ОБЪЕДИНЕННЫЙ
ИНСТИТУТ
ЯДЕРНЫХ ИССЛЕДОВАНИЙ
Дубна

Nguyen Van Heu, A.N. Tavkhelidze

ON THE UNITARITY OF THE S-MATRIX IN THE BROKEN SYMMETRY SL(6) DAH CCep, 1966, т167, ~4, с.792-794

1965

Nguyen Van Heu, A,N Tavkhelidze

ON THE UNITARITY OF THE S-MATRIX IN THE BROKEN SYMMETRY SL(6)

Submitted to DAN

It was emphasized in $\mid 1,2 /$ that the 5 -matrix invariance under the group $S(6)|3-9|$ (or under the group $\tilde{U}(12)|10,11|$) is inconsistent with the unitarity condition. However, since the ware equations even for free particles break down the symmetry $S L(0)$ there are no reasons to require the S-matrix invariance under the group $S(5)$. We will show that if the breakdown of the symmetry SL(6) is taken into account then the S-matrix is unitary. Moreoven the unitarity condition itself is invariant under the group SL(6) if instead of the usual 4-momenta there are 36 -dimensional momenta,

As has been in a number of papers, the invariance under the group $S L(6)$ requires an existence of the 36 -dimensional momenta $(P)_{B}^{A} \quad$ and $(P)_{B}^{i}$, $A=a, \quad, \quad a=1,2,3,1,2$, which transform as corresponding spinors of the group SL(6) . The wave function for the quarks invariant under the group SL(6) has the form

$$
\begin{equation*}
(\mathrm{iP})_{B}^{\dot{A}} \phi^{\mathrm{B}}+m \chi^{\dot{A}}=0, \quad \text { (iP) } \dot{B} \chi^{\dot{B}}+\mathbb{m} \phi^{A}=0 . \tag{1}
\end{equation*}
$$

If in this equation we made a substitution

$$
\begin{equation*}
(P)_{B}^{i} \rightarrow(p) \sum_{B}^{i} \delta_{\beta}^{a}, \quad(P)_{\dot{B}}^{A} \rightarrow(p)_{i}^{a} \delta_{\beta}^{a}, \tag{2}
\end{equation*}
$$

then we would obtain the Dirac equation. The matrix elements of the scattering processes and vertex functions contain explicitly not only the wave functions of the wave initial and final particles but their momenta as well ${ }^{1}$). If instead of the 4-momenta the 36 -dimenslonal momenta are introduced then the matrix elements will be irvariant under the group SL(6) , and after the substitution (2) the symmetry SL(6) is broken.

[^0]As an example we consider the scattering of neutral scalar meson (singlet) on the quarks. According to the method suggested in ref. $7 /$ we consider first the 4 -momenta of the mesons and the quarks the initial and the final states $k_{1}, P_{1}, k_{2}, p_{2}$, respectively as the components of the tensors $\left.\left(K_{i}\right)_{i}^{A},\left(P_{i}\right)\right)_{B}^{A}$ and $\left(K_{i}\right)_{D}^{\prime}, \quad\left(P_{i}\right)_{B}^{A}$. A pair of the tensors K_{i} is equivalent to a system consisting of nine ${ }^{B} 4$ vectors $\left(k_{i}\right)_{\mu}^{\prime}$ and of nine 4-pseudovectors $\left(\ell_{i}\right)_{\mu}^{j} ; j=0,1, \ldots, 8 ; \mu=1, \ldots, 4 ; \quad$ while a pair of tensors P_{i} - to the system of 4 vectors $\left(p_{i}\right)_{\mu}^{j}$ and 4 -pseudovectors $(q,)_{\mu}^{j}$.

$$
\begin{align*}
& \left(K_{i}\right)_{B}^{A}=\frac{1}{\sqrt{2}} \underset{\mu=1}{\sum} \underset{j=0}{\sum}\left(\lambda_{j}\right)_{\beta}^{a}\left(\sigma_{\mu}\right)_{b}^{a}\left[\left(k_{i}\right)_{\mu}^{j}+\left(\ell_{i}\right)_{\mu}^{j}\right], \\
& \left(K_{i}\right)_{B}^{i}=\frac{1}{\sqrt{2}} \sum_{\mu=1}^{4} \sum_{j=0}^{8} \quad\left(\lambda_{j}\right)_{\beta}^{a_{\mu}}(\sigma)_{b}^{i}\left[\left(k_{i}\right)_{\mu}^{j}-\left(\ell_{i}\right)_{\mu}^{j}\right] \quad, \tag{3}
\end{align*}
$$

and similarly for the tensors P_{1}. The invariant square of the momentum K is, for instance, as follows

$$
\begin{equation*}
\frac{1}{3}(K \quad)_{B}^{A}(K \quad)_{A}^{i}=\sum_{j=0}^{B}\left[\left(k^{j}\right)^{2}-\left(\ell^{j}\right)^{2}\right]=\underset{j, \mu}{\sum}\left[k_{\mu}^{j} k_{\mu}^{j}-\ell_{\mu}^{j} \ell_{\mu}^{j}\right] \tag{4}
\end{equation*}
$$

The invariant element of the volume is equal to

$$
\begin{equation*}
\frac{1}{(2)^{80}} \prod_{A, \dot{B}} d(k)_{B}^{A} \Pi_{\dot{C}, D} d(k)_{D}^{\dot{o}}=\prod_{j=0}^{B} d^{4} k^{j} d^{4} f^{j} \tag{5}
\end{equation*}
$$

and the irvariant δ-function is of the form

$$
\begin{equation*}
(2)^{86} \delta^{86}\left(K_{B}^{A}\right) \delta^{36}\left(K_{B}^{\dot{A}}\right)=\delta^{86}\left(k^{1}\right) \delta^{36}\left(\ell^{1}\right) . \tag{6}
\end{equation*}
$$

The matrix element of the process under consideration which contains the 36 -momenta K_{1} and P_{1} which is invariant under the group $\operatorname{SL}(6)$ can be written in the following manner

$$
\begin{align*}
& \left.M_{n}=(2 \pi)^{i 2} \delta^{86}\left(p_{1}^{j}+k_{1}^{j}-p_{i}^{j}-k_{2}^{j}\right) \delta^{\delta \delta}\left(q_{1}^{j}+\ell_{1}^{j}-q_{2}^{j}-f_{2}^{j}\right)\right\} \tag{7}
\end{align*}
$$

$$
\left.\left.\left[\bar{\phi}\left(P_{2}\right)\right)_{A}\left(i \frac{K_{1}+K_{2}}{2 m}\right)_{H}^{\dot{A}} \phi\left(P_{:}\right)^{R}+\chi^{-}\left(P_{2}\right){ }_{A}\left(i_{1}^{K}+K_{2}\right)_{\dot{A}}^{A} \chi(P,)^{\dot{B}}\right]\right\}
$$

For the meson with mass μ, e.g., the phase volume invariant under the group $\mathrm{SL}(6)$ is equal to

$$
\begin{equation*}
\frac{1}{(2 \pi)^{72}} \prod_{j=0}^{8} d^{4} k^{j} d^{4} f^{j} 2 \pi \partial\left(\sum_{j}\left(k^{j}\right)^{2}-\sum_{j}\left(\varepsilon^{j}\right)^{2}+\mu^{2}\right) . \tag{8}
\end{equation*}
$$

The unitarity condition in the two-particle approximation is

$$
\begin{aligned}
& \operatorname{Im} A\left(P_{2}, K_{2} ; P_{1}, K_{1}\right)\left[\phi\left(P_{i}\right) \cdot \chi\left(P_{1}\right)^{A}+\bar{\chi}\left(P_{2}\right){ }_{A} \phi\left(P_{1}\right)^{A}\right]+ \\
& \operatorname{Im} B\left(P_{a}, K_{2} ; P_{1}, K_{1}\right)\left[\bar{q}^{-}\left(Y_{2}\right) .\left(i \frac{K_{1}+K}{2 m}{ }_{2}\right)_{B}^{\dot{A}} \phi\left(P_{i}\right){ }^{H}+\ldots\right]=
\end{aligned}
$$

$$
\begin{aligned}
& (2 \pi)^{2} \delta\left(\Sigma\left(p^{\prime}\right)^{2}-\Sigma\left(q^{j}\right)^{2}+m^{2}\right) \delta\left(\Sigma\left(k^{\prime}\right)^{2}-\Sigma\left(P^{j}\right)^{2}+\mu^{2}\right) \underset{r}{ } \quad \mathcal{I A}^{*}\left(P, K ; P_{2}, K_{2}\right) \\
& {\left[\bar{\phi}\left(P_{2}\right)_{i} \chi^{\prime}(P)^{A}+\bar{\chi}\left(P_{2}\right)_{A} \phi^{r}(P)^{A}\right]+R^{*}\left(P, K_{;} P_{2}, K_{2}\right)[\ldots \ldots .] \text { l }} \\
& \left\{A\left(P, K ; P_{1}, K_{1}\right)\left(\varphi^{-1}(P){ }_{K} \chi\left(P_{1}\right)^{i}+x^{-r}(P)_{\mu} \phi\left(P_{1}\right)^{3}\right]+\right. \\
& B(P, K ; P, K,) I \ldots \ldots \ldots]\} .
\end{aligned}
$$

For the summation over the polarization of the intermediate states we use the formula

It is evident thál tha uritiariy conniifor, (9) is invarkanl under the group SLio).

The physical scattering amplitude is obtained from the invariant amplitude by the substitution

$$
\begin{gather*}
A\left(P_{2}, K_{i} P_{1}, X_{1}\right) \rightarrow \prod_{j=1}^{8}(2 \pi)^{4} \delta \delta^{4}\left(p_{1}^{1}-p_{2}^{1}\right) \prod_{t=0}^{8}\left(\langle\pi)^{4} 0^{4}\left(q_{1}^{j}-q_{2}^{1}\right)\right. \tag{11}\\
0 L\left(P_{1} j_{0}^{0} \perp A(8, t),\right.
\end{gather*}
$$

and similarly for B . At the same time for the momenta of initital particles we make a substitution (2), l.en we keep only the physlcal 4-momenta ($p_{i} p$ and (k f_{μ}. Then the unitarity condition (9) together with the formula (10) gives the usual unitarity condition

$$
\begin{align*}
& \operatorname{lm} A(s, t)+1_{m} B(s, t) i \frac{\hat{k}_{1}+k_{2}}{\Delta m}=\frac{1}{(2 \pi)^{2}} \int d^{s} p d^{4} k \quad t\left(p^{0}\right) \theta\left(k^{0}\right) \\
& \delta\left(p^{2}+m^{2}\right) \circ\left(k^{2}+\mu^{2}\right)\left(A^{*}\left(a, t^{\prime \prime}\right)+B-\left(s, t^{\prime \prime}\right) i \frac{\hat{k}_{2}+\hat{k}}{2 m}\right\rfloor \frac{m-i \hat{p}}{2} \tag{12}\\
& \quad\left[A\left(s, t^{\prime}\right)+B\left(s, t^{\prime}\right) i \frac{\hat{k}+\hat{k}_{1}}{2 m}\right\rfloor .
\end{align*}
$$

Thus, if instead of the usual 4-momenta use is made of the 36 -dimensional moments, then the theory is completely invariant under the group SL(6) : the wave equation, S-matrix and the unitarity condition are irvariant, In passing to the physical amplitudes the symmetry is violated: the wave equations, S-matrices and the unitarity condition are SL(6) non-invariant. The authors of a number of papers require a strict invariance for the physical amplltude what in the considered case leads to the condition

$$
B(s, t) \equiv 0 .
$$

It is evident that this incorrect requirement leads to a contradiction with the unitarity condition and there is no problem about the inconsistency of the group SL(6) with the unitarity condition.

We point out in conclusion that for the given scattering process of a singlet meson on the quark the broken symmetry SL(0) glves nothing new if compared with the unitary symmetry. However, for higher representations the broken symmetry SL(6) yields new consequences. SQ for instance in the unitary symmetry the matrix elements of the vector and axial currets for the octet depend on 12 form-factors, while in the broken symmetry SL(6) these

12 form-factors are expressed in terms of 8 independent form-factors ${ }^{2}$), if all the irregular structures are taken into account $8 /$. Moreover, the form-factors for the decuplet and the form-factors of the transitions between the octet and the decuplet are also expressed in terms of these 8 independent form-factors.
References

1. M.A.Beg and A.Pais, Phys. Rev, Lett, 14, 5uy (19bs).

2 B.L.Joffe. Problems of Elementary Particle Physics. v. V, Erevan (in print)
5. T.Fulton and J.Wess. Phys. Lett., 14, 57 (1965).
4. V.G.Kadyshevski, R.M.Muradyan, A.N.Tavkhelidze and I.I.Todorov. Phys. Letto, 15, 182 (1965).
5. .H.Bacry and J.Nuyts. CERN, preprint, 1ybt.
o. W.Rühl. Nuovo Cim., 37, 319 (1965).
7. Nguyen -van-Hien. Jadern. Fis. (The Soviet Journal of Nuclear Physics), 2, issue 9, 1965.
a.. Nguyen-van-Hieu and Ja. A. Smorodinski. Jadern. Fis. (The Soviet Journal of Nuclear Physica), 2, issue 9, 1065.
Y.. J.Charap and P.,T.Mathews. Preprint, London, 1965.

1U. R.Delbourgo, A.Salam and J.Strathdee. Proc. Roy. Soc., A. 284, 146 (1965).
11. B.Sakita and K.C.Wali. Phys, Rev., Lett., 14, 404 (1965).

Received by Publishing Department on June 29, 1965.
2) In papers $\sqrt{6,9 /}$ the non-regular structures are not taken into account. Therefore, all the form-factors are expressed in terms of 5 independent functions,

[^0]: 1) The terms which contain the momenta explicitly are called irregular The existence, of such irregular structures in the matrix elements was first pointed out in 7 by one of the authors where the so-called spurion formalism of the broken syynmetry $S L(6)$ was suggested. Then this was shown independently in Daper $12 /$ In paperl $8 /$ devoted to a study of the structure of vector and axial currents the contributions from all irregular structures are taken into account.
