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Introduction 

In modern theor.y the properties of the scattering matrix are formulated on 

the basis of local theory. However, the physical meaning of the scattering mat

rix, as was pointed out long ago by Heisenberg/ l/ , can essentially be beyond 

the narrow framework of local theoryx/ • This is also seen fr6m. the axiomatic 

approach in which the ambiguir of extrapolating the scattering matrix off the 

mass surface p1 
• p1 + 11

1 f 3 is clearly displayed. 
0 

Whatever this extrapolation is, a direct physical meaning is kept only by 

the scattering matrix S on the mass surface. Therefore we apply the causa-

lity condition only to this quantity which is physically defined, and we c:aJ.l it 

the condition of macroscopic cau&ality unlike the condition of microscopic causa

lity assoclated with the notion of local field, 

'l'he application of fhe causality condition to the scattering matrix meets with 

a difficulty that the scattering matrix transforms the states for t • - T into the 

states for t • + T at T ... • • During the time 2T the waves fill the 

whole space. Therefore a stationary state arises which, in its very essence, ex

cludes the conditions necessary for the causal connection to be formulated. 

In 2 we will show that it is still possible to construct wave packets which 

allow a reasonable formulation of !he macrocausality conditions and which are 

compatible with an interpretation of the limit T ... .. such that the tenns of the 

order ~( R • vT , , v - is the packet velocity) are assumed to be still 
R I 

finite while the terms of the order 1/R and higher are neglected. By means 

of such packets we .may formulate the conditions of macrocausality which is 

thought of as the usual causal connection characteristic of !he relativistic metric; 

events at the points " ( • • ·) and " ( z") may be causally connected provided 

only that a) the interval ( z"' - z' ) 
1 

is a time interval, I.e. ( z"- z'} 1 ~ 0 and 

b) the event at " ( z' ·) { cause) precedes the event at " ( z") { consequ-

ence) so that t" > t• • 

In 3 an example of the unitary acausal scattering matrix satisfying this 

macrocausality condition is given. 

J2f x:/See als • 
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2. Formulation of the Macrocausallty Conditions 

Let us consider the two wave packets a and b which at t -- T are 
I 

going out of the dla;phragms A and B ( see Fig. 1). Such a description of 

the packet "creation" simulates most closely the real situation in experiment. 

Somewhat later a collision of the packets can occur, but for t 1 • + T they fiy 

apart. Let for t 
1 

• - T the packets be at a distance R which is muct;t l.al'

ger than the sizE. of the packets L(R » L) • We shall asswne that the P"-ckets 

have a sufficiently definite momentwn p , so that p » ~ p • 11/L • Now we 

require that the packets would not spread considerably during the time 2T i.e, 

an increase of the packet width ~L must not be large as compared with the 

initial one L • The dispersion of the packet velocity ~v is 

ii
1 E 

~v • -- ~P 
ilpl 

~p Ill 

Til ( 1) 

( II 

dition 

is the particle mass). So, we have ~L •· ~v· T-~L R. From the con
p El 

L » ~L we get: 

II -L>-vRX, E . (2) 

where K =11 /p 

condition 

is the wave length. The condition { 2) is compatible with the 

I 

if R»~X 
kl 

R»L»'X 

I 

at X < A , or if R » .!.._ ;\ 
o A: at X> A 

0 

(3) 

here A
0 

a 11/mc 

Thus, there are packets which can be used as in- states transformable to 

out,.. states by the S .-matrix: 

' . ' . <fiSit > • 8
11 

-(2w) t8 (p
1 
-p

1 
)<tl Tit>, ( 4) 

where, as usual ( t) denote the quantwn nwnbers of the in- state, and ( f ) are 

those for the out,.. state, The matrix element < f I T II> can be represented 

a more detailed form: 

<fiTii>. <p., ''•-• •'••P•+tlliP. 'I'" p1 > ( 5) 

.; 2po ·2p • • • • 2 P 
• Om -1 01 

where < p , p • • • • p II 1 p ••• p > is the invariant function of the foUl'- momen-
• m-1' n+l n, 1 

ta p , p , ... p and p , ' ,... ~ are their fourth components. In what follows, 
m •-1 l 0• 0.•1 01 

we shall restrict ourselves to the simplest case of the pairing collision of two 
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particles, when in the initial state ( i) there are only two particles described 

by the wave packets 11 
1 

( s
1

) and u 1 ( s 
1 

) of the above considered type. The-

se packets can be represented in the form of the integrals: 

ll(s)• 1 a (2;)iJi" f u (p) elpx d p 

~ 
( 6) 

where p
0 

• + v ~I+ 11 1 • 'I'he wave function of the initial state in the momentwn 

representation will be of the form: 

iii (pi) 
( p)·-=. 

fila PI I V 2poa 

From ( 4), ( 5), ( 7) we get: 

•• (p,) 

v 2p01 

float( P., •Pa-lo"'Pa) • 

- (2w) 4 lf8
4

(p +p + ... + p -p -p ) x 
• •+t I I 1 

<p ,p ... p IIIp p > .. .. d 1 p d 1 p 
X • a-to I a, 1 U (p )1 (p ) I I 

I I I I 
2 V 2p o. 2p

0 
•• 

1
... 2p 

01 
P o12po 1 

and for m • 4 (the elastic collision): 

() (p, p) .() (p, p) -( 21r)
4

i f84 (p +p -p -P )x 
oa' 4 I Ia 4 I 4 I I I 

<pplllpp>- ~ dip L 
+ hi a, 1 U(p)U(p) dp~ F' 

I I I 1 v 2p 2p 2p 2p 
04 oa o 1 o 1 

( 7) 

( 8) . 

Now we go over to the coordinate representation. For this we multiply the left

hand side of ( 8) by 

1 e:q~l(p.s• +p._1 s•-f •••+p
1

s
1

) 

(2rr) I{ I <• -•> v 2p 0 2p0 1 ·• • • 2P. • -. oa 
and integrate over 

in terms of u( s): 

d'p. , d 1 p ···d 1 p • Further by (6) we express i("~) 
•-1 I 

.. (p) 

2po 

Then from ( 8) we gel! 

1 J •Ilia 
(2w)'/a ll(s)e d' s • ( 5') 

( 9) 
fl (s ,s , ... ,« ) --·(2w)

4
ifa(s ,s ,-,s Is ,s ) 11 (s )1l (z )d 1s d•s 

eat • • • I I • • • I I I 1 I I 1 1 I , I 

and in a similar way fr.om (a') 
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. . 
• ••• ( s, , s 

1 
) • •,. (s, , s 1 ) -(2•) l f c< s , , s ~ I s 2 , s 1 ) 

a (s )a (s )d 1 s d1 s • 
1 I I I I I ( 9') 

In this case we have 

or 

where 

1(:1 •• z.., , ... , s,l :12 ,s l). 

' - fiJ (p + p + ••• + p -P -p ) < p , p ••• p Ill p p > )( 
a a-1 I 2 I • •-I I It l 

lo 

qpl(p. x. +••• + p
1 

x
1 

-p
2

x
1
-p

1 
x

1
) 

2Poa 2po•-l •. • 2 Po a 
d'p. • • d II • • • d p •·l I 

1 ( s. , s._, ,. • • , s 1 I x1 , x 1 ) •-

2 
4a c0 (s., , s._,; • ·s1 ls1 : 1 ) 

at, at, 

is the invariant function of the coordinates 

• lo ( s , 11 
1 

• ·, s
1 

I x 1 , s 1 ) • f IJ (p + P + • • • + P -P - P 1 ) x 
• •- I • •-l I 2 

<~ ,p ,•••p lllp
1

p
1
>e1!Pi(p,.s,.+•••+P8 s 1 -P,sa-ps)c 

m m•l I 1 l l 

I I I 
d p•d P._,··· d P1 
2p 2p ••• 2p 

Oa 0.-1 Ol 

( 10) 

( 11) 

( 12) 

We notice that due to the presence of the IJ function under the integral in 1 

and 1
0 

these functions are translation- invariant and depend only on the dif-

• No we may formulate the prlncip-ference of the variables z. , s.-r; . :1 l 

le of macrocausality: a) the wave packets 

removed opart at the distance 

a1(s1 )(~s2 • L) and a 1 (s1 X~z1•L) 

contribute to • .... 
1:.- -;,I•I;I,.R >L»X 

provided only that 

I I ,. I 
:1 • ( t I - t l) -( f -J- :1 l ) > 0, 

( 13) 

( 14) 

b) Further • • 0 if the coordinates of the particles z , z ••• z creat.-••t. • •·I' I 

ed in the collision lie out of the future light cone with respect to the points 

:1 ,s 
I 1- 2 I 

(z
0 

-z
2

) > 0·, (s
0
-z 1 ) > 0, 

( 15) 
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" 
4 
f1 

I 
''~i 
·X 
\',~ 
)1 

l 

,, 
lj'IJ 

' 

~ 

t. > t 2 , >tl , ( 15') 

·-···•-1,•••3 • 'lhus the function c( z., , z.,_
1

; • • z 1 lz1 ,z1 ) must consequenUy 

vanish outside the above- rrentioned space- time regions, however, only asympton.. 

caliy, i.e. for 
R .... (t.-t, ),(t.-tl) ..... 

( 16) 

From the physical point of view these conditions are identical with the requ'

menta of classical macroscopic causality and imply the assumption that all the 

particles in the final state • ••• can be produced ( or change their state) 

later than the initial packets exchange the field quanta ( see Fig. 2). 

'The usual local theory satisfies, of course, the above stated requirement 

of macrocausality (for example see Appendix A). 'This requirement will be satl&

fied also by any scattering matrix in which the macrocausality is violated only in 

a small localized space- time region. 

In 3 we give an example of the acausal unitary sr attering matrix obeying 

the requirements of macroscopic causality, 

3. Acausal Scattering IVIatrix 

Now we turn to a formal construction of the nonlocal scattering matrix, 

obeying the requirements of unitarily and macroscopic causality. 

We represent the scattering matrix S 

s • 1-(l/2) It 

1 + (l/2)K 

where It is the Hermitea.n matrix, i.e. 

in the form: r 

( 17) 

Jt,.Jt+, 
( 18) 

'This provides the unitarily of the considered matrix, To study the structure of 

the S -matrix we shall .assume that there is a small parameter which permits 

to expand our scattering matrix in a power series in this parameter 

5 • i 8
8 

(lJt)D 
a-o 

( 19) 

where ._ are the real numbers. After singling out the invariant functions 

the matrix F can be written in the form 
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K .. 
F(p ···p IP +I···P.,> t, • • ' 

..; 2Pol2ilu··· 2 Po., (20) 

where p • + -./ p1
2 

+ m 
2 

·• We shall consider only scalar particles. Owing to the 
01 

CPT theorem, we have for the matrix elements K: 

.K(p·•·PIP ·••p)•K(p ···PIP···p) 
t, • •+1, • •+t, • s, • 

( 21) 

and taking into 1\ccount ( 18) : 

K ( p1 • • • p I p • • • p ) - tc .. ( p •••• p I p ••• p ) • 
' D a+J, • 1.) D a+J_, a ( 22) 

This means that the function must be reel. Now we note the following properties 

of the functions 

- 1 • • 
F(p •••p ) • /F(z z ••• z )eJP(II p z )utl 4z 1

' • · (2w) ilaa 11 a, • 1•1 1 I 1•1 I 
(23) 

in this case 

F(z1;··z.) • F(-z 1,-z 2 ,···-z.,). 
(24) 

Further F( z 11• • • z • ) is translation - invariant. In particular, it can be repre

sented as a function of the variables e, - z, -zl+1 , j -1. 2,·-·m•l.'I'hen we may 

write down ( 23) in the form: 

we 

we 

F(pl,pl;··p )•8
4

(p +p +•••+p )x 
1 a • (23) 

. • -1 • -1 • 
.,-1< 0 /F{! 1 ! 1 --· !._1 )up(l I Q

1 
!

1
)D tl !

1 (2w) •- ' I 1•1 1•1 

Now we turn to the macrocausallty condition and, for the sake of definltness, 

restrict ourselves to the simplest case of the elastic collision. Basing on ( 19) 

have: 

F(pl ''•''a ,p,) 
<p 1 •Ia jSjp1 ,p

4
> • 1-l + 

..; 2Po 1 2Poa 2P oa 2Po, 

(25) F( • ">-< • .. pl,p,,p ,p F p,p ''•''' + f X 

..; 2pol·. • 2Po, 

I I I a 4 4 
x 8 (p' - m )6 (p~~ 8(p" - m )6(p';; )d p' d p". 

8 

In the coordinate representation we have: 

S ( J: 
1 1 • • • 1 !I 

4 
) • 1 -1 F ( x

1 1 • • • 1 X 
4 

) + 

+f/F(x 1,za,x', z")D+ (x'-y')D+ (z"-y") x 
(26) 

x F(y',y'~., :r 1 ,:r, )d
4 

:r'd 4 :r"d 4 y'd 4 y~-+ ••• 

In the ordinary local theory the function S ( z 
1

; • • x 
4 

) being based on the mio

rocausallty, satisfies the requirements of macrocausality ( 14,15) ( cf.Appendix A). 

It has singularities on the light cone with respect to the variables ! . x ·- z 
1 I 2 1 

e_ •·x -x ,J: •z -z ;the nature of these singularities is essentially related to causa
l I I 'a I 4 

llty. The same may be said about the functions S with a larger number of 

arguments. We denote the corresponding functions of the local theory by F
0
(!

1 
,~ ,~). 

We do not violate the macrocausality condition ( 14), ( 15) if, instead of the 

causal functions F 
0 
(! 

1 
, ! 

2 
• • • , ! ., ) , we introduce the acausal ones F .. <e 

1 
,e 

1 
,. ··~.) 

which will differ from F 0 U 1 , ! 1 , ••• ! ., ) only in a small space- tim~ region near 
I . 4 

the vertex of the light cone '' - 0, oa, ) .. Q • The quantity a plays the 

role of an "elementary length". The functions F U ) possessing such properties, 

C:S was shown in ref/ 4 / , can be constructed ~ averaging the possible singula

rities of the function F 
0 

<e ) near the light cone vertex ! 1 
• 0 : 

F.,{!) • f F 0 (!-(')p(!'·,a)d
4
(", (27) 

where p(!') ·D ) is the weighting function ( formtactor), by means of which we 

average the singularities in that space- time region where the usual1, causality and 

the usual geometry may be violated. 

The weighting function p (!, a ) depends on some time-like vector D 

by means of which the domain 0(!) • a 4 is determined in an invariant manner. 

In particular, P 

and p{R) .. 0 

may be assumed to be a function of the invariant R : 

I 
R • 

for R » a 

I I 
2(!n) -! ~ 0 

(ct.! 4/ ) . 

( 28) 

The physical meaning of the vector a may be different and is discussed 

in detall in ref/ 5 / • In principle, two types of the vectors a are conceived: 

the first one, when the vector 

particles ("internal" vector D 

a is connected with a system of interacting 

)x/ • 

X/ For the connection of our scheme with the usual nonlocal theory, see Ap
pendix B. 
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In this case a violation of geometry occurs only inside the system of interacting 

JJ<"U"ticles for extremely small distances and time intervals. Another possibility is 

that the vector • is related to the physical ve.cuum ("external" vector • ). 0 

1n this case one of the frames of reference, namely the frame of reference of 

the "physical vacuum", turns out to be singled out (ct.' 6• 7/ ) • 

To summarize, it should he stressed that we consider the introduced aV&

ra.ging of the singularity near the vertices of the light cones only as a tbol of a 

formal description of the situation at small scales which may be very different 

Croin the wen-known one in contemporary theory. 

APPENDIX A 

For the simplest case of the point interaction W • A¢ t the function 

F(p ••• p ) (see ( 25)) is simply equal to at (pI+·~- p -p ). Therefore in the I' t • t 
first approximation the function S( • 

1
; • • • t ) is 

s ( .I; • • • t ) - ), I .... (pI ., +pI •• - p ••• - p t • t ) )( 

t 
x 8 < P 1 + Pa-P, - P t 

a a a a 
d p1 d p1 d p1 d P, 

We introduce the variables 
2'o 1 

2'oa 2po12'u 

then 

k • p 1 , a• P
1

+P
1
-P

1 
, ~-· -· ~-· -· I a, I I tJ 

q - p + p k • p + p -· - p " - ll -ll I I) t I I I t)., I I 

S(z 1;·· zt) •fupl{€k +~1 q+E1 antkt)B(k0 )3(k 1 -•1 ) x 

I I I 
xB(q -k )3[(q -k) -11 1 ]8 (a -• )3[(q -a) -11 ] .x 

0 0 "0 0 

x 6(a0 -k
04

)3[(a -kt )
1 

-11
1 ]Bt(kt)lkdtadtq d 4k

4 

By integrating we get 

+ - + + t 
S(€ E ~ ) • /D (t-z) IJ (z)/D (z +! -y )D (~ +y)d yd 4 z • 

,11 1 • a 

Since we are interested in the dependence of S 

making the replacement 
~. + y - Cl 

ll+~.+~.-fj 

~. + ~.- f 

10 

on the variable ~ 

( 1) 

(2) 

(3) 

( 4) 

, then 

( 5) 

we obtain 
+ - + + 4 4 

S({) • /D (!+~-fl )D (fj-f) /D (fl-cz)D (cz)d fjd a. 
( 6) 

From eq.( 6) it is seen that outside the forward light cone the function S( e ) 
exponentially decreases and turns out to be important only along the Compton 

wave length. 

APPENDIX B 

If we assume the weighting function p{!,a) being independent of the 

vector a then p will be a function of only ~ 1 
: p • p <e 1 

) ernd coin-

cides with the form factor of nQniocal theorJ B/ • 

nte role of the vector • (which is necessary for the localization of ac&

usallty) is now played by the momentum vector or by a set of such vectors con

nected with the wave packets'; i.e. the vector a is in this case taken from the 

original datA (i.e. from 41
18 

). As Owas shown in ref/
9/, in doing so, we 

may ensure macrocausality only for sufficiently smooth wave packets. For very 

narrow wave packets macroscopic causality will be vl.hlated. Indeed, we consider 

a wave packet which corresponds to the quantum transition from 1he stAte 

.P ( z, t) • e lu ¢ ( z - vt ) 
p p. 

••'• to the stAte .P ••. (z,t)•• "'•' (z-vt). 

The current density for the transition p -P'· is 

Jte •ezp[i(p-p', s)].cf>P (z-vt)~,_(a-vt). ( 1) 

Its nonlocal image is 

•t •a a 2 J •fp(a )J (z~t'}dz'dt' , where a •(t .. t') -(z-zj. (2) ,.. .. 
If the wave packets 1/1 (z,t) , r/1. ,(z,t) are very sharp (and 8 -shaped 

p p 

in the l.lmiting case) then J 
48

( z, t) is nonzero only at the point ll• 0, t • 0 

( the point of collision of the packets). So, we may assume: 

J (z,t) •eJIP [l(p -p'~ s)JB(z)B(t). 
ta 

Then from ( 2) we have: 

J (z,t) •p(t
1 
-z

1
) 

4& 

and causality is essentially violated because p ( t 1 
- z 1 ) -1 0 for t • + lz I 

for any whatever large lzl • 

11 

( 1') 

(3) 

i.e. 
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A B 

F i g, 1. A and B are the diaphragms; a and b are the wave 
packets of the init.lal state {the in- state). L is the init.lal 
size of the packets, R is the distance between them at 
the momentum t • - T , ll L is the increase of the di
mensions of these packets during the time 2'1'. 
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A, 

F 1 g. 2. Relations of causality: u 1 ( z 1 ) , ~~:.< z 1 ) are the· lnit.lal packets 
(the in- state} v 1 ( z 1 ) , ·v, ( z 4 ) are the scattered waves of 
the ou~state A; A1 A~1 A1 A 2 A'; are the J.lght cones. 
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