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1,. Introduction

The present paper is .devoted to the determination <.)f the asymptotic beha~
viour of both the convergent and divergent Feynman graphs basing on thejr to-
pological struct\ire. ‘In many papers this problem is solved for graphs with sca-~
lar lines, The most ccmplete and general form of this solution seems to be pre-
.se;nted. by Zavinlovj 1 and completed In some sense by Menke/ 2/ . The asymp-
totics of divergent scalar graphs is carefully studled in ref./ 3/ where the R
operation in the a - representation is made and general recipe of obtaining
(unfortunately with some inaccuracy) of the asymptotics is given, Removing the
above Inaccuracies we will use this method as applied to graphs with spinor
lines, These graphs are, of course, more complicated than the scalar ones, ho-
wever practically the former are much more interesting, at least, from the point
of view of electrodynamics, Spinor graphs have been considered in a number
of papers 4’5/, but a constructive recipe of plotting: the asymptotics for a ra -
ther wide class of spinor graphs is absent there. The difficulty of this problem
is that, In addition to the usual exponential dependence on m.omenta, there ap-
pears a preexponential depending both on the parameters a and the momenta,

This leads to two additional mechanisms of increasing the asymptotics as com-
pared to scalar graphs. First, the dependence of the preexponential can in -
crease the effective Index ¢~ essentlal subgraphs and, second, the ir‘wolved m-
menta can be combined in an additional power of an asymptotically large vari-
able, Section 2 is devoted to the structure of the preexponential and its con -
nection with the graph topblogy. The convergent spinor graph asymptotics is
considered in Section 3. Divergent graphs, their regularization and asymptotics
are considered in Section 4 and 5. The results of all the previous sections are
formulated as a recipe which, together with necessary deﬁ.nitior}s, is singled

out in Section 6, Section 7 deals with the examples of application of this recipe,

2, Contribution of a Spinor Graph in the a -Representation

We recall, first of all, that fo each scalar line v of the graph G in the

alpha- representation there corresponds the function A(e 2, ) =
1 —-l(n)f—l&au—i«,,,x 3 v
f 42, a1’ where ¢ is the incidence maftrix of the graph
24 .4 ) a? Vi
G, i.e. €,y =1 if the line v  goes into the vertex Jo L =-1 if it go-

es out from the vertex and ¢, =0 in other cases, To spinor lines of the -graph

there corresy.-nds the functioz::Gl S(x) = (i .gi + m)A(x) i.e. to each
xn



splnor line ¢ in the contribution of graph G according to the usual rules,
there .corresponds the muitiplier )

! -1(..: -da_~

S(ca’x’ )= - —(T)’f_r(?;;‘ 9’ + ma)e

L x)?
“w oY (1)

‘ Thus, the coefficient function described by the graph G in the I ~represen-—
tation is of the form ‘

Kz ooz )=yl n Ml ¢ 2 +m_ )x
1 f =1 ,V o 2“0 ok k (4
22 2 Cf 1 3
x exp [-lv=l(mv—18)av—%1=2"a (eppx )11, (2)
v
where the symbol Y denotes a correct arrar{gement of the <y matrices ente-

’

ring the expressions for spinor lines ( and, perhaps, the vertices which we are

not dealing with ),

To pass to the momentum representation it is necessary as usual to multi-
ply the coefficlent function (2) by emfip,x | and integrate over all x
This means that the external momenta enter each of the vertices, 1Ib go over
to the real s:'ttuatlon some of the'fictitious" momenta should be assumed to be equ~
al to zero, what we are going to do in due time. ¥ now we use the equality

f‘keh’x’ ®1%

"
=-—idp e
then integrating and factoring out the conservation of four- momentum

(R(pyue p ) =8 (Zp ) Tlypep_ ))we get

T(pyeeep )= Y{f
h net A@ ¢ 2i“l7

. h 3
xexp[i,'fgldﬂ (a)p’ P, —1§av(mv -i&] .

em:apk+ma) x

The functions A(a) and 4, (a) = 'A(jk; n) and their connection with the
_graph topology were obtained in ref/ ‘ . We remind in brief what this connection
Is. To obtain A we need to construct & so- called tree of the graph G
i.e. a connected subgraph containing all the vertices of the graph ‘G  but having
'.no closed cycles, then to write the product of the parameters a correspon -~
1 ding to lines not entering the tree (e.g. to the tree 5hofd5) and sum up such
 expressions for all. possible trees of the graphs (] . To obtain A(jk; n)
we need to construct a 2-tree of the graph (i.,e, a subgraph containing all the
vert.ices and consisting of two sepa.rate connected components without closed cy-
cles) such that vertices {j,k} and vertex {a] beiong to various components,

then NIO write the product of the porameters a corresponding to the chords

of each of the 2 - trees and sum up over a.llg&ch 2- trees of the graph G .
In other words, using all possible ways we must make sections of the graph
into two components (by removing some lines ) one of which contains .the ver-

‘tex {1}  and another the vertices {j,k l’, take a product of the corresponding

a - parameters and. multiply it by the sum over all possible trees of these two
components, i.e. l )
A(jk;n) = 3 A’A” TI'a .

dver all seat, sect, '

Look now how the operator | (2T¢z— J'pk + @) acts on
the exponential ‘in the expression (3). If the graph conta.in.s only one spmor line
then the action of this operator leads {o a multiplier to be appeared before the

exponential
o 1 o
P, (—;cakdk_pm+ma).,. (4)
Two spinor lines yield the multiplier
Pal P03+ cala2
where
J 1 ok € d )
Co o = iy Wy ) %1k gym  km
1% (CEUMCIS) 2, a, (s)
St 2
three lines yield
C";“apa, + Calaapaa +C"g“ap”1+ Po Po, ?a! .

and so on, There is no necessity to write down a general form of this express -
jon. It is very cumbersome and besides not very useful. However,the rule by
which ﬁqe preexponential multiplier is formed is now clear, (It resembles the sum-
ma;tion over all the contractions in the Wick theorem),

Now we may assume that all the "fictitious" external multipliers vanish
and keep only the real . p, , p, and p, (p, is omitted owing to the conser-

vation law),

We are going to clarify the topological meaning of the a -~ dependent
functions enterning P, and Cor® * Let the spinor line ¢ joint the vertices :
s and ¢ of the graph G then the a ~dependent part of Pa reads

1 ”~
e, [y —d ) Fy+ (4 =d )F, + (4, -d )F,] .

(6)
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At first glance, this function seems to be singular when a, tends to zero,
bgt,ln fact, this Is not the case.kg].ty it is known, that, for example, v

A(sl; 4) - A(§1; 4)
A ) , (7)

d 81 —‘dql =

However the vertex ¢ enters any of the 2~trees A(s; 4) either together with

the vertex 4, or with the vertices {si} 1i.e.

A(si; 4) = A(si; q4) + A(sig; 4).
In just the same way we can write

A(qi;4) = A(qi;s4) +A(gs;4).
Inserting these results into eq, (7) we find

Loy —dy) = Aeid) -Agise)
Qg

a, A ' (8)

o

Hence it is seen that for a_, there Is.no singularity because the nominator
contains only such 2- frees whose vertices s and q enter different com-~
ponents, i,e, the line .¢ should be a chord and, consequently, the nominator

should be proportional to e, .

We pass now to the term Cop” . Let the spinor lnes ¢ and o

joint the vertices s,g and s/q” , respectively. The a -dependent part can
- be written in the form '

Alss’i4)=A(sq"; 4)=Algs”; 4) + A (qq” ; 4 )

a
oaa'»A

_But each term of this expression can be expanded taking into account vertices

not written down explicitly, e.g.

A(s5";4) =A(ss’qq"i4) + A(ss’q §4q) +Alss'iidq )+ A(ss’;4qq%) .

In this case many obtained terms cancel out and remaining ones combine them-
‘selves as

A(ss’; qq")~ A(sq’3sq)
a,a :r’A ‘ ( 9)

1t 'is seen again that for a =0, a. =0 there is no singularity since the

 nominator contajns only such 2~ frees in which different ends of both lines en-

-

’

ter different components, i,e, the lines o and o are to 'be chords,

1t is known/ 8/ that the expression in the exponentlal power does not depend
on which of the real momenta was omitted due to the conservation law.. The sa-

me can be proved also for the preexponeptial factor in the spinor case.

3. Asymptotics of the Spinor Graph

Now we go over to the determination of the asymptotic behaviour of a scat-
tering amplitude defined by a certain graph G, First of all we rewrite eq. ( 3)
as ‘ ’
- Na . Ada) . :
T(s,t,f) ~ [ Y . f(a,f,m Dexp [i2'%) 5 4iB(a,t,m)]
A%ay e Aa) (10)
and make the Mellin transfornation

1 8}*~ G(£,1,7) 3

T(s,t,f') = dg _>'*77 (-8
: T et e ) (11)
In this case ‘
o) = S&tD) X Nda, f(a‘ﬁ n )(___A(“)')fem(a"'m) >
dané TG A 0 A (12)

where A= A(12;¥4)~-A(13; 24) ( for a planar graph, i.e, for a graph

" which has no nonintersecting paths connecting the vertices 1 with 3and 2 with 4’

the second term is zero ), Remind what we have for a graph with the scalar v
lines only ( i.e. when f =1 ), what topological elements define the asymp-
. From eq. (11) it is seen that it is determinea

by the ezgtremé right singularity of ®(£)

totic behaviour when S +

in the complex ¢ - plane, For a
planar graph this singularity is due to the wvanishing of TAA_

the integration region, i.e. when some set of the parameters «a vanishes (graph-

at the boundary of

ically it means a contraction of the corresponding lines Into a point such that
the obtained graph have no S —section,. i.e, no section separating the vertices
1, 2 from 3, 4 and dividing the graph intoc two connected parts ). I a subgrapfq
V contains lines and p° independent cycles (" = €’ -1+ i where
n is the number of vertices and i is the number of connected components of
the subgraph ) and any § —section increases the number of its components, at .
least, there is one S -section increasing the number of them by one ( let us call

such a subgraph the t- subgraph with respect to G ; in Appendix it is shown



that only the graphs of such a kind yield the main contribution to the asymptotics)
then by barycentric transformation e, + Aa, for all wve'V and when ’A- 0

(it is just this region w}}ich gives the most right singularity corresponding to the
subgraph vV ) A aFar . % - AAK" and eq. (11) for @({) takes the
form )

¢ IB(A=0)
e

k=1 ¢ i
A da [ Dday - € b
f [ 21 -%a, & V()

It is clear that integrating it over A we are led to the appearance-of a pole
at the point. ¢ =- k ( and, consequently, to the behaviour s™ )e
Therefore the main asymptotic term is determined by t - subgraphs with minimal
index k =0 - 2u° . Let us look what determines the order of this pole
First of all we note that terms corresponding to the S ;secﬁons which increase
the number of components V more than by one do not enter A’ since af-

ter the multiplier A being factored out from A they vanish, at least, as the

A
first power of A when A+ 0 |, 7There arises naturally the following generali~
zation of the concept of t -subgraph with respect to G: V is referred to as

t - subgraph with respect to 'V if any S -section increasing the number of )
v 'components by one increases also the number of V.' conponents, at least
one of the sections increasing the number of components by one, It happens that
if Vl... v, is a maximal sequence of independent subgraphs é.nd each of them
has, at least, one line not entering any of the subsequent subgraphs ) with a mi—
nimal index k , then the order of the pole at the point {=-k 'is r therefore
“when S+ this graph behave like S-k(lnS)m'l In ref.l’ 3 these subgraphé were
assumed to be t. ~subgraphs with respect to ‘G and this inaccuracy may cost in
some cases an additional .power of the logarithm, For example, for the graph in
Fig. 1a, in addition to the subgraph a,b, ¢ d, e, f obténed_by the method
of ref. 1 , according to new rule, one more "broKen" subraph Ig is possible'
which is the t ~subgraph not with respect to G , but to the subgraph I c, This
leads to the additional power of the logarithm, i,e, T =S 2(la§)® . The

graph considered in ref .2 may serve as another example of such a type,

p. 3
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What cha.nges In the recipe occur owing to the factor f(a,f ,m ) arising
due to spinor ‘lines 7 Heré two mechmismS act which tend to increase the.asymp—
totics power, First, the dependence’ of this factor on a can lead. to a de -
crease of theV’s index and, second, due to the presence in f &f the momenta

f , after expanding by the matrix structures and trace operation there can
appea.rthe scalar products of the momenta (pl P ,) and (p,p a) which behave like
-3/2 and-¥2 i S -+

First of all we consider how the terms T:’ and Cg’ influence the

V'3 index., We make, as usual, the barycentric transformation a, *iAa,
for v&V and test whether the preexponential function can lead to the ne-
gative power of A - and when this can occur. Let us consider what minimal
power of A may be glven by the term P, corresponding to the spinor line

¢ connecting the vertices s and gq ., It is not difficult to see that In this
ca;v,e A (sl ; q4) transforms into e -t A’ (si ; q4) where i is the
smallest number of connected components into which the subgraph 'V is cut
in separating the points !sj} from {q,4} . Indeed, this means that the sub ~
graph enters the corresponding 2 - trees is an I- tree which can be obtalned
from its tree by re’moving some i-1 ilnes, At the same time A as before ,

transforms into A A . Thus there can appear two possibililes :

$=1
a, For the ne ¢ §V,P, behaves as A . But the smallest posslble

value of i will be unity, therefore i~1 cannot be negative and the Index can-
not increase,

b, For the line o&V , in spite of the factor A is singled out, i
cannot be less than two since for any section the point s and q must be-
long to different components, This does not lead again to any increase of the
index., Thus, it turns out that terms P_  give no desirable effect and can influ
ence .the asymptotics only due to involved external momenta. We turn now to terms

CW" . Here three cases are possible:

a, ¥ | o0&V then the power of A cannot be negative for the
same reason as before. . N

b, The same occurs when only one of the lnes 0,0’ belongs to 'V

c.But ¥ ¢€V ard ¢°€V  then the power of A “which is singled out
from Coo” is 1-3 . If, in addltion, a section will be found separa-
ting {s,s} ° from lgq’} or [s,q"} from {s’,q} so that the subgraph
V could be divided into two parts then the effectlve index will increase by
unity, Such pair of spinor llnes will be called by us essential,

»
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Thus, when there are‘ spinor lines the effective index of the graph is equal
to € - 2p -7, where r s the number of the essential palrs of spinor li-
nes, Now we go over to consideration of the second mechanism, It is posslble
in unique way to take Into account the fact that when S += both scalar pro-
ducts (pl P 2) and (plps) are large enough, For this we introduce new variables

&- p2+2p8 and 7 = Pnz'pa .

It is seen that the only large product will be . (p,7 ) = ¥2 From eqs, (8)we nave
already known the coefilcient of f, in P,, Let us determine the coeffici~
ent of 7 . Using egs. (6) and (8) it can be easlly found :

L [A(s2; q4) -A(q2;84) ~A(s3iq4) +A(a3;s4)] .

aq

Expanding the 2- trees of the denominator with account of the vertex 3 In the two
first terms and the vertex 4 in the two last ones, we find after combining and cal-
celling out that the coefficient of # is simply

Ms2;q3) ~A(s3;q2)

a A
i,e, with account of only asymptotically large moménta, ‘Pa can be written
In the form 1 ) ) o
X {{A(s1;q4) - A(s4; q1)]1 6 +[A(S2q3) ~A(s3;q2)]I ) .
(-2

What now happens if any t - subgraph is contracted into the point? The graph

G bpecame "tied" In the middle graph 'G° ., If several subgraphs are contract-
ed then the number of knotes will be larger (see Fig. 2)

Fig, 2

First of all we consider spinor lines not entering the tied subgraph, I the contr-
action of such a graph leads to the vertices 1 and 4 or 2 and 3 being joinedl
then the. coefficients of ?) . or 1’7‘ in P s for all such lines vanish, since it
- is impossibla to cut the graph so that these points should lie in different paris .,
If the knot occured éverywhere in the middle then in spinor lines to the rlght of the
knot all the coefficients of’l‘,lvanish, and in spinor lines to the left of it the coeffici-
ents for # vanish, Indeed, all paths joining the vertices 's,q with 1,4 pass
through this knot and hence cannot be separated, From the analytical point of

view this means that after the barycentric transformation a, *Aay for

10



»ev the Indicated coefficients will be proportional to the positive power of A
As an example, let us take the coefficient of $,in a line to the right of v,
Any section separating the points {s,1} from lq,4} e.g., must obiigato -
rily cut V at least into two parts and as far as for i,0, A(sl;q.g)_.,{‘ 'H"A(sl; q4)
Aisl; 9) |, J1AAsL gd) . . .

4 .- Besides it is clear that if the H-

and i>2 then
-~ a A a,
ne o belongs to 'V - and there is at least one section separating the ver-
Ny .
tices Is,1}.. " from'{q4} or {54} from lq,l} which divides V into two parts,

then after fhe contraction of this subgraph into a point the coefficient of 9, does

not vanish. The similar ‘conclusion may be drawn about the coefficient of # .

Now we consider a collective effect of the spinor lines forming a chain, Such
spinor chains In the graph ﬁay be of two kinds: these are spinor cycles and so-
‘called spinor polygons (iye.unclosed spinor chains beginning and ending by ex~
termal spinor lines )« Consider a spinor cycle, We have just obtained the foliowing
result: in terms - P, for spinor lines entering 'V, ( the most left of the contract-
ed graphs) or lying to the left of it only momenta £ . "survives" and for lines
entering V_, ( the most right of the contracted subgraphs) or lying to the right

of it. only momenta # that "survives" ., For all the intermediate lines the no-
menta § and f fall out at all; Further , owing to 93 = a? the contri-

bution of each piece of the spinor cycle belonging toone of the above groups re-
' duces tosingle 3 or § (It may be always assumed that each of these gro-
ups contains an odd number of lines,- otherwise, we may "remove™ one of them
taking instead of B, or ## in P, the term with { or m, : Thus an additional
power from thé cycle will determi.ned by $p (ﬁ‘l ﬁﬁ,ﬁ sl'ﬁ ) , i.e. by the num-
ber of subsequent pairs of Intercepts of the spinor cycle one of which is placed
to the Ieft of V, or enters it and another is placed to the right of  V, or

enters its Of course, if each of such intercepts contains at least one Pa

i,e. at least one\line not entering the number of essential pairs of lines, Such a

pair of intercepts will be called by us an increasing one;

In contrast to the spinor cycle, an intercept contiguous to the external
spinor line should not be included in the number of increasingintercepts of the
spinor polygon, Indeed , let, e, gs, the polygon beginsin the vertex I, Then for .
the intercept of this polygon lying to the left of 'V a.nd enter!ﬁg it,after cont-
raction only a term with §, survives, But if now we remind that the amplitude
must _be between Vi’ v t  and that e.g v VPP = ov(p) '

then everything becomes clear,

11



i Now we are able to formulate a recipe for determining the asympiotics of
any planar convergent graph with spinor lines, Let we have a sequence of Inde- -
. pendent(in the sense of definition of this section) t - subgraphs

v 'V"i with the index k, (in the new sense)
vl... v}  ‘with the index k,
. 3

I
vy v

5 with the index k g

then the power of the main asymptotic term is determined by the minimal of the
numbers k, - b, , where h, . ls the number of‘ increasing pairs- of spinor inter-
cepts for a given seqﬁence of subgraphs and the logarithm power is specified )
simply by the number of independent subgraphs entering the glven set:
Ta 1 (.

g kb

4, R~ Operation for Spinor Graphs

In considering divergent graphs we shall use the regularization method in
the alpha representation developed in ref./ 3/. As s known/ 6/ to regularize a
divergent graph the following- operation is employed

~n . »

R = 1+m}.:<_.,..1?"'" P, + P, (13)
where the summation is made over all possible divisions of the graph

into blocks: and the action of the operator 'I;nt on a generallzed block (contain-
ing n° vertices and {° external with reapect to them lines) is given by the

rules :

~

Pnl_ = 1 i n’=1
P00 Bkl 2u°— "> 0

or if T . is not strongly connected
and

PLa-W(1-3 P B

by ) U K70

1
25w %n -1

~”
where M is the operator which subtracts from the function of momenta the first

-2k of its expansion in the Maclaurin series,

12
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We first consider graphs of the first class including all graphs two any
divergent subgraphs of which either are- contained Into one.another or have no
 common lines at ally For this case the formula (13) reads

Re (1-M,).. (I-M.). , ( 14)
It is necessary to note one pecularity of the spinor case, The fact is that
the contribution from the given graph, as we know , is the sum of terms to

which there corresponds a definite breaking of all the spinor lines into pairs and
single lines (to these lines there correspond the functions C,,- or P, ) But
the number of essential spinor pairs defining the index may be different for diffe -
rent terms, For this reason operator # affects different terms in a different
manner, However if we discuss-the graph divergency in general then we bear in
mind é minimal possible index which will be denoted by — @ , But this singularity
of the spinor case is automatically taken into account by the following procedure,
Let us consider first a graph containing no internal dlvergent parts at all but di-
vergent as a whole, 'If the degree of divergence of this graph is « then the
subtraction of the corresponding number of the first derivative, i,e the residual
sum of the Maclauren series is given by the formula/ 1o/ .
w1 au+r

d.dwﬂ 'Z“ Ti (. ! 509p’+mo )x
P A (pa) ¢ Zaop !

1 . M(a) ¢ w
Tp = ___!'_ [Tda e [ dp(1-p)
@ 0

x exp [idy, (ap)p, p, 1.

In fact this formula means the following. In & formal expression of (3) we replace

each a, (except in the mass term M(a) =2m]a

tiply the whole expression by 'p:'H'r and subtract from it © first derivatives at

Y ) by pa, then mul-
=0 and then put p=1 , It is not difficult to see that this procedure is equ-
ivalent to the R~operator in the above sense, The same rule is also valld for
graphs containing internal divergent blocks since they can be constructed from the
above type graphs, additional integrations over the intermediate momenta not af-
fecting the parameters ‘pa + So, for any graphs of the first class containing
divergent subgraphs "I‘l oo . ‘I‘_ we can immediately write the cdzj—

responding regularized contribution
+1

Ty ™ 1 [Mda, emca) flﬁ ldp. (1~ )“’b dw" I
lull..- w, o 1 L b ——————dvab_'_ T |
¥t . . (15)

A%(B) n (Ziﬁo €, 9P, +m_ )e)rp[xrlik B, p, 1,

13



where. B o Poo.a, If the line v enters simultaneously divergent subgraphs

, v="Pe
'ro o Fo'_ and ﬂ
A(B) and ‘k B) being constructed from parameters S according to usual

rules ;- Show that the operator (1—H) acts In just a manner as needed i.e, it

=a, if it enters neither of the divergent subgraphs, the form

subtracts from each term as many derivatives, as its degree of d.i-vergence isy In~
jeed,- consider a term whose divergence is less than o  (maximal divergence),
say «° . This means that to the given term there corresponds not r but
rf-<r essential pairs of spinor lines, i.e, the operator (l—;) acts on a func-
ion which behaves as 'pH KMP -0 . Pgs a result the first r-—'r derivatives

: . 1 ] S d
vanish and m‘({dp(l-l’) —d——m— F(P)P dp“’ F(P)

vhere o= @ +r—r" =2y -L4+7",

5,Asymptotics of Divergent Graphs

Now we go over to consideration of the asymptotics of the scattering amplitu-

e for which eq;-(15) is rewritten in the form
1a @ +1

T Taa, T[4 o
e R L e ol
In]'p:’l""'-rh 2 .
wigy— (A fom el 25 + 186, m 0]

As before, the two mechanisms operate here which increase the amplit ude
asymptotics, One of them is due to the presence of momenta in the preexponen-
Hal factor and another to 'minimal" t- subgraphs letting the coefficient _g-
vanish , However now, in contrast to convergent graphs, this coefficient can be
cancelled not only by vanishing some set of the patameters a but also by
vanishing the parameters p corresponding to divergent graphs, The account
of this effect on the asymptotics will be made by analogy with ref, /3] removi.ng
the inaccuracies made there; A function ¢(£) analogou.s to (12) is now written
in the form

R i a W GO+t
OO~ —— ' (Nda, [T [dp (1mpy P 4
wll...w_!'l'(f+1)f a"g 1 Ldp, (1=p,) dp¥st! I
, (16)
o Bele £ (880 A ¥ enlings, tra’a)]
__AT(_ﬁ)—__ Pym, Eﬂ_) expliB(B,t,m a)].

Further onjy-for each term of eqs (16) it is possible to find a  t- subgraph 'V

with the index k which defines its power asymptotics, However now, in cont-
rast to cornvergent graphs, if this 'V contains g allowed divergent subgraphs
T, .. 'T' (forbidden and allowed subgraphs are described below) It is pos+

sible to lntroduce g +1- set of parameters which lead to the appearance of the
most right (for- the given term) pole of the order g+1 , These may be, e.g.
the following sets

. €
fa, €V}, iaVGV«--‘l_l I {avG’V —E'I‘, Py Py }

each corresponds to onefold "covering" of any line of the subgraph 'V either
by variables a but not simultaneously, The ba.rycentnc transformation corres -
ponding to each set leads to an integral fd}\)\ ! ( since A-»X‘ A’
2 .19  ana (L) - X(-A-:-) whenn p+» 0 ) and to a new delta func-
hgﬁ of th}t‘e ty'r[;)e 5(1- p ~Zac 'VA—.I‘ ) . Such a set, as can be shown, is

a maximal independent set related to the subgraph 'V , Thus, the integration
over all the parameters A correspond‘ing to these sets leads to a singu.larl_ty

(&+ k)—' -t being appeared,.

However, in addition to the subgraph 'V , the graph may contain other
independent subgraphs with the index k which include divergent blocks ., Let

ViV,

barycentric transformation. of just the same type as for the graph V and the in~

tegration over all A we get at the point f=-k a pole of the order r+1’ where’

be a certain sequence of such independent t- subgraphs, After the
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" ¢. is the total m'xmber, of allowed divergent subgraphs entering any of ‘V‘..;V'
Passing to the variable S° by eq: (11) we obtain the following asymptotic be=
hayiour corresponding to this singularity :

rer’

) fr kg0

T = S =1
R (1a S) for k> 0.

The exponent b is due to the Influence on the asymptotics of the second mecha—
nism , i,e, it is due to the appearance of the additional powers of S because of
the momenta éntering the preexponential factor, it must be oalct;l.la'ted just as for
convergent g,raphs..’l‘he.nwnber b is simply the number of increasing pairs of
the spinor intercepts corresponding to the given sequence of t-‘ subgraph.
For each sequence the number of -k +h  will be different, So, to determine the
main asymptotic term it is necessary to find a sequence with maximal number 7

-k + h _+ Consider in more detail the concept of allowed divergent Subg,raphs,
and the reason of their importance for the asymptotics, Lét e,g. we have only one
essential t- subgraph with the index % contalning one divergent block, After the
barycentric transformation and the integration over A we find that the residue ‘of
the pole at ¢ =~k is determined in the scalar case by
T ™ A E
dp®*t AN(B) A
&)} (1

or )

fap (1~p)°

since for A+ 0 (see
e
AG - AV AG"\
e
A+ AL A .

c (17)

where the graph G’ is obtained from the graph G by contraction of the subgraph
V, Ay is formed from V by means of § - section increasing by one the
number of its components and the graph G is obtained from the graph G by
contraction of the formed components of the subgraph V after breaking it by § -
section of the graph G , However, if ﬂ% and i"ﬂ are
mdependent of 'p then this coefficient van.lsh;s and the poleAdfe)s not work, The

latter is -possible when and only when:

1, Any section of the graph T increases the number of components of V (in
this case any of the trees of V can include only the trees of I' and therefore
By =p"Ay an - '

2, No one of the S~ section of V  increasing by one the number of lis componenb
affects T (in this case A, may contain only trees of the subgraph and .
consequentty »yW) = pH Ay (2) . The name “allowed" is attributed to
those subgraphs for which on one of these conditions is fulfilled,

In spmor graphs ‘terms such as P, NETTS 8 Ca’“ i+ < C, Ony o, which
are determinéd by (6) (8) and (9) with replacement of @ by B enter under.
the =ign of differentiation a_-s well, But we notice that amy .A_(fr’"_q'l_ is a sum
over the product of chords of some selected trees of G Indeed, A(sp;g).
are 2-rees.with vertices, ‘8 and g belonging to different components, If

in any of these we reconstruct the line o- joining these vertices, what is equ-~
ivalent In this case to the division by B o » then we obtain a tree, If after the re-
placement a, -+ Ma;, for veV and A- 0

we get

u’ AyAp(spigl)

A for the line o€V
Bo

Alspigi)
Be M, ;
AR A N
By

for the line o&V

where the symbol A’; denotes some 2—tx_-ees'or V with vertices s ~and q bex
longing to different components, Taking into account the first of the relations (17)

“we become sure that the parameters ‘p associated with the divergent subg,raph

o
ing to the subgraph . It is not difficult to see now that in fultilling conditions (1)

T will affect only those P, and C,- which have, at least, one line belong-

and (2) these additional terms in the spinor case are all the more independent of

P . It Is sufficient to note that Av(s,9) corresponds to some “trees of the

subgraph 'V and since , according to (1), any tree of V may contain only

V(an)

trees of T then is independent of P , So,the concept af allowed

' g v .
divergent subgraphs remains In the spinor case the samo.

“Now v;le considér the graphs of the second class ., The fo;;'m of the R-ope-~
ration for it can be obta.ined from the eXpression (14) by concelling all the terms
containing the product Mb M “which corresponds to partially intersecting (in
t}"xe sense of common‘l'mes) divergent subgraph ‘I'b and 'Fo » This leads to a
decrease of singularity. of the integraht when the parameters p . and p  tend
simultaneously to.zero, As we already see this possibility corresponds to a
"twofold covering" of some lines and therefore does not affect the main asymptotic

term. For this reason all mentioned in this Section is extended to graphs
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of the second class with the only correction that in calculating the exponent 1’

only one of the intersecting divergent subgraphs are to be taken into account,

Finally we note one more important fact, If any essential t- subgraph con-
tains ¢ allowed divergent blocks F‘ T  satisfying however the condition (1)
then the differentiations with respect to the corresponding p lead to the factor
£(£-1).. (§£-N) being appeared in the nominator (where N = %(w'+l) and @,
). I furthermore -N<k<0 then the effective power of the
will be smaller by one as

is the divergence of T,
pole becomes smaller by one, the power of IS

well, Summarizing we formulate a final
6. Recipe
for finding the asymptotics of any planar graph with external momenta P, sB oPysP,
entering the vertices 1, 2, 3, 4; respectively.
! Y, t=(pae )7 scuttS ?
S=Cp+p) » Us=(pte) PPy r S+ .

Definitions :
1.8~ (orU ) section is the cutting of the graph G into two connected conpo -

nents with separation of the vertices {1, 2 | from the vertices (3,4} (ori1,3}

from { 2,41),
2. The graph is called planar if it contains no U -section

3. The chain is the assembly of lines the end of any preceding line being the

beginrﬁng of the subsequent one,
4. The subgraph is an arbitrary assembly of lines with the appropriate vertices ,

5, The subgraph V’is called a l—subrgragh with respect to 'V if any § ~section
increasing by one the number ot components V and, at least, one of them incre-

ases the number of components by one,

6. The set of the subgraphs V ...V, Is called a sequence if each of them
is the t- subgraph with respect to any of the foregoing and V, with respect to

G.

7. The pair of spincr lines of the subgraph V ¢ G is called essentlal with
respect to it if at least one of section of G into two components which separate
the opposite ends of these lines increases the number of =~ 'V’s conmponent by

one ,

* 8. The index of the subgraph V is the number &k =f —2u—r where

is the -number of independent cycles of the subgraph,f is the number of its lines

and r 1s the number of essential pairs of spinor lines,

'9./The subgraph T is divergent if its index k < 0.

18

. Example 1

10, The divergent subgraph T C 'V C G is called allowed with respect to
V if one of the following conditions is fulfilled: a) at least one of the sections
of T does not ihci'ea.se the number of connected components of the subgraph
v, b) at least one of the S~ section i:lcreaslng by one the number of compos
nents of V cut T
11, The.subgr.’aPh .V, ..V, are independent if any of them cannot be completely

constructed from the lines of the t‘oregolng ones ,

12, The pair of subsequent intercepts of the spinor chain is ca.Lled increasing
with respect to the given independent sequence of the t- subgraphs 'V ...V,

if a) each of the intercepts includes all the lines of the spinor chain lying on the
one side of the set V, ... V' and eﬁtering the éxtremé of iis s;ubgraph_s .
b) each contains at least one of the lines not entering the number of essential

pairs and c) no one of them 1s contiguous to the external- gpinor-line.,

Rule

When S » = the contribution of the graph behaves like Ca (Ia 5)
where t is the number of subgraphs with the index k in the maximal sequ~
ence of the indepehdent set of t~ subgraphs V ... V_ with B incre=
asing pairs of spinor intercepts for which the number of k~h is mininnl;
S is the number of nonintersecting partially (in the sense of common lines)
divergent subgraphs allowed with respect to the subgraphs of this sequence and
begin not t- subgraphs, . 1 when k<0 is the number of subgraphs of sequ-
ence V, ..V which contain. e  allowed divergent- blocks not satisfying
the condition a) in the definition 9 with indices satisfying unequallty

%(q'-l).gk and 1”=1 when k> 0.

7.Examp1e$

Let us start from the simplest one




‘The essential sﬁbgraphs: v, = (the graph as a whole) -2 =2, r=1, k=1

r =0 consequently r . 1 (In s)z
s ‘

Example 2 lLet us show how the essential pair of spinor intercepts works

Fig.4.

and two subgraphs which consist of one line: V,=(4) and V,«2 withf -2u=1and

The essential subgraphs: V, = (the graph as a whole) € -2p =3, r=1 (e, g,

the lines 2,7), k=2; V,=(L6; V,= (3,4 both with. k =2 . 7he lines 6 and

3 form an increasing pair of intercepts, i.e: h=1 as a result T= %ln2 S.
' Two examples with divergent graphs,

Example 3 4. 7 2 3
+ Ve (1,2,3,4), 0~ 20 =2, r= 2
6| ¢ 3
Twslas
P 772
Em]ii 4 R & S 7
. 1 1 \"-,é-'—vf" 3
2 6
3 19, ]
&1
1 12 2

Vi= (L2,313) contains T, 0-21=2, r=1, k=1.
Vo= (_9.10,11,8) contains TIy; €~2p =2, r=1, k = 1.
T, is forbidden and there is no essential pairs in intercepts, so that

Tu_;_(lns)z. 8, Conclusion

*So we have succeeded in formulating in a more of less compact form a ru-
le for finding the asymptotics of one more wide class of graphs with a spinor li-~
.nes. It may be saild that these are quite "physical"
mcludgs also electrodynamics though there can occur
photon zero mass,

N
graphs, as far as this class

20

some pecularity related to the

Till now however the wide class of non~ planar gi-aphs remains non- co =

. vered , An interesting attempt to study them has been made by Tictopulos/ 12/ .

however the problem of the connection between the asymptotics of a non- planar
graph and its topology in the general sense remains still unsolved, Howev'er,

it may be sajd that we’have bypassed" this. problem, In fact, almost in each or-
der of t.heo_ryblntw}}lch' "there is divergent "fourleg" (in electrodynamics, e.d,

this is thé Bh:)ton; photon scattering ) we may indicate the class of graphs ‘which
are the most knborta.nt from the point of view of asymptotics and the non- planarity
of which plays no role .‘ ’El‘hese are graphs which contain divergent t- subgraphs.

‘Indeed the pecularity of non-planar subgraphs is that the coefficient of it is not

positive definite and therefore it can vanish somewhere in the middle of  the inte .
gration region, not enly at its boundary , However this vanishing has a character
of the mutual cancelling out like (a, —a‘; ) RT '(ak-— ay ) and - apparently can-
not lead to a singularity in the  { -plane to the right of the point & =~ 1
(very likely it has a singularity at & = - 1
subgraphs lead to the singularity at- € = 0 j.,e, it is they which define the

‘namely ) but the divergent

asymptotics, For example, in the sixth order fér the Compton effect fhe graph

‘considered in the fig. 5 is the largest in the asymptotics,

Basing on this property, for various processes we may speak about the
classes of ‘the most important graphs for asymptotics, For meson-meson scatte~

ring, e.,g. it may be states that the most important are graphs of the type .

Fig. 7

what agrees with conclusions obtained on the basis of analiticity and crossing

© symmetry,’ The application of these methods for finding the class of asymptotical-\‘\

ly main graphs in many particle processes can give some interesting results as |
well, . " .

One -more domain of appliéat.ion of the developedk methods is the graphs
with two and three external lines. "I‘he point is that, in our sense, such graphs
are always planar, i.e, the coefficient of p2 is always positive, For the ver-
tex part in the.electrodynamics, e.g., it may be asserted that approximate equ-
ation of the type C
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will be incorrect since graiahs such as

Fig, 9
give a singularity - equal to that from the mentioned graphs,

Finally, one more application of these methods is a simple summation of
graphs which are the main in each order, For this however, besides the asymp-
totics itself its coefficient is needed. In the present paper we are not dealing
with the calculation of it but this can be certainly done, Simply we have to take
into account that the leading asymptotic term of each graph can yield several sets
of independent subgraphs and therefore it s necessary to sum up over all these
possibilities ,

In conclusion 1 would like to thank first of all O,I, Zavialov who gave me
an apportunity to read his manuscript before. publication and for interesting dis-
cussions, The author thanks also D.l, Blokhintsev, I.F, Ginsburg, A,T, Filip-

pov for stimulating discussions,
APPENDIX

If any S - s ection cut the subgraph V with the index k at least into

“ i’ components t.hen after barycentric transformatlon a, - /\a for ve'v
and A= 0 (.._) —-‘ (T) ( 'i is the number of connected components
of the subgraph V ) what leads to a pole at the point ¢ = - T‘E__ if,
B -1

of couse, V contains no forbidden divergent subgraphs, Let us show, however,
that in this case we can single out from v such a subgraph V’ that it will
be the t -subgraph with respect to G its index being k* < ’k .

Indeed, let V consist of i connected components V Y \lll l the first 1

of which contain the t~ path ( i.e, a chain cut by any S - section, at least one

. of them cufting it into two parts) and each V., be cut by any § - section at le-

ast into” i -1 components, We prove that if i 2 3 then V, consist of

22

i, ~1 weokly connected t- subgaphs, We single out from V, such con-

nected subgraphs that for any S- section they shouwd remain to one side (let us
call them Invariant), Let 1,Q and ] be three subsequent subgaphs such that

a.ny‘ path from I to J belonging totally to 'V, passes only through Q ,Q
and 1,] lying to opposite sides of any. § « sectlon, It is clear that any path
from 1 to Q as well as from Q to ] must be a t- path, otherwise they wo-"
uld not ‘be mvarm.nt. For deflniteness we shall assume that Q can be jol.ned by

paths not cut by s~ sections with vertices 3 and 4, and I and ] with vertices
1 and 2, Now we show that any path from 1 fo ] passes through the same ver

tex belonging to Q i.ey 'V, consists of two weakly connected In Q f- subgraphs
In fact, let' m, and m, be the ends of the t- paths joining Q with.'1 and ] ,
respectively and let m, and m, be the ends of the paths joining Q with the ver-

tices' 3 and 4 then there exists no section separating the vertices {m L 2} from
{m,,m | and dividing Q into two parts, Otherwise it would make a part of the

'§— section; And if this' is so then taking into account that Q must be planar, i.e.
there is no nonintersecting paths m, + m, and .m, ~ m,, all the paths from
.mtom Intersect In the same vertex; Let another path from I  to Qends in
the vertex n’, then all the paths from mn to m, must go through the vertew m’

but in virtue of the fact. that Q is connected, the vertex m’ concides. with m

otherwise there would exist a path from m, to m, not passing through -m: ., Ap«

plying ‘these consideraﬂons to any three subsequent invariant subgraphs #t may
1 =1
be concluded t.ha.t Va consl.sts of i~-1 weak.ly connected subgraphs V fees’V A

Note - that a.moryg the » subgraphs v 1ot V these,may not exist a divergent one

otherwise it wﬂl be forbi.dden, therefore k2> g which is the Ind.ex of the union <

v, e v, e However, each of these Va conslsts itself - of weakly connec -

ted subgraphs therefore.

s 171
k = 3 2 kq

q=1 p=1

hence it follows that i€V entermg the set IV l has the minimal index then.

since

v (. s .
T (1=-1) = =1, k 2k (i’—i)k’
q=1 )
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