ОБЪЕДИНЕННЫЙ
ИНСТИТУТ
ЯДЕРНЫХ
ИССЛЕДОВАНИЙ
Дубна

E- 2173

AAGOPATEPNS TE OPETMUEIKOЙ OMIHKN

> P.Surányi

THE PROBLEM OF MASS FORMULAS IN THE ISL (6) THEORY

9965

P.Surányi
THE PROBLEM OF MASS FORMULAS IN THE ISL (6) THEORY

Submitted to "Jadernaja Fisika"

With the help of the $\operatorname{SU}(6)$ group ${ }^{1}$ one can explain many features of the nonrelativistic elementary particle phenomena. However many authors emphasized the principal necessity of finding a higher relativistic group containing the SU(6) group as a subgroup. Such a group was proposed independently by many authors $2,3,4,5$ - the inhomogeneous linear unimodular group in 6 dimensions ISL (6). There are 36 (or in some yapers 72) translation operators annong the generators of this group. These translation operators transform as a $D(\overline{6}, 6)$ representation of the group 2,3 , they can be represented as components of a 6×6 hermitian matrix ${ }^{2,4}$

$$
\begin{equation*}
P_{\lambda_{b}}=\sigma_{\mu, \alpha \beta} \quad \lambda_{A, k}^{\prime} P_{\mu, A} \tag{1}
\end{equation*}
$$

where the indices take on the following values

$$
\begin{array}{ll}
a, b=1, \ldots, 6 ; & a, \beta=1,2 ; 1, k=1,2,3 ; \\
\mu=0,1,2,3 ; & A=0,1, \ldots, 8 ;
\end{array}
$$

σ_{1}, σ_{2} and σ_{3} are the Pauli matrices $y_{1} \sigma_{0}=1$, the λ_{A} are the well known matrices of the $\operatorname{SU}(3)$ group, $\lambda_{0}=\sqrt{\frac{2}{3}} I$. The operator $P_{\mu, A}$ transforms as a four-vector in Lorentz space for any fixed A, and as an octet-vector and a singlet ir SU(3) space for any fixed μ. The commutation relations among the $P_{\mu, A}$ and T_{A} operators are the following (the operators T_{A} are, the generators of the $\operatorname{SU}(3)$ group $)^{3}$:

$$
\begin{align*}
& {\left[T_{A}, P_{P, B}\right]=21 F_{B C}^{A} P_{P, C}} \\
& {\left[T_{A}, T_{B}\right]=21: F_{B C}^{A} T_{C}} \tag{2}\\
& {\left[P_{A A}, P_{\mathcal{P}_{B} B}\right]=0 .}
\end{align*}
$$

One can see, that the operators $P_{\mu, 0}, P_{\mu, 8}$ and $P_{\mu_{3}, 8}$ can be diagonalized simultaneously with Y and T_{3}. It was proposed that for physical particle states all the other components of the momentum operator $\left(P_{\mu, 1}, P_{\mu_{i}}, \ldots, P_{\mu, r}\right)$ have vanishing eigervalues. An essential assumption of paper ${ }^{2}$ is that $P_{\mu, 0}$ and similarly $P_{\mu, 3}$, and $P_{\mu, 8}$ have the same eigenvalues within one multiplet, Defining the mass operator, as a quadratic combination of the 36 momenta one can obtain a mass splitting with very attractive mass formulas ${ }^{2}$. Nevertheless, we should like to show a principal difficulty of this method.

Assume, that we describe the meson fields by some representation of the ISL (6) group. Some of the components of the meson field operator describe the pseudoscalar mesons. These components transform as an octet representation of SU(3) (later on we shall discuss the case when $\operatorname{SU}(3)$ is violated so that the octet transformation character is lost; if the breakdown of the symmetry is spontaneous the octet transformation character is preserved). We denote the pseudo scalar meson field operators by ϕ_{A}.

The field operators satisfy the commutation relations:

$$
\begin{equation*}
\left[T_{B}, \phi_{C}\right]=21 \mathrm{~F}_{\mathrm{CD}}^{\mathrm{B}} \phi_{\mathrm{D}} \tag{3}
\end{equation*}
$$

(this relations follow from the transfomation properties of ϕ_{c}). We denote the eigenvalues of the operators $P_{\mu, A}$ by, $\hat{P}_{\mu, A}$. They are defined for $A=0,3,8$ (in what follows we do not assume even the equality of the eigemvalues of operators $P_{\mu, A}$ on different states $\phi_{c}{ }^{10}>$). The condition, that the operators $P_{\mu} A$ have vanishing eigenvalues on physical states for $A \neq 0,3$ or 8 may be expressed by the following equation:

$$
\begin{equation*}
\left.I P_{\mu_{1} A}, \phi_{c}\right]|E\rangle=\hat{P}_{\mu_{4} A} \text { (C) } \phi_{c}|E\rangle \tag{4}
\end{equation*}
$$

where

$$
\hat{\mathbf{P}}_{\mu A}=0
$$

if $A \neq 0,3,8,|E\rangle$ is some physical state.
It is possible to substitute (4) by a weaker condition,

$$
\begin{equation*}
\langle F|\left[P_{\mu A}, \phi_{c}\right]|E\rangle=\hat{P}_{\mu_{,} A}(C)\langle F| \phi_{C}|E\rangle \tag{5}
\end{equation*}
$$

where $\hat{F}_{\mu, A}=0 \quad$, if $A \neq 0,3,8,|E\rangle \quad$ and $\langle F|$ are physical states.
The operators

$$
P_{\rho, A}, T_{B}, \phi_{C}
$$

satisfy the Jacobi identity:

$$
\begin{equation*}
\left[P_{\rho_{Q} A}\left[T_{B}, \phi_{C}\right]\right]+\left[\phi_{C_{6}}\left[P_{\rho_{B} A}, T_{B}\right]\right]+\left[T_{B},\left[\phi_{C}, P_{\cdot \rho_{Q} A}\right]\right] \tag{6}
\end{equation*}
$$

Taking eq. (6) between states $\langle E|$ and $|0\rangle$ and using equations (2), (3), (4) we obtain

$$
\begin{equation*}
F_{C E}^{B} \hat{P}_{\rho, A}(E)-F_{B D}^{A} \hat{P}_{P, D}(E) \delta_{C E}-: F_{C E}^{B} \hat{P}_{P A A}(C)=0 \tag{7}
\end{equation*}
$$

The same equation can be obtained assuming only the validity of condition (5) instead of (4) and assuming the supplementary condition

$$
\begin{equation*}
\mathrm{T}_{\mathbf{B}}|0\rangle=0 \tag{8}
\end{equation*}
$$

Somewhat later we shall discuss the problems connected with the validity of (8). The consequences of eq. (7) are the following:

1. The second term of equation (7) equals zero for $A=0,3$ or 8 . So we obtain

$$
\begin{equation*}
\widehat{P}_{p_{t} A}(E)=P_{p_{t} A}(C) \tag{9}
\end{equation*}
$$

Eq. (9) confirms the fact that the operator $P_{p, A}$ have the same eigenvalues for different members of the multiplet.

$$
\begin{align*}
& \text { 2. Putting } A=1,2,4,5,6,7 \text { into eqs. (7) we can obtain easily } \\
& \qquad \hat{P}_{\rho_{0}, 3}=\hat{P}_{\rho, 8}=0 . \tag{10}
\end{align*}
$$

If eqs. (4) or eq. (5) and (8) do not hold then we cannot obtain eq. (7) and (10), but it leads to a spontaneous breakdown of the symmetry ${ }^{6}$ independently of the existence of the 36 momentum operators, what means in our case that the mean value of the $P_{\mu, 0}$ operators will depend on the octet index of the physical particle in question, so we cannot get easily a nice mass formula. on the other hand if eq. (10) holds the masses of the pseudoscalar octet do not split. In a similar way one can prove the same fact for vector mesons too. The above considerations are valld by no means only for the spontaneous breakdown
of the $15 L$ (6) symmetry. Of course it is possible to get nontrivial mass formulas with an external breakdown of the symmetry: putting a noninvariant term into the Hamiltonian, which leads to the change of commutation relations (2). Such a violation is very well-known and extensively used in the theory of $\operatorname{SU}(3)$ and $\operatorname{SU}(6)$ symmetries. However, in this case all the calculations must be made very carefully, taking into account the breakdown of commutation relations among the generators.

A similar investigation may be made in different relativistic group theoretical extensions of the' $S U(6)$ group.

References

1. F.Gürsey and L.Radicati. Phys.RevLett, 13, 173 (1964). A.Pais, Phys_Revalett, 13, 175. (1964).
F.Gürsey, A.Pais and L,A,Radicati, Phys RevaLett, 13, 299 (1964).
B.Sakita. Phys.Revon 136, B1756 (1964),

2: T.Fulton and J.Wess. Phys.Lett, 14, 57 (1965). T.Fulton and J.Wess, Phys. Lett, 14, 334 (1965).
3. 'H. Bacry and J.Nuyts, Preprint CERN TH 506 (1964).
4. W.Rühl. Preprint CERN TH505 (1964).
5. V.G.Kadyshevsky, R^M.Muradyan, A.N.Tavkhelidze and I.T.Todorov. Phys.Lett. 15, 182 (1965).
6. GoDomokos and PSuranyi. Preprint JINR E-1962.

Received by Publishing Department
on May 15, 1965.

