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Introduction

In modern theory the properties ot the scattering matrix are formulated on
the basis of local theory. However, the physical meaning of the scattering mat-
rix, as was pointed out long ago by Heisenberg/ 1 y can essentially be beyond
the narrow framework of local theory™ . This is also seen from. the axiomatic
approach in which the ambiguity of extrapolating the scattering matrix off the

mass surface p: «3®+ ot /3 is clearly displayed.

‘ Whatever this extrapolation is, a direct physical meanl;rg is kept only by
the scattering matrix $§ on the mass surface. Therefore we apply the causa-
lity condition only to this quantity which is physically defined, and we call it

the condition of macroscopic causality unlike the condition of microscopic causa-
lity associated with the notion of local field,

The application of the causality condition to the scattering matrix meets with
a difficulty that the scattering matrix transforms the states for t=-T into the
states for t=«+ T at T + e | During the time 2T the waves fill the
whole space., Therefore a stationary state arises which, in its very essence, ex-
cludes the conditfons necessary for the causal connection to be formulated,

In 2 we will show that it is still possible to construct wave packets which
allow a reasonable formulation of the macrocausality conditions and which are
compatible with an interpretation of the limlt T + such thatthe terms of the
order ?1( R=vT, » Y= is the packet velocity) are assumed to be still
finite while the terms of the order I/R’ and higher are neglected, By means
of such packets we gnay formulate the conditions of macrocausality which is
thought of as the usual causal connection characteristic of the relativistic metric;

events at the points P(2°) and ?Px*) may be causally connected provided
only that a) the interval (x” - x’)° is a time interval, iLe. (x*~ 39’ 20 and
b) the event at ?(x”) (cause) precedes the event at 9(x*) ( consequ-

ence) so that t*> ¢,

In 3 an example of the unitary acausal scattering matrix satisfying this
macrocausality condltion s given,

x/ See a.lao/ 2/ .




2. Formulation of the Macrocausality Conditions

Let us considex.' the two wave packets a and b which at tl.-"r are
going out of the diaphragms A and B (see Fig. 1). Such a description of
the packet "creation” simulates most closely the real situation in experiment.
Somewhat later a collision of the packets can occur, but for t =+ T they fly
apart. Let for t, =~ T the packets be at a distance R which is much lar-
ger than the size of the packets L(R> L) . We shall assume that the p':ckets
have a sufficiently definite momentum p , so that p >» Ap = #/L . Now we
require that the packets would not spread considerably during the time 2T Le.
an increase of the packet width AL must not be large as compared with the
initial one L . The dispersion of the packet velocity Av is
IE Ap = i m_’_ (1)
dp? E g2

2

(m is the particle masa). So, we have AL = Ay. T-ép_il;’R ., From the con~
PE

dition L > AL we get

a —
L> T\/_ny

(2)

where X=4 /p is the wave length. The condition (2) is compatible with the

condition
R>»™L >»™X ( 3)
A S 2

if R»__0x at X <A ,or if R>» = _ X at X> A here A = #/mc
X3 o A" )] ]

(]
Thus, there are packets which can be used as in-states transformable to
out- states by the S -matrix:
‘4 !
<f|$|i> = &, -(20) i (p'-p' <t Tla> (4)
where, as usual (i) denote the quantum numbers of the in-state, and (f) are
those for the out-state., The matrix element <f |T|l> can be represented
a more detailed form:
< .o oo
<f|T|i> = Pa Pu_y” Pn+llqpl s Py > . (s)

I P o8 & o
v 290- 290-: -1 2"0!

where <p_ ,pm_”....pn“ll]pn’...p1>

ta P, p e Py and Pom’Pom-1 ™ P01 are their fourth components. In what follows,
~1

we shall restrlct ourselves to the simplest case of the pairing colllsion of two

is the invariant function of the four-momen-

particles, when in the initial state (i)
by the wave packets u, (’1’ and u 2 (x ’) of the above considered type. The-

there are only two particles described

se packets can be represented in the form of the integrals:

1 . ,», fipx daP (6
u(1) an(p)e o )

]

where P, =+ Vv33+m? .The wave function of the initial state in the momentum

representation will be of the form:

-~ FN 7
e, (p,p )" S (8 "'2_‘_) . (7)
Vp,, 2,

From (4), (5), (7) we get:
® Py Py, eePy) -

8
_(zn)‘ifs‘(p_+p_+l+ s+ p.-pa-p!)x ( )

< ces
o SPa Py p, e, p, > LG, G, 8 pde,
\/290_290_'!... Zp“ 29022901

and for m « 4 (the elastic collision):

® - -(2* -p -
(p‘.p.) ‘l’h(p‘.p‘) (Zu)iIS‘(p‘ﬂ’. P, pl)x

out

<pop |1l pp
_.A.u____J__U(p)U(p)__..in_ﬂx N
\/21’ 2p. 2p 2p

04 03 02 01

Now we go over to the coordinate representation. For this we multiply the left-
hand side of (8) by

1 e i(Pm Xy, + Py X _# =>-+p,1,)
(2rr) 3/3 (m -2) V2 % — 2p
Om.i *
and integrate over d'p- ,d® p--!---d ’, . Further by (6) we express ¥(3)
in terms of u(x):
i@ t5x
w, | Govr NPT ()

Then from (8) we get:
(9)

.-‘(’- "--l bt} ‘. ) "’(2')‘ lfl(l- nl-_l n—pl' |X’,!! ) nﬁ(!a)nl(‘l )d.l’ d"X‘

and in a similar way from (8’)




o.u('a iz )=, (2 .". ) '(2')‘ etz oz lx 01y ) w, (x)e, (’:)d".d.xl .(9')

In this case we have

‘(!. [R S ""o',‘ g + X l)- ’ }

‘ (10)
=f8 (P +Pg_ g+ + P, =P, =P, )< P_ R B lllp,’p‘> x
b S Yo Sl e i 1 UL RO LY
or 205y 2Ppm_y"" 2Py,
3
49 g (x_ ,x cex lz.x,)
g(xg ox _, ooz xg 2 ) e- S_ = m-D 3 B,
- 11
at.a-t‘ ( )
where g, is the invariant function of the coordinates

g (x .z__,;-.!.lx,.x,)-fli‘(pn*r»__,*r---+|'»'-r»a -p,)x

(12)

<Py 0P, st By g PeMI(p x4 ce 4 2y 3y =P Xy -px X

3 3 3
d p-d P 4t d pl ]
2 ceew
- po- 2’0--1 2’01

We notice that due to the presence of the 8 function under the integral in g

and 3 these functions are translation-invariant and depend only on the dif-

°
ference of the variables X .%,_f~° X, . No we may formulate the princip-
le of macrocausality: a) the wave packets u,(x;)(Az, ~L) and u (x XAx~L)

removed apart at the distance

L J
1%, = 3, 0= lxl=R>L>»x (13)

contribute to 0.‘“ provided only that

!’-(t’—t‘)’ —(?2-;‘)’>0. (14)

b) Further ¢ -0

ed in the collision lie out of the future light cone with respect to the points

if the coordinates of the particles x_ ,x N creat-
L ’

] 2
(x,-x,) >0, (x_-1,) >0,

(15)

b e

t.>t, , t >t ,

L 2 s 1

(15°)

sem,m~1,~~-3 . Thus the function g(x_ "--n""al’n"x) must consequently

vanish outside the above- mentioned space- time regions, however, only asymptoti-

cally, l.e, for
R =« 0 , (l.—l’),(t.—tl)-b- .

(16)
From the physical point of view these conditions are identical with the require-
ments of classical macroscopic causality and imply the assumption that all the
particles in the final state @, can be produced (or change their state)
later than the initial packets exchange the field quanta (see Fig. 2).

The usual local theory satisfies, of course, the above atated requirement
of macrocausality (for example see Appendix A), This requirement will be satis~
fied also by any scattering matrix in which the macrocausality is violated only in
a small localized space-time region.

In 3 we give an example of the acausal unitary scattering matrix obeying
the requirements of macroscopic causality, '

3. Acausal Scattering Mairix

Now we turn to a formal construction of the nonlocal scattering matrix,

obeying the requirements of unitarity and macroscopic causality.

We represent the scattering matrix § in the form: N
1-@/2)K
S .,
14+ (1/2)K (17)

where K is the Hermitean matrix, i.e.
K-k,
(18)
This provides the unitarity of the considered matrix, To study the structure of
the s -matrix we shall assume that there Is a small parameter which permits

to expand our scattering matrix in a power series in this parameter

SERNC (29)

where a, are the real numbers. After singling out the invariant functions

the matrix F can be written in the form




F Py, =opa 1Py o Py)

+

‘/2"01@03"' 2%, (20) e

*2 ? .
where Py ™+ \/p' +m » We shall consider only scalar particles, Owing to the
CPT theorem, we have for the matrix elements K:

R REN NI L K@y, =mpu [py;o-p, ) (21)

and taking into account (18):

K(p,«=+ cee P, )=K*(p -en-
PR L AURLLE BB EL UGS M N B R (22)

This means that the function must be resl. Now we note the following properties

of the functions

- 1 m
F aee - cen
(y==-Pn) GV fl"'(xl’x’, x denGl p 5 )nd‘x' (23)

=i =y
in this case

F(x,=-~ - -x,, -

(xyp--x,) = F( Xpp =Xy ,oo= =x_ ) . (24)
Further F(xl’---x-) is translation - invariant. In particular, it can be repre-
sented as a function of the variables E, -1 =X 1§J=L2,~--m-1,Then we may
write down (23) in the form:

b 4
Fpopgroop ) =87 (p +p, +-c-4p_)x (23)

- -1 =

1 . 14
(—2-;)7;(—_-:75— .”’(f,’f’,"' €ury )":P(lif‘ Q, f‘)’_r.ll L

Now we turn to the macrocausality condition and, for the sake of definitness,
we restrict ourselves to the simplest case of the elastic collision. Basing on (19)

we have:

l~’(p P sP_oP,)
. il |
<P, .p, iSlpgp,> = 1t _ 2 +

v 290 1 2poa 2poa 2p°‘

(25)

. F(pyuny oM P )F(p'p”p 00, )

V2p,,--- 2Py,

x 8(p* == )0 (p) 8(p” - m 2 )8(p% )d p7d * p” .

In the coordinate representation we have:
S(xl, .o ,x‘) = l—l!"(xl X, ) +
+[[F(x,x,,x, 2D (X'~y")D* (x”-y") x
(26)
x F(y’,y", XX, )d‘ x’d ‘x"d‘y’d‘y"...g. cee

In the ordinary local theory the function S(x,-=-x,) being based on the mio-
’

rocausality, satisfies the requirements of macrocausality (14,15) (cf.Appendix A),

It has singularities on the light cone with respect to the variables El .xl'- x

E’-‘x’-x. ,q--x' -x, ;the nature of these singularities is essentially related to causa-
lity. The same may be said about the functions S with a larger number of

arguments, We denote the corresponding functions of the local theory by F._(EI ,f‘ ,_{),

We do not violate the macrocausality condition (14), (15) if, instead of the
causal functions Fc(fl,fa- --,fn) , we introduce the acausal ones F-(Ex"_fa" ..,{_)
which will differ from F  (§,,£,,---§, ) only in a small space-time region near
the vertex of the light cone f, =0, O~ @ . The quantity o plays the
role of an "eiementary length". The functions F. (§) possessing such properties,
a's was shown in ref, 4 , can be constructed by averaging the possible singula~

ritles of the function F, (§{) near the light cone vertex ¢ 2.0:

Fo() = [Fo (= &)p(en)a'e, (27)

where p(£’, 1) is the weighting function (Iomlfactor), by means of which we
average the singularities in that space-time region where the usualpcausa.t!ty and

the usual geometry may be violatee,

The weighting function p(§, n) depends on some time-like vector a1 ,
by means of which the domain Q(§) =~ a* is determined in an invariant manner,

In particular, ¢ may be assumed to be a function of the invariant R:

R' = 2(60)" -2 0 ' (28)

and p(R) - 0 for R > a (cf./4/).

The physical meaning of the vector a may be different and is discussed
in detail in ref. 5 . In principle, two types of the vectors are conceijved:
the first one, when the vector 1 is connected with a system of interacting

particles ("internal” vector y< .

x/ For the connection of our scheme with the usual nonlocal theory, see Ap~
pendix B,




In this case a violation of geometry occurs only- inside the system of interacting
particles for extremely small distances and time intervals. Another possibility is .
that the vector a is related to the physical vacuum ("external" vector a ), ¢
In this case one of the frames of reference, namely the frame of reference of

the "physlical vacuum”, turns out to be singled out (cg./ 6,7/ ).

To summarize, it should be stressed that we consider the introduced ave-
raging of the singularity near the vertices of the light cones only as a tool of a
formal description of the situation at small scales which may be very different

from the well-known one in contemporary theory.

APPENDIX A

For the simplest case of the point interaction W =g ‘ the function
?(pl;--p‘ ) (see (25)) is simply equal to &* (p,+Pp,~p, =p): Therefore In the
first approximation the function S(xl_--- x,) is

S(xl;-- x‘)--Aj’npl(pixld-p’x’-p.x‘-p‘x‘) x (1)

3 3
‘ dp d*p d'p, d*
x8 (p,+p;-p~-p,) BOpd P dp,

2p, 2p % 2p
We introduce the variables o1 703 Tos Vo4
k= py, u= 040,70, , E-xl-xlyfl-‘l-‘t.' (2)

9= P, +p, k = ’1*’9":"4,‘;": %

then ™
S(xyze- 1) =fomi(Ek +£ q+£, uvx k )OGSk ~0")
x0(g, =k, )8[(a ~k)" ~n210(g ~3)8[(q-1)" -0’ 1.x ()
x 0(n, =k, )8l(a =k )" ~m 184k Y kd'ud'a d’,
By integrating we get
SCE6,€,) = 1D (-0 (D (x4 g, -yID € andyatn . (4)

Since we are interested in the dependence of § on the variable ¢ , then
making the replacement
Sty =a
x4+ f’ + f. -8 (5)
f’ + E. -
10

we obtain

S(E) = [D*(E+e= B)D (B-¢) D' (B-a)D (a)d*Bd‘a . o)

From eq. 6) it is seen that outside the forward light cone the function §(¢)
exponentially decreases and turns out to be important only along the Compton
wave jength,

APPENDIX B

If we assume the weighting function p(§,a) being independent of the
vector a then ¢ will be a function of only f’ Y p(f') and coin-

cides with the form factor of nonlocal theor# 8/ .

The role of the vector a (which is necessary for the localization of aca-
usality) is now played by the momentum vector or by a set of such vectors con-
nected with the wave packets; i.e, the vector a is In this case taken from the
original data (Le. from LI ). As Owas shown in ref./ of , In doing so, we
may ensure macrocausality only for sufficiently smooth wave packets, For very
narrow wave packets macroscopic causality will be violated, Indeed, we consider

a wave packet which corresponds to the quantum transition from he state

¢l’ (x,t)-e!px ¢' (x=-wt) to the state ¢'p',(!:l)-e'°" ¢',(x-vt) .

The current density for the transition p-p” s
Jio memlie-p, )14 (x-w)¢% , (x-w) . (1)
Its nonlocal image is

T =1eG ) (et , where 37 m(tat fx-2’. (2)

If the wave packets ¥ (x,t) , ¢,,(x,t) are very sharp (and 8 - shaped
in the limiting case) then 1,0 is nonzero only at the point z=0, t= 0
(the point of collision of the packets). So, we may assume:

I (x:1) =em [1(p =p*5 )} B(x)8(1). - ()

Then from (2) we have:

J ) =p(t’-x") (3)

and causality is essentially violated because p(t’ ~x3)y 0 for t -4+ [x | ie.
for any whatever large |zl.
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Fig, 1. A and B are the diaphragms; a and b are the wave
packets of the initial state (the in-state). L Is the initial
size of the packets, R is the distance between them at
the momentum te~T , AL is the increase of the di-
mensions of these packets during the time 27T,
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Fig. 2. Relations of causality: u, (x,), 5(x,) are the initial packets
(the in-state) v,(x,),v,(x,) are the scattered waves of

the out-state A} A, A{’,A: A A7 are the light cones.
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