

S.M.Bilenky, R.M.Ryndin
DETERMINATION OF PARITY IN REACTIONS INDUCED BY GAMMA QUANTA

Submitted to Jadernaja Fisika

1. In view of a fast increasing number of "elementary" particles experiments on the determination of intrinsic parities still remains an important problem of highenergy physics, At present experimenters have at their disposal rather intensive beams of gamma quanta. In this connection it is interesting to consider methods of the determination of the intrinsic parities in reactions of the type

$$
\begin{equation*}
\gamma+a \rightarrow b+c \text {. } \tag{1}
\end{equation*}
$$

The suggested methods are based only on the requirements of invariance under reflections in the reaction plane ${ }^{1}$.

To indicate the basic states of the photon polarization x) we choose two real mutually orthogonal unit vectors \vec{e}_{1} and \vec{e}_{2} in the plane perpendicular to the photon momentum, the vector \vec{e}_{1} being assumed to be parallel to the normal to the reaction plane. The amplitude of the reaction (1), if the photon
 Here $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{p}}^{\prime}$ are the initial and final momenta in the $c_{0} \mathrm{~m}_{0} s_{0}$ and $\sigma_{\mathrm{a}}, \sigma_{\mathrm{b}}$ σ_{0} are the spin variables of the particles. The state of the polarization of the photon is described by the density matrix $\rho=h_{2}(1+\vec{\xi} \cdot \vec{r})$, where r_{1} are Pauli matrices and ξ_{1} are Stokes parameters ${ }^{2}$. In the chosen basis ξ_{2} indicates the degree of circular polarization ξ_{1} and ξ_{z} are related to linear polarization.

From the invariance under reflections in the reaction plane we get ${ }^{3}$:

$$
\begin{equation*}
\operatorname{IR}_{b}^{-1} R_{0}^{-1} M(\vec{p}, \vec{p}) R_{a} R_{y}=M(\vec{p}, \vec{p}) . \tag{2}
\end{equation*}
$$

x)

As the polarization direction we take the direction of the electric field.
 the angle π around the normal $\overrightarrow{\mathrm{a}}=\frac{\vec{p} \times \vec{p}}{|\vec{p} \times \vec{p}|}, \vec{R} y$ is the rotation operator for a photon and so on it is easily seen that in the chosen basis $R_{\gamma}=r_{s}$. We emphasize that the transfomation of the relection (2) in the reaction plane is the only transfomation which contains the relative parity and does not change the arguments of the reaction matrix. Consequently, all the relations between experimentally measurable quantities containnig I follow from (2). Eq. (2) shows also which information on the state of particle polarization should be used to determine I .
2. We first consider the reaction $y+y \rightarrow 0+y$ where 0 and $1 / 2$ are the particle spins. Some problems of parity determination in such reactions have been discussed in refs ${ }^{4-6}$. For spin $1 / 2$ the rotation operator at the angle ". around the normal is $\mathrm{i} \overrightarrow{0} \cdot \overrightarrow{\mathrm{a}}$ and the condition (2) in the case under consideration reads

$$
\begin{equation*}
I \vec{\sigma} \cdot \overrightarrow{\mathrm{n}} \mathrm{M}(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}}) \vec{\sigma} \cdot \overrightarrow{\mathrm{n}} \boldsymbol{r}_{3}=M(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}}) . \tag{3}
\end{equation*}
$$

In what follows we shall consider experiments with linearly polarized beams of gamma quanta.

The cross section for any reaction of the type (1) in the case of a linearly polarized beam and an unpolarized target is

$$
\begin{equation*}
\sigma=\sigma_{0}\left(1-\mathbf{P}_{\boldsymbol{\gamma}} \cos 2 \phi \frac{\mathrm{Sp} \mathbf{M r}^{\boldsymbol{r}} \mathrm{M}^{+}}{\mathrm{Sp} \mathrm{M}^{+}}\right) \tag{4}
\end{equation*}
$$

Here σ_{0} is the cross section for the reaction with an unpolarized beam and an unpolarized target (P_{y}) is the degree of linear polarization and ϕ is the angle between the reaction plane and the plane of linear polarization). Hence, for the asymmetry we get

$$
\begin{equation*}
A=\frac{\sigma L-\sigma}{\sigma}\left\|_{\sigma}\right\| l=P_{\gamma} \frac{\operatorname{Sp}_{\gamma} M_{r_{8}} M^{+}}{S_{p} M^{+}} . \tag{5}
\end{equation*}
$$

Here σ^{t} and ${ }^{t} l l$ are the reaction cross sections for $\phi=\pi / 2$ and $\phi=0$ (the gamma- guantum polarization vector is perpendicular to the reaction plane or lies in it). Using (3), it may be easily seen that the coefficient for $P_{\text {ry }}$ in (5) is $1 D$ where $D=\frac{S p \vec{\sigma} \cdot \overrightarrow{0} M \vec{\sigma} \cdot \vec{n} M^{+}}{S p M M^{+}}$is the depolarization parameter in the
reaction with unpolarized gamma quanta. To determine it, polarized target experiments are needed, If the target polarization $\overrightarrow{\mathbf{P}}$ is directed along the normal $(\vec{P}=P \vec{a})$ then (5) can be rewritten in the form:

$$
\begin{equation*}
\mathrm{A}=\mathrm{IP} \cdot \gamma \mathrm{D}=\mathrm{I} \frac{\mathrm{P}_{\cdot \gamma}}{\overrightarrow{\mathrm{P}}} \frac{\langle\vec{\sigma} \cdot \overrightarrow{\mathrm{~B}}\rangle_{\overrightarrow{\mathrm{F}}} \sigma_{\overrightarrow{\mathrm{p}}}-\langle\vec{\sigma} \cdot \overrightarrow{\mathrm{B}}\rangle-\overrightarrow{\mathbf{P}}-\overrightarrow{\mathrm{p}}}{\sigma_{\overrightarrow{\mathrm{p}}}+\sigma-\overrightarrow{\mathrm{p}}} \tag{6}
\end{equation*}
$$

Here $\quad\langle\vec{\sigma} \cdot \overrightarrow{\mathrm{n}}\rangle_{\mathrm{p}}=1 / \sigma_{\overrightarrow{\mathrm{P}}} \operatorname{Sp} \vec{\sigma} \cdot \overrightarrow{\mathrm{n}} M / 4(1+\vec{\sigma} \cdot \overrightarrow{\mathrm{P}}) \mathrm{m}^{+}$
is the polarization of the flnal fermion arising in the reaction with an unpolarized target and $\sigma_{\vec{p}}$ is the reaction cross section in this case. Eq. (6) contains parity and experimentally measured quantities. Thus to determine I two experiments should be performed. In the first experiment one measures the asymmetry with a linearly polarized gamma beam and an unpolarized target. In the second one the polarization of recoil particles in the case of unpolarized gamma quanta and a polarized target should be measured. With the aid of (3) it is easy to get some other relations among observables allowing to determine parity.
3. We consider reactions $\gamma+0 \rightarrow 0+s$. The operator of spin rotation at the angle π around \vec{n} for a s spin boson can be expanded ${ }^{3}$ in a complete set of spin-tensors T^{JM} :

$$
\begin{equation*}
R_{a}=\sum_{J \in v o n} a^{J}(s) T^{J 0} . \tag{7}
\end{equation*}
$$

The experissions for the coefficients $a^{J}(s)$ are given in ref ${ }^{3}$ (the quantization axis in (7) is directed along the normal). From (2) we get, e.g. the following relation among observables:

$$
\begin{equation*}
\mathrm{A}=\frac{\sigma^{\perp}-\sigma}{\sigma^{\perp}+\sigma} \|!=\sum_{\mathrm{J} \text { even }}^{\mathrm{I}} \sum^{\mathrm{J}}(\mathrm{~s})\left\langle\mathrm{T}^{J 0}\right\rangle_{0}, \tag{8}
\end{equation*}
$$

where A is the asymmetry in the reaction with polarized gamma quanta, and $\left\langle\mathrm{T}^{\mathrm{J0}}\right\rangle_{0}=\frac{\mathrm{Sp} \mathrm{T}^{J 0} \mathrm{M} \mathrm{M}^{+}}{\mathrm{SpMM} M^{+}} \quad$ is the average value of the operator T^{Jo} in the reaction with an unpolarized beam.
4. We give the simplest relations which allow one to determine the relative parity in studying polarization effects in reactions such as $y+1 / 2 \rightarrow 0+s$. From (2) it follows
where $\left\langle T^{J 0}\right\rangle_{\vec{P}}$ is the average value of $T^{J 0}$ in the reaction with an unpolerized beam and a polarized target, in an analogous way we find

Here $\left\langle T^{J 0}\right\rangle_{0}$ is the average value of T^{30} in the reaction with an urpolerized beam and an unpolarized target, and $\sigma_{\vec{p}}^{\perp}$ and $\sigma \underset{p}{L_{p}}$ are the cross sections for the process in the case of a polarized target and a linearly polarized gamma beam.
5. In conclusion we make some remarks. The first of them concerns the procedure of the determination of the average values $\left\langle T^{J 0}\right\rangle$. In the case of a halt-integer spin (Sections 2 and 4) $\left\langle T^{J 0}\right\rangle$ can be determined from the angular distribution of the decay products if particles of spin s decay with nor- conservation of parity, acconding to the scheme $s \rightarrow k+0{ }^{7}$. In the case of integer spin $\left\langle T^{J 0}\right\rangle$ can be also determined from the angular distribution of the decay products if a particle of spin s decays according to the scheme $s \rightarrow 0+0$ (with conservation or non-conservation of parity) or $s \rightarrow 0+\gamma$.

The second remark is related to experiments with completely linearly polarized beams. Note first of all that completely linearly polarized photons with electric (magnetic) vector parallel to the normal are described by the eigenstate of the rotation operator $R_{. y}$ corresponding to the eigervalue $+1(-1)$. Hence, it follows that for such photons the operator $R_{r y}$ in (2) can be replaced by +1 (-1) and the condition (2) takes the form of the invariance conditions under the reflection in the reaction plane for the reaction $0+a \rightarrow b+c$ which differs from (1) by the replacement of a gamma quantum by a boson of spin 0 . Consequently, experiments which should be made to determine parity In reaction (1) with a completely polarized gamma beam the polarization of which is orthogonal to the reaotion plane (lies in it), are identical to the corresponding experiments for the reaction $0+a \rightarrow b+c \quad 5,6$. In particular, In the reaction $\gamma+0 \rightarrow 0+s$ for the determination of parity and spin the maximum complexity method suggested in ref ${ }^{8}$, can be employed.

Finally the obtained relations can be used, in principle, for the determination of the degree of linear polarization of gamma quanta, For example, eq. (6) means that the analysing power of the reaction is ID and, consequently, it can be determined in the reaction with an unpolarized gamma quantum beam and a polarized target. For this purpose it is corrvenient to use reactions such as $\gamma+p \rightarrow \Lambda+K^{+}$.

The authors are grateful to L.I_Lapidus and Ya.A.Smorodinsky for useful discussions.
References

1. A.Bohr. NuclaPhys. 10, 486 (1959).
2. А. Н.Ахиезер, В.Б.Берестецин. Квамтовая электродинамика, Москва, 1959.
3. S.M.Bilenky, R\&M.Ryndin. Phys,Letters, 13, 159 (1964).
4. Ma_Moravcsik. Phys. Rev^ 125, 1088 (1962).
5. M.Kawaguchi. Nuovo Cimento, 34, 1114 (1964).
6. P.L.Csonka, MJ.Moravcsik, M.D.Scadron, Phys.Letters, 152 353 (1965).
7.N\&Fyers, S.Fenster. Phys. Rev. Letters, 11, 52 (1963).
7. MPeshkin. Phys. Reva 133, B428 (1964).
