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Introduction 

In modern theor.y the properties of the scattering matrix are formulated on 

the basis of local theory. However, the physical meaning of the scattering mat­

rix, as was pointed out long ago by Heisenberg/ l/ , can essentially be beyond 

the narrow framework of local theoryx/ • This is also seen fr6m. the axiomatic 

approach in which the ambiguir of extrapolating the scattering matrix off the 

mass surface p1 
• p1 + 11

1 f 3 is clearly displayed. 
0 

Whatever this extrapolation is, a direct physical meaning is kept only by 

the scattering matrix S on the mass surface. Therefore we apply the causa-

lity condition only to this quantity which is physically defined, and we c:aJ.l it 

the condition of macroscopic cau&ality unlike the condition of microscopic causa­

lity assoclated with the notion of local field, 

'l'he application of fhe causality condition to the scattering matrix meets with 

a difficulty that the scattering matrix transforms the states for t • - T into the 

states for t • + T at T ... • • During the time 2T the waves fill the 

whole space. Therefore a stationary state arises which, in its very essence, ex­

cludes the conditions necessary for the causal connection to be formulated. 

In 2 we will show that it is still possible to construct wave packets which 

allow a reasonable formulation of !he macrocausality conditions and which are 

compatible with an interpretation of the limit T ... .. such that the tenns of the 

order ~( R • vT , , v - is the packet velocity) are assumed to be still 
R I 

finite while the terms of the order 1/R and higher are neglected. By means 

of such packets we .may formulate the conditions of macrocausality which is 

thought of as the usual causal connection characteristic of !he relativistic metric; 

events at the points " ( • • ·) and " ( z") may be causally connected provided 

only that a) the interval ( z"' - z' ) 
1 

is a time interval, I.e. ( z"- z'} 1 ~ 0 and 

b) the event at " ( z' ·) { cause) precedes the event at " ( z") { consequ-

ence) so that t" > t• • 

In 3 an example of the unitary acausal scattering matrix satisfying this 

macrocausality condition is given. 

J2f x:/See als • 
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2. Formulation of the Macrocausallty Conditions 

Let us consider the two wave packets a and b which at t -- T are 
I 

going out of the dla;phragms A and B ( see Fig. 1). Such a description of 

the packet "creation" simulates most closely the real situation in experiment. 

Somewhat later a collision of the packets can occur, but for t 1 • + T they fiy 

apart. Let for t 
1 

• - T the packets be at a distance R which is muct;t l.al'­

ger than the sizE. of the packets L(R » L) • We shall asswne that the P"-ckets 

have a sufficiently definite momentwn p , so that p » ~ p • 11/L • Now we 

require that the packets would not spread considerably during the time 2T i.e, 

an increase of the packet width ~L must not be large as compared with the 

initial one L • The dispersion of the packet velocity ~v is 

ii
1 E 

~v • -- ~P 
ilpl 

~p Ill 

Til ( 1) 

( II 

dition 

is the particle mass). So, we have ~L •· ~v· T-~L R. From the con­
p El 

L » ~L we get: 

II -L>-vRX, E . (2) 

where K =11 /p 

condition 

is the wave length. The condition { 2) is compatible with the 

I 

if R»~X 
kl 

R»L»'X 

I 

at X < A , or if R » .!.._ ;\ 
o A: at X> A 

0 

(3) 

here A
0 

a 11/mc 

Thus, there are packets which can be used as in- states transformable to 

out,.. states by the S .-matrix: 

' . ' . <fiSit > • 8
11 

-(2w) t8 (p
1 
-p

1 
)<tl Tit>, ( 4) 

where, as usual ( t) denote the quantwn nwnbers of the in- state, and ( f ) are 

those for the out,.. state, The matrix element < f I T II> can be represented 

a more detailed form: 

<fiTii>. <p., ''•-• •'••P•+tlliP. 'I'" p1 > ( 5) 

.; 2po ·2p • • • • 2 P 
• Om -1 01 

where < p , p • • • • p II 1 p ••• p > is the invariant function of the foUl'- momen-
• m-1' n+l n, 1 

ta p , p , ... p and p , ' ,... ~ are their fourth components. In what follows, 
m •-1 l 0• 0.•1 01 

we shall restrict ourselves to the simplest case of the pairing collision of two 
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~ 
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''·,!~. 
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particles, when in the initial state ( i) there are only two particles described 

by the wave packets 11 
1 

( s
1

) and u 1 ( s 
1 

) of the above considered type. The-

se packets can be represented in the form of the integrals: 

ll(s)• 1 a (2;)iJi" f u (p) elpx d p 

~ 
( 6) 

where p
0 

• + v ~I+ 11 1 • 'I'he wave function of the initial state in the momentwn 

representation will be of the form: 

iii (pi) 
( p)·-=. 

fila PI I V 2poa 

From ( 4), ( 5), ( 7) we get: 

•• (p,) 

v 2p01 

float( P., •Pa-lo"'Pa) • 

- (2w) 4 lf8
4

(p +p + ... + p -p -p ) x 
• •+t I I 1 

<p ,p ... p IIIp p > .. .. d 1 p d 1 p 
X • a-to I a, 1 U (p )1 (p ) I I 

I I I I 
2 V 2p o. 2p

0 
•• 

1
... 2p 

01 
P o12po 1 

and for m • 4 (the elastic collision): 

() (p, p) .() (p, p) -( 21r)
4

i f84 (p +p -p -P )x 
oa' 4 I Ia 4 I 4 I I I 

<pplllpp>- ~ dip L 
+ hi a, 1 U(p)U(p) dp~ F' 

I I I 1 v 2p 2p 2p 2p 
04 oa o 1 o 1 

( 7) 

( 8) . 

Now we go over to the coordinate representation. For this we multiply the left­

hand side of ( 8) by 

1 e:q~l(p.s• +p._1 s•-f •••+p
1

s
1

) 

(2rr) I{ I <• -•> v 2p 0 2p0 1 ·• • • 2P. • -. oa 
and integrate over 

in terms of u( s): 

d'p. , d 1 p ···d 1 p • Further by (6) we express i("~) 
•-1 I 

.. (p) 

2po 

Then from ( 8) we gel! 

1 J •Ilia 
(2w)'/a ll(s)e d' s • ( 5') 

( 9) 
fl (s ,s , ... ,« ) --·(2w)

4
ifa(s ,s ,-,s Is ,s ) 11 (s )1l (z )d 1s d•s 

eat • • • I I • • • I I I 1 I I 1 1 I , I 

and in a similar way fr.om (a') 
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. . 
• ••• ( s, , s 

1 
) • •,. (s, , s 1 ) -(2•) l f c< s , , s ~ I s 2 , s 1 ) 

a (s )a (s )d 1 s d1 s • 
1 I I I I I ( 9') 

In this case we have 

or 

where 

1(:1 •• z.., , ... , s,l :12 ,s l). 

' - fiJ (p + p + ••• + p -P -p ) < p , p ••• p Ill p p > )( 
a a-1 I 2 I • •-I I It l 

lo 

qpl(p. x. +••• + p
1 

x
1 

-p
2

x
1
-p

1 
x

1
) 

2Poa 2po•-l •. • 2 Po a 
d'p. • • d II • • • d p •·l I 

1 ( s. , s._, ,. • • , s 1 I x1 , x 1 ) •-

2 
4a c0 (s., , s._,; • ·s1 ls1 : 1 ) 

at, at, 

is the invariant function of the coordinates 

• lo ( s , 11 
1 

• ·, s
1 

I x 1 , s 1 ) • f IJ (p + P + • • • + P -P - P 1 ) x 
• •- I • •-l I 2 

<~ ,p ,•••p lllp
1

p
1
>e1!Pi(p,.s,.+•••+P8 s 1 -P,sa-ps)c 

m m•l I 1 l l 

I I I 
d p•d P._,··· d P1 
2p 2p ••• 2p 

Oa 0.-1 Ol 

( 10) 

( 11) 

( 12) 

We notice that due to the presence of the IJ function under the integral in 1 

and 1
0 

these functions are translation- invariant and depend only on the dif-

• No we may formulate the prlncip-ference of the variables z. , s.-r; . :1 l 

le of macrocausality: a) the wave packets 

removed opart at the distance 

a1(s1 )(~s2 • L) and a 1 (s1 X~z1•L) 

contribute to • .... 
1:.- -;,I•I;I,.R >L»X 

provided only that 

I I ,. I 
:1 • ( t I - t l) -( f -J- :1 l ) > 0, 

( 13) 

( 14) 

b) Further • • 0 if the coordinates of the particles z , z ••• z creat.-••t. • •·I' I 

ed in the collision lie out of the future light cone with respect to the points 

:1 ,s 
I 1- 2 I 

(z
0 

-z
2

) > 0·, (s
0
-z 1 ) > 0, 

( 15) 

6 

" 
4 
f1 

I 
''~i 
·X 
\',~ 
)1 

l 

,, 
lj'IJ 

' 

~ 

t. > t 2 , >tl , ( 15') 

·-···•-1,•••3 • 'lhus the function c( z., , z.,_
1

; • • z 1 lz1 ,z1 ) must consequenUy 

vanish outside the above- rrentioned space- time regions, however, only asympton.. 

caliy, i.e. for 
R .... (t.-t, ),(t.-tl) ..... 

( 16) 

From the physical point of view these conditions are identical with the requ'­

menta of classical macroscopic causality and imply the assumption that all the 

particles in the final state • ••• can be produced ( or change their state) 

later than the initial packets exchange the field quanta ( see Fig. 2). 

'The usual local theory satisfies, of course, the above stated requirement 

of macrocausality (for example see Appendix A). 'This requirement will be satl&­

fied also by any scattering matrix in which the macrocausality is violated only in 

a small localized space- time region. 

In 3 we give an example of the acausal unitary sr attering matrix obeying 

the requirements of macroscopic causality, 

3. Acausal Scattering IVIatrix 

Now we turn to a formal construction of the nonlocal scattering matrix, 

obeying the requirements of unitarily and macroscopic causality. 

We represent the scattering matrix S 

s • 1-(l/2) It 

1 + (l/2)K 

where It is the Hermitea.n matrix, i.e. 

in the form: r 

( 17) 

Jt,.Jt+, 
( 18) 

'This provides the unitarily of the considered matrix, To study the structure of 

the S -matrix we shall .assume that there is a small parameter which permits 

to expand our scattering matrix in a power series in this parameter 

5 • i 8
8 

(lJt)D 
a-o 

( 19) 

where ._ are the real numbers. After singling out the invariant functions 

the matrix F can be written in the form 
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K .. 
F(p ···p IP +I···P.,> t, • • ' 

..; 2Pol2ilu··· 2 Po., (20) 

where p • + -./ p1
2 

+ m 
2 

·• We shall consider only scalar particles. Owing to the 
01 

CPT theorem, we have for the matrix elements K: 

.K(p·•·PIP ·••p)•K(p ···PIP···p) 
t, • •+1, • •+t, • s, • 

( 21) 

and taking into 1\ccount ( 18) : 

K ( p1 • • • p I p • • • p ) - tc .. ( p •••• p I p ••• p ) • 
' D a+J, • 1.) D a+J_, a ( 22) 

This means that the function must be reel. Now we note the following properties 

of the functions 

- 1 • • 
F(p •••p ) • /F(z z ••• z )eJP(II p z )utl 4z 1

' • · (2w) ilaa 11 a, • 1•1 1 I 1•1 I 
(23) 

in this case 

F(z1;··z.) • F(-z 1,-z 2 ,···-z.,). 
(24) 

Further F( z 11• • • z • ) is translation - invariant. In particular, it can be repre­

sented as a function of the variables e, - z, -zl+1 , j -1. 2,·-·m•l.'I'hen we may 

write down ( 23) in the form: 

we 

we 

F(pl,pl;··p )•8
4

(p +p +•••+p )x 
1 a • (23) 

. • -1 • -1 • 
.,-1< 0 /F{! 1 ! 1 --· !._1 )up(l I Q

1 
!

1
)D tl !

1 (2w) •- ' I 1•1 1•1 

Now we turn to the macrocausallty condition and, for the sake of definltness, 

restrict ourselves to the simplest case of the elastic collision. Basing on ( 19) 

have: 

F(pl ''•''a ,p,) 
<p 1 •Ia jSjp1 ,p

4
> • 1-l + 

..; 2Po 1 2Poa 2P oa 2Po, 

(25) F( • ">-< • .. pl,p,,p ,p F p,p ''•''' + f X 

..; 2pol·. • 2Po, 

I I I a 4 4 
x 8 (p' - m )6 (p~~ 8(p" - m )6(p';; )d p' d p". 

8 

In the coordinate representation we have: 

S ( J: 
1 1 • • • 1 !I 

4 
) • 1 -1 F ( x

1 1 • • • 1 X 
4 

) + 

+f/F(x 1,za,x', z")D+ (x'-y')D+ (z"-y") x 
(26) 

x F(y',y'~., :r 1 ,:r, )d
4 

:r'd 4 :r"d 4 y'd 4 y~-+ ••• 

In the ordinary local theory the function S ( z 
1

; • • x 
4 

) being based on the mio­

rocausallty, satisfies the requirements of macrocausality ( 14,15) ( cf.Appendix A). 

It has singularities on the light cone with respect to the variables ! . x ·- z 
1 I 2 1 

e_ •·x -x ,J: •z -z ;the nature of these singularities is essentially related to causa­
l I I 'a I 4 

llty. The same may be said about the functions S with a larger number of 

arguments. We denote the corresponding functions of the local theory by F
0
(!

1 
,~ ,~). 

We do not violate the macrocausality condition ( 14), ( 15) if, instead of the 

causal functions F 
0 
(! 

1 
, ! 

2 
• • • , ! ., ) , we introduce the acausal ones F .. <e 

1 
,e 

1 
,. ··~.) 

which will differ from F 0 U 1 , ! 1 , ••• ! ., ) only in a small space- tim~ region near 
I . 4 

the vertex of the light cone '' - 0, oa, ) .. Q • The quantity a plays the 

role of an "elementary length". The functions F U ) possessing such properties, 

C:S was shown in ref/ 4 / , can be constructed ~ averaging the possible singula­

rities of the function F 
0 

<e ) near the light cone vertex ! 1 
• 0 : 

F.,{!) • f F 0 (!-(')p(!'·,a)d
4
(", (27) 

where p(!') ·D ) is the weighting function ( formtactor), by means of which we 

average the singularities in that space- time region where the usual1, causality and 

the usual geometry may be violated. 

The weighting function p (!, a ) depends on some time-like vector D 

by means of which the domain 0(!) • a 4 is determined in an invariant manner. 

In particular, P 

and p{R) .. 0 

may be assumed to be a function of the invariant R : 

I 
R • 

for R » a 

I I 
2(!n) -! ~ 0 

(ct.! 4/ ) . 

( 28) 

The physical meaning of the vector a may be different and is discussed 

in detall in ref/ 5 / • In principle, two types of the vectors a are conceived: 

the first one, when the vector 

particles ("internal" vector D 

a is connected with a system of interacting 

)x/ • 

X/ For the connection of our scheme with the usual nonlocal theory, see Ap­
pendix B. 
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In this case a violation of geometry occurs only inside the system of interacting 

JJ<"U"ticles for extremely small distances and time intervals. Another possibility is 

that the vector • is related to the physical ve.cuum ("external" vector • ). 0 

1n this case one of the frames of reference, namely the frame of reference of 

the "physical vacuum", turns out to be singled out (ct.' 6• 7/ ) • 

To summarize, it should he stressed that we consider the introduced aV&­

ra.ging of the singularity near the vertices of the light cones only as a tbol of a 

formal description of the situation at small scales which may be very different 

Croin the wen-known one in contemporary theory. 

APPENDIX A 

For the simplest case of the point interaction W • A¢ t the function 

F(p ••• p ) (see ( 25)) is simply equal to at (pI+·~- p -p ). Therefore in the I' t • t 
first approximation the function S( • 

1
; • • • t ) is 

s ( .I; • • • t ) - ), I .... (pI ., +pI •• - p ••• - p t • t ) )( 

t 
x 8 < P 1 + Pa-P, - P t 

a a a a 
d p1 d p1 d p1 d P, 

We introduce the variables 
2'o 1 

2'oa 2po12'u 

then 

k • p 1 , a• P
1

+P
1
-P

1 
, ~-· -· ~-· -· I a, I I tJ 

q - p + p k • p + p -· - p " - ll -ll I I) t I I I t)., I I 

S(z 1;·· zt) •fupl{€k +~1 q+E1 antkt)B(k0 )3(k 1 -•1 ) x 

I I I 
xB(q -k )3[(q -k) -11 1 ]8 (a -• )3[(q -a) -11 ] .x 

0 0 "0 0 

x 6(a0 -k
04

)3[(a -kt )
1 

-11
1 ]Bt(kt)lkdtadtq d 4k

4 

By integrating we get 

+ - + + t 
S(€ E ~ ) • /D (t-z) IJ (z)/D (z +! -y )D (~ +y)d yd 4 z • 

,11 1 • a 

Since we are interested in the dependence of S 

making the replacement 
~. + y - Cl 

ll+~.+~.-fj 

~. + ~.- f 

10 

on the variable ~ 

( 1) 

(2) 

(3) 

( 4) 

, then 

( 5) 

we obtain 
+ - + + 4 4 

S({) • /D (!+~-fl )D (fj-f) /D (fl-cz)D (cz)d fjd a. 
( 6) 

From eq.( 6) it is seen that outside the forward light cone the function S( e ) 
exponentially decreases and turns out to be important only along the Compton 

wave length. 

APPENDIX B 

If we assume the weighting function p{!,a) being independent of the 

vector a then p will be a function of only ~ 1 
: p • p <e 1 

) ernd coin-

cides with the form factor of nQniocal theorJ B/ • 

nte role of the vector • (which is necessary for the localization of ac&­

usallty) is now played by the momentum vector or by a set of such vectors con­

nected with the wave packets'; i.e. the vector a is in this case taken from the 

original datA (i.e. from 41
18 

). As Owas shown in ref/
9/, in doing so, we 

may ensure macrocausality only for sufficiently smooth wave packets. For very 

narrow wave packets macroscopic causality will be vl.hlated. Indeed, we consider 

a wave packet which corresponds to the quantum transition from 1he stAte 

.P ( z, t) • e lu ¢ ( z - vt ) 
p p. 

••'• to the stAte .P ••. (z,t)•• "'•' (z-vt). 

The current density for the transition p -P'· is 

Jte •ezp[i(p-p', s)].cf>P (z-vt)~,_(a-vt). ( 1) 

Its nonlocal image is 

•t •a a 2 J •fp(a )J (z~t'}dz'dt' , where a •(t .. t') -(z-zj. (2) ,.. .. 
If the wave packets 1/1 (z,t) , r/1. ,(z,t) are very sharp (and 8 -shaped 

p p 

in the l.lmiting case) then J 
48

( z, t) is nonzero only at the point ll• 0, t • 0 

( the point of collision of the packets). So, we may assume: 

J (z,t) •eJIP [l(p -p'~ s)JB(z)B(t). 
ta 

Then from ( 2) we have: 

J (z,t) •p(t
1 
-z

1
) 

4& 

and causality is essentially violated because p ( t 1 
- z 1 ) -1 0 for t • + lz I 

for any whatever large lzl • 

11 

( 1') 

(3) 

i.e. 
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A B 

F i g, 1. A and B are the diaphragms; a and b are the wave 
packets of the init.lal state {the in- state). L is the init.lal 
size of the packets, R is the distance between them at 
the momentum t • - T , ll L is the increase of the di­
mensions of these packets during the time 2'1'. 
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A, 

F 1 g. 2. Relations of causality: u 1 ( z 1 ) , ~~:.< z 1 ) are the· lnit.lal packets 
(the in- state} v 1 ( z 1 ) , ·v, ( z 4 ) are the scattered waves of 
the ou~state A; A1 A~1 A1 A 2 A'; are the J.lght cones. 
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