(2 \operatorname{Reh}_{g} h_{i}^{*}+|h|_{a}^{2}\right) \tag{33}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{d}=8 / 9 \sqrt{\left|\mathrm{~g}_{3}\right|^{2}|\mathrm{~g}|_{1}^{2-\left(\operatorname{Reg}_{8} \mathrm{~g}_{1}\right)^{2}} \sqrt{\left|\mathrm{~h}_{3}\right|^{2}\left|\mathrm{~h}_{1}\right|^{2}-\left(\operatorname{Re~h}_{3} \mathrm{~h}_{1}^{*}\right)^{2}} \cos (\eta+\alpha)}
\end{aligned}
$$

[^1]All the quantities ontering here can be expressed in terms of the ofsomables ((27), (30)) and assumed to be known from previous moasurements. By means of (32), (33) ϵ_{ϕ} and ϵ_{ψ} can be found. ${ }^{x}$)

In conciusion we note that the above-considered procedure of the remam smaction of the pion-rucleon scattering matrix implies that the experimertit values are meesured with a sufficient accuracy. If the expermental errore are large then to reconstruct the scattering matrix the information about the roram ining observable may be neected.

The autiors are grateful to Iha Lepidus for useful discussions of the problems considered here.

References

1. V.S. Kime Phys. Rev. 129, 862 (1963).
2. H. Stapp. Privs. Rev. 103, 425 (1956).
3. Чжоу Гуен-шжас, М.И.Широков. ЖЭТФ 34, 1230 (1958).
4. В.И. Ритус ЖЭТक 40, 352 (1961).
5. Я.А. Смородинекиа, ЖЭТ巾 $43,2 \mathrm{~S} 17$ (isb2).
6. С.М. Еиленький, Л.Й. Лапидус, F.М. Рывад.н. УфН 84, 243 (1964).

Recelved by Pubiishing Department on December 28, j.965.
(x) If a is equal (or is equal by its absolute value and opposite in sign) to one of the coefficient $b_{1} c$, or d and the remaining two coefficients are equal by the absolute value and opposite in sign (or are equal) then to determine $\epsilon \phi$ and $\epsilon_{\dot{\psi}}$ use should be made of one more relation.

[^0]: x) The relation (19) was obtained earlier by N.P.Klepikov (private communication).

[^1]: x) As was pointed out it is sufficient, in principle, to determine only the sign of the parameter A.

