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Introduction

1t paper is devoted to some problems related to the role of time

anics:
an operator or a parameter?
Yy conserved in time?
3. What is the meaning of the uncertainty relation AEAt« h?

As far as these problems are concerned there is a freat deal of opinions

often contradictory, In order to sketch the situation we shall give some of them,

From the Plank-DeBroglie relation E = ho and the fact that a finite
time is needed to measure the frequency there follows the relation AEAt w hh'z/.
Suitable gedanken experiments are known 3/ . In generalizing relativistically the

commutation relations [x’ ,xj]:i&u 71,j= 1,2 3; we obtain also the relation
[xo,p[]]‘:-ih.

However, in spite of this, predominant is the opinion that time is not an
operator, but a parameter, It is based on the fact that the energy operator in
quantiin mechanics is not ih 9/t but a Hamiltonian which is a function of
only momenta and coordinates commuting with t [ 2.4 . Such an operator may
have a discrete eigenvalue spectrum (in accordance with our experience),
while from [E,t]= ih it follows that the energy must have only a continuous
spectrum/ 5/ (in a similar way as from [x,p_l= ibh it follows the continuity
of the p_ spectrum/ 6/ ). Our interpretation of the wave function implies that
time 1 be only a parameter: f|¥(x, ‘t)lad’x may not be considered as the
probability for the system to be at the point t . On the contrary, the probabi
lity [|¥ (x,t)la d®x must be a time-independent constant ( conservation of

the normalization).

In the present paper a general point of view is suggested which natural-
ly includes the listed aspects of the problem (as well as some others not men-

tioned yet). It allows one to discuss the role of time from apparently more gene-









. i 2 2 2 .
r (instead of t ), r'=t'- x°, will be a parameter, In the same way as t

, ¢ numbers the hyperboloids t7-s?=¢

numbers the planes parallel to xyz
hict fox? i 2/

which at t ~x> 0 are space-like surfaces ' . This remark is given here be-
cause it can illustrate additionally the general viewpoint of the present paper and

some possible modifications of it.

So, time is a parameter in the M - space and an operator outside it. In
the latter case it is possible to get formally from [t,E)}=—i the corresponding
uncertainty relation. As is known, to do this it is necessary only to define the
norm or the scalar product (¥, ,¥,) of wave functions not belonging to M.

We may assume the invariant expressions

(6)

t *
e er (e, 0¥, (x ) and [a'oet ()¢, (p,)

in the coordinate and momentum representations respectivelyal . Let us stress
that the interpretation of the wave function ¥(x,y,z,t) not obeying equation
s 2

(4) is unclear, Indeed, f1¥(x,y,2,t| d*x may even vanish for some values of

t , so the usual interpretation (see Introduction) is not suitable.

Note that the concept of function spaces wider than M is necessary in
the apparatus of the theory. For example, before writing eq. (4) it is necessary
to indicate the class of functions in which the action of each operator p?

3
(including 4 /at? } is defined.

Physical systems consisting of interacting particles or fields are characte-

rized not only by the quantities P" and MI‘V (total momentum and angular

. . 2 .
momentum) but also by other operators. Folliowing Dirac A2/ the construction
the relativistic dynamics for a system is generally reduced to finding P and
I
L. such that they satisfy (1) and at the same time commute with t. To
show that other operators commute with t, a concrete consideration is needed.

2] 2

"In ref./ 1 / the consideration is made in the framework of the classic
(nonquantum) mechanics. The author has made the corresponding consideration
in a quantum case, In contrast to {5) it turns out to be necessary to change

the representation of the operators P HE. I may be left the same as in
3). The commutation relations (1) must again be furilled in the sense
ts 5, 1¥u=0 and so on. The form of new representatives 'fa;‘ of the dis~

placement generators is rather cumbersome,

3/ It may be of some interest to note that if ¥ obeys (4) then (6) redu-
ce in some sense to the corresponding known expressions. -For example, qS(p“)
then must be of the form 8(1)2+'m7 YO(E)f(p) and therefore we have

4 - - 8 ——
fa'pgr (b Ydn,(py o (m, —m, [ (P) () p/VP? +m3.
As is seen, the known definition of the scalar product for the solutions of egs.
(4)A1] appears.



But in any case, in the constructed dynamics the total energy P, will commute

with t,

The above consideration is a relativistic one, A presentation based on the

Galilean group would be more difficult, see/ 13/ .

2, Energy Conservation in quantum Field Theory

Systems with interaction are usually described in the framework of field
theory. As for this theory we note only that in the available formulation of the
quantum field theory time is a pa.rameter4/' and discuss only one problem: con-

servation of energy with time,

All the physical quantities of the second quantized theory may be referred
to a definite time including the total energy operator

HeofT, (,0)d%x . (7)
As is known, this integral is independent of time (owing to 3'1"“‘ /9 x,= 0 the
system is assumed to beé closed),

Thus, in field theory the expressions: "total energy in moment t ", " to-
tal energy is conserved in time” have an exact operator meaning. Let us show
that this operator law of conservation means the conservation of the probability

amplitude of distribution over the eigenvalues of the operator H.

"
The' general solution of the Schrodinger equation

3¢(¢) .
i /3t = HO(t) (8)

can be written in the form
—-tw, ¢
O(t) =8, f, b, e (9)

where S, means a summation or integration over some variables, including the

number v of the eigenfunction ¢, of the H operator (which belongs

4/ The coordinates X,¥, 2 in field theory are also parameters number-
ing the degrees of freedom of the field. However, in quantized theory they can
simultaneously play the role of the: particle coordinate, Indeed, the Fock one-par-
ticle amplitude @, (%,t) is connected with the field operator P (T,¢) =

= <0|g(T,t)|® > so that its arguments are the same T, ¢t as for the
field operator ¢ (¥,¢).0On the other hand, It must be interpreted as the wave
function of a particle in coordinate representation. Therefore I may be interpre-
ted as eigenvalues of the operator of the particle coordinate
(seen » ch,7 §3; we notice that x is an Hermitean operator, if (6) is used).
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