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1 •. Introduction 

The present paper is devoted to the determination of the asymptotic beha.­

viour of both the convergent and divergent Feynman graphs basing on their to -

pological structure. In many papers this problem iB solved for graphs wUh sea -

lar line&. The most ccmplete and general form of this solution seems to be pre­

sented by ZavialaJ 1/ and completed in some sense by Menke/ 
2
/. The asymp­

totics of divergent scalar graphs is carefully studied in ref/ 3/ where the R 

operation in the a - representation is made and general recipe of obtaining 

( unfortunately with some inaccuracy) of the asymptotics is given. Removing the 

above inaccuracies we will use this method as applied . to graphs with spino'r 

lines, These graphs are, of course, more complicated than the scalar ones, ho­

wever practically the former are much more interesting, at least, from the point 

of view of electrodynamics. Spinor graphs have been considered in a number 

of papers/ 4 • 5 / 1 but a· constructive recipe of plotting· the asymptotlcs for a ra -

'ther wide class of spinor graphs is absent there • The difficulty of this problem 

ls that I in addition to the usual exponential. dependence on momenta , there ap­

pears a preexponential depending both on the parameters a and the momenta, 

This leads to two additional mechanisms of increasing the asymptotics as com-

pared to scalar graphs. First, the dependence of the preexponential can in -

.crease the effective index c. • essential subgraphs and, second, the ir;ivolved rro­

menta can be combined in an additional power of an asymptotically large vari­

able. Section 2 is devoted to the structure of the preexponential and its con -

nection with the graph topology. The convergent spinor graph asymptotic:;; is 

considered in Section 3. Divergent graphs, their regularization and asymptotics 

are considered in Section 4 and s. The results of all the previous sections are 

formulated as a recipe which, together with necessary definitions, ls singled 

out in Section 6 • Section 7 deals with the examples of application of this recipe• 

2 , Contribution of a Spinar Graph in the a - Representation 

We recall, first of all, that to each scalar line 

alpha- representation there corresponds the function 

11 of the graph G in the 

i'.(,>1 "'1) = 
1 -f(~-f8Ja,,-.!..tL X )

2 

( ~ e ;a;,,,, l where , is the incidence matrix of the graph 
(4i,") a2 >1 

G , i.e. , >1 = 1 if the line II goes into the vertex i , • >1 = -1 if it go-

es out from the vertex and •yi = 0 in other cases. To spinor lines of the -grdph 

there corres1-,nds the functio'n6/ S(x) = (l,y" ~ + m) i'.(x) i.e. to each 
axn 
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spinor lln e u in the contribution of graph G according to the usual rules , 

there . corresponds the multiplier 

sc,u,x,) 
1 CUu 1 -l(m; -IS>a -..1-..« X )2 

(411)" f a;(2au 'u1 2, + mu)e u '°,, u1 I (1) 

Thus, the coefficient function described by the graph G in the 

talion is of the form 

x -represen-

K(x 1 ••• x ) .. y(j'~ dav:I IJ(_l_, 2 +m )x 
11 0 ·l'=l a V u 2au Ok k u 

f 2 f 2 
x exp[-iI (m -i8)av-.l..I-1-C,vkxk))I 

V= 1 v .4 µ. 1 av (2) 

where the symbol Y denotes a correct arran'gement of the ,y matrices ente-

ring the expressions for spinor lines ( and, perhaps, the vertices which we are 

not deul.ing with ) , 

'lb pass to the momentum representation it is necessary as usual to multi.., 

ply the coefficient function ( 2) by exp I i p I x 
I 

I and integrate over all x
1 

This means that the external momenta enter each of ·the vertices, 'lb go over 

to the real situation some of the "fictitious" momenta should be assumed to be equi­

al to zero, what we are going to do in due time, If now we use the equul.ity 

f' l~"J 
k e 

" lpl XI 
= -ia Pk e 

then integrating and factoring out the conservation of four- momentum 

(K (p ... p ) = 8 (Ip )T(p.".p ))we get 
1 D· J 1 n.f 

00 Ild 1 
T(pl ••• P,,_1>,. Ylf ~ TI( __ (Ok apk + m.,.) X 

11 
__ 

1 
o l'1 (a) u 2i,;, 

xexp[i I d
1
k (a)p p -iiav(m; -18)). 

J,k==l f k V 

The functions /'1 (a) and d
1 

k (a) = A(jk i n ) and their connection with the 
I 7/ &ca> . 

graph topology were obtained in ref, , We renind in brief what this connection 

ls, '1'o obtain /'1 we need to construct a so- called tree of the graph ·G. 

1, e. a connected subgraph containing all the vertices of the graph ·G but having 

no closed cycles, then to write the product of the parameters a correspon;-­

ding to lines not entering the tree ( e,g, to the tree sherds) and sum up such 

expressions for all possible treeis of the graphs ti , 'lb obtain A(jk; n) 

we need to construct a 2 - tree of the graph ( l, e, a subgraph containing all the 

vertices- and consisting of two separate connected components without closed cy­

cles ) such that vertices I j, k I and vertex I n I belong to various components , 

then i; write the product of the parameters a corresponding to the chords 
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of each of the 2 - trees and isum up over all such 2- trees of the graph ·G 

In other words, , using all possible ways we must make sections of the graph 

into two components ( by removing some lines ) one of which contains -the ver-

. tex In I and another the vertices I i,k 11, take a product of the correspondlng 

a - parameters and . multiply it by the s~over all possible trees of these two 

compone~!s,· 1:e. 
A(jk;n) - I /'1'/'1" n·a 

Over all ·aeot_ .. ot. 

1 
Look now how the operator Il (,...,..- • Uk 3'p k + m ) acts on u .ua 0 u 

the exponential in the expression ( 3) , If the graph contains only one spinor line 

then the action of this operator leads to a multiplier to be appeared before the 

exponential 

pit= (-
1
-••uk dkmPm +mu). 

au 

'l'wo spinor lines yield the multiplier 

p p + C 
0'1 °2 0'10'2 

where 

Cu u - i(,y 1 ,y 1 >'u11t'u,., dkm 
1 2 (U1) (U2) 2a a 

U 0 
1 2 

three lines yield 

Cu op u + Coo P.,. +Coup o + p u po i:'u 
1 2 a 1aa 2a1 1 aa 

( 4) 

(5) 

and so on. There ls no necessity to write down a general form of this express • 

ion, It ls very cumbersome and besides not very useful, However, the rule by 

which the preexponential multiplier is formed ls now clear. ( It resembles the sum­

mation over all the contractions in the Wick theorem ) • 

Now we may assume that all the "fictitious" external multipliers vanish 

and keep only the real 

vation law), 

P1 p 
2 

and p 
3 

( p , is omitted owing to the censer-

We are going to clarify the -topological meaning of the a - dependent 

functions enternlng P
O 

and C
00

, • Let the spinor line o joint the vertices 

s and q of the graph G then the a -dependent part of P
O 

reads 

_l_[(d 01 -dq1)p\ + (d 02 -dq2)P 2 + (d
01 

-dq
1

)p
3

) • 
au 

5 
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At flrst glance, this function seems to be singular when au tends to zero, 

but1 in fact, this is not the case. ~ally it Le known, _that, for example, 

d •I -.d.1 = 
A(s1; 4)- A(ql; 4) 

-6..- ( 7) 

However the vertex q enters any of the 2- trees A(si; 4) either together with 

the vertex 4, or with the vertices Is, i I i, e. 

A(si ;.4) = A(si; q4) + A(siq; 4). 

In just the same way we can write 

A(qi; 4) = A(qi; s4) + A(qis;4). 

Inserting these results into eq. { 7) we find 

_l_(d.1 -d ) = A(si;q4)-A(qi;s4) 
au ol a t,,_ 

u 
( a) 

Hence it is seen that for au there is -no singularity because the nominator 

contains only such 2- tree3 whose vertices s and q enter different com-

ponents, i.e. the line .u 

should be proportional to 

should be a chord and, consequently, the nomlnator 

a • . u 

We pass now to the term C , 
ro Let the spinor lines u and u' 

joint the vertices s,q and 
, , 

s,q respectively. The a - dependent part can 

be written in the form 
A(ss';4)-A(sq';.4)-A(qs'; .4) + A (qq' ; .4 ) 

a a , 6.. u u 

But each term of this expression can be expanded taking into account vertices 

not written down explicitly, e • g. 

A(ss';4) =A(ss'qq';.4) + A(ss'q ;4q') +A(ss'q~.4q )+A(ss';4qq'). 

In this case many obtained terms cancel. out and remaining ones corrbine them­

selves as 

A(ss'; qq')-A(sq';s'q) 

arr a~,~ (9) 

It is seen again that for au= 0 , au, = O there is no singularity since the 

nomlnator contains only such 2 - trees in which different ends of both lines en.,. 
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ter different components , i, e, the lines u and u' are to 'be chords• 

It is knowr/ a/ that the expression in the exponential power does not depend 

on which of the real momenta was omltted due to the conservation law., The sa­

me can be proved also for the preexponefrt.ial factor in the spinor case • 

3 • Asymptotics of the Spinar Graph 

Now we go over to the determination of the asymptotic behaviour of a scat­

tering amplitude defined by a certain graph G • First of all we rewrite eq. { 3) 

as 

T(s,t,(i') = f~ f(a,~,m )exp[iA(a)S+iB(a,t,m)] 
6.. (a) u 6..(a) 

and make the Mellin transfomatlon 

in this case 

T(s, t,(i') = 

<IJ(() G((,t,'~) 

sin 11( 

l 141~ G((,t,'~) 
_ f de --

( 
(-S) 

211i 8-1~ sin 11( 

f 
r((+ 1) f ~~j ) f(a,~,m }( A(a) / IB(a.t,m) 

a , u 6..(a) e 

( 10) 

(11) 

12) 

where A = A (12; 34 ) - A ( 13 ; 24 ) ( for a planar graph_, i,e. for a graph 

which has no nonintersecting paths connecting the vertices I with 3 and 2 with 4, 

the second term is zero ) , Remind what we have for a graph with the scalar 

lines only ( i. e • when f = 1 ) , what topolog_ical elements define the asymp -

totic behaviour when s ➔ ~ , From eq. { 11) it is seen that it is determlneci 

by the extreme right singularity of <IJ ( ( ) in the complex 

planar graph this singularity is dµe to the vanishing of 1 
the integration region , i.e. when some set of the parameters 

{ - plane, For a 

at the boundary of 

a vanishes ( graph-

ically it means a contraction of the corresponding lines into a point such that 

the obtained graph have no S -section, i.e. no section separating the vertices 

1, 2 from 3, 4 and dividing the graph into two connected parts ) • If a subgraph 

V contains f' lines and µ' independent cycles (µ' = f' - n' + i where 

n is the number of vertices and is the number of connected components of 

the subgraph ) and any S -section increases the number of its components, at 

least, there is one S - section increasing the number of them by one { let us call 

such a subgrapll the t - s_ubgraph with respect to ·G ; in Appendix it is sho~n 
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th-:i.t only the graphs of such a kind _yield the main contribution to the a.synptotics) 

then by barycentric transfomntion av ➔ >.av for all v< V and when >. ➔ 0 

( it is just this region which gives the most right singularity corresponding to the 

subgraph V ) t.. ➔ >._µ' t,.• , ~ -+,\A' and eq, ( 11) for <P(f) takes the 
t,. ~ -

form 

f;-1 d>. f Ildav 8(1 - ~a -~ V)(~) f e me>.= OJ 
t,_2(a) V t,_• 

It is clear that integrating it over >. we are led to the appearance -of a pole 
- -k 

at the point f = - k ( and, consequently, to the behaviour S ), 

'Therefore the main asymptotic term is determined by t - subgraphs with minimal 

index k = f' - 2µ • , Let us look what determines the order of this pole 

First of all we note that terms corresponding to the S - sections which increase 

the number of components V more than by one do not enter A' since af-

ter the multiplier ,\ being factored out from 1 they vanish, at least, as the 

first power of ,\ when A -+ 0 , There arises naturally the following generali-

zation of the concept of t - subgraph with respect to G : V ls, referred to as 

- subgraph with respect to V if any S -section increasing the number of 

V components by one increases also the number of V_' conponents, at least 

one or' the sections increasing the number of components by one, It happens that 

if V
1 

••• v, is a maximal sequence of independent subgraphs and each of them 

has, at least, one line not entering any of the subsequent subgraphs) ,A,itb a rri-

nimal index k , then the order of the pole at the point f=-k is r therefore 

when S ➔.. this graph behave like s•k(lnS{°
1 

In ref,11 3 the.re subgraphs were 

assumed to be t. -subgraphs with respect to 'G and this inaccuracymay cost in 

some cases an additional ,power of the logarithm, For example I for the graph in 

Fig, 1 a, in addition to the subgraph a, b, c, d, e, f 

of ref/ 1/, according to new rule, one_ more "broken" 

obtancd _ by the method 

subraph lg is possible 

which is the t - subgraph not with respect to G , but to the subgraph I c, This 

leads to the additional power of the logarithm I i. e, T ~ S -
2 

(In S) 6 , The 

graph considered m ref,
2 

may serve as another example of such a type, 

., 

EJ EJ S1 f---i z ~--J I I . I I I 
I I I I r--- :--;, ;--- : [--,: I 

I 1,/ I I ,/ I 
~--- ---• :,__ __ .J 

~ a. 2 8 C cl e f g 

Fig. 1. 
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What changes in the recipe occur owing to the factor f ( a• f' , m arisir 

due to spinor lines 7 Here two mechanisms act which tend to in~se the as)I 

totics power, First, lhe dependence of this factor on a can lead_ to a de 

·crease of the V's index and , second, due to the presence in f flli the momentc 

fr , after expanding by the matrix structures and trace operation there can 

appear the scalar products of the momenta ( p I p 2 ) and (p I pa ) which behave Ilk• 

-s/2 and-S'2 if s ➔ .. 

First of all we consider how the terms p 

" 
and c..,, influence th 

·V's index, We make, as usual, the barycentric transformation a -+,\a 
,V V 

for v ~ V and test whether the preexponential function can lead to the ne 

gatlve powel;' of ,\ and when this can occur, Let us consider what rrininal 

power of ,\ may be given by the term Pu corresponding to the spinor line 

q , It is not difficult to see that in this u connecting the vertices 

case A ( sj ; 44 ) 

s and 

transforms into where 
µ'+1-1 

,\ A' (sj ; q 4 ) is t 

smallest number of connected components into which the subgraph V is cut 

in separating the points I s,j I from I q, 41 , Indeed, this means that the sub. 

graph enters the corresponding 2- trees is an 1- tree which can be obtained_ 

from its tree by removing some i -1 lines, At the same time t.. as before, 

tra11eforms into ,\µ' t..• , Thus there can appear two possibilities: 

1-1 
a, For the line u ~V,Pu behaves as >. , :)3ut the smalle!lt possible 

value _of i will be unity, therefore i- 1 cannot be negative and the index can 

not increase , 

b, For the line u~V 
1-2 

in spite of the factor >. 

cannot be less than two since for any section the point s 

is singled out 1 

and q mu.st be 

long to different components, This does not lead again to any increase of the 

index.' Thus , it turns out that terms Pu give no deslra ble effect and can inf 

ence the asymptotics only due to involved external momenta, We turn now to tei 

C uu' , Here three cases are possible : 

a, If u, u',(/. ·v then the power of ,\ cannot be negative for the 

same reason as before , 

b, The same occurs when only one of the lines u , u • belongs to ·v 

c,But if u~ V ard u•~ V then the power of >. · which is singled 01 

from C ~ uu - is i-3 , If, in addition, a section will be found separa 

Ung I s, s'·I from I q,q'I or I s,q'I from Is' ,q I so that the subgraph 

V could be divided into two parts then the effective index: will increase by 

unity, Such pair of spinor lines will be called by us essential, 
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What changes in the recipe occur owing to the factor f (a• f' , m ) arising 

due to spinor ·lines ? Here two mechanisms act which tend to increase the asymp -

totics power. First, ·the dependence of this factor on a can lead. to a de 

·crease of the V's index and , second , due to the presence in f ai the momenta 

V , after expanding by the matrix structures and trace operation there can 

appearthe scalar products of the momenta (p
1

p
2

) and (p
1

p
8

) which behave like 

-s/2 and4'2 if s .... 

First of all we consider how the terms 1:, and c..,., influence the 

·V's index. We make, as usual, the barycentric transformation a,, .. >.av 
for i, -" ·v and test whether the preexponential function can lead to the ne -

gative powei:- of >. and when this can occur, Let us consider what niri.lrrfl.l 

power of >. may be given by the term Pu corresponding to the spinor line 

u connecting the vertices s and q , It is not difficult to see that in this 
µ'+t-1 

case A ( sj ; q.4 ) transforms into >. A' (sj ; q4 ) where is th!\' 

smallest number of connected components into which the subgraph V is cut 

in separating the points I s,j l from ( q, 4 l Indeed, this means that the sub -

graph enters the corresponding 2 - trees is an i- tree which can be obtained 

from its tree by removing some I -1 lines, At the same time /.';. as before , 
,µ'., 

tranl!!lforms into " '-' , 'Ihus there can appear two possibilities : 

1-1 
a. For the line u 't'V,Pu behaves as >. , f3ut the smallest possible 

value _of i will be unity, therefore i- 1 cannot be negative and the index can­

not increase • 

b, For the line 
1-2 

uE V , in spite of the factor >. 
cannot be less than two since for any section the point s 

is singled out, 

and q must be~ 

long to different components. 'Ihis does not lead again to any increase of the 

index • 'l'hus , it turns out that terms Pu give no desirable effect and can influ 

ence the asymptotics only due to involved external momenta, We turn now to terms 

C uu' • Here three cases are possible: 

u, u' r;;t: ·v 

same reason as before • 

then the power of >. cannot be negative for the 

b, 'l'he same occurs when only one of the lines u , u' belongs to V , 

c, But if uE V an:l u'E V then the power of >. · which is singled out 

from Cuu, is 1-3 • lf, in addition, a section will be found separa -

ting ( s,s'·l from I q, q'l or I s,q'l from Is' ,q l so that the subgraph 

V could be divided into two parts then the effective inde,c will increase by 

unity. Such pair of spinor lines will be called by us essential. 
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'lllU!s, when there are spinor lines the effective index of the graph is equal 

to f-2µ-r, where r is the number of the essent.lAl pal.t"s of spinor ll-

nes, Now we go over to consideration of the second mechan.lsm. It is possible 

in unique way to taJce into account the fact that wnen S .. 00 both scalar pro -

ducts ( p 
I 

p 
2

) and ( p 
I 

p 
3
) are large enough. For th.ls we introduce new va.rlablea 

' - P,+ Pa 
2 

and 1/ -
P 2 -P a , 

2 

It is seen that the only large product will be (p 1 :71 ) • S/2 J:i'rom eqs, ( aJwe have 

already known the coefficient of ~ 1 in Pu• Let us determine the coeffici-

ent of ;; • Using eqs. ( 6) and ( 8) it can · be easily found : 

_l_ [ A(s2; q4) -A(q2 ;s4) -A(s3;q4) + A(q3;s:4)], 
au t,. 

Expanding the 2- trees of the denominator with account of the vertex 3 in the two 

first terms and the vertex 4. in the two last ones, we find after combining and c:aJ.,-

celling out that the coefficient of fj is simply 

A(s2;q3) -A(s3;q2) 

a ut,. 

i, e, with account of only asymptotically large momenta, Pu can be written 
in the form 1 ---. l[A(sl;q4)-A(s4;ql)] f +[A(s2;q3)-A(s3;q2)],fl. 

auo 
What now· happens if any t - subgraph is contracted into the . point ? 'Ille graph 

G became "tied" in the middle graph ·o• • If several subgraphs are contract-

ed then the number of knotes will be lar~r ( see Fig. 2) 

txJ 
1. 

3 

Q 
Fig. 2 

First of all we consider spinor lines not entering the tied subgraph , If the contr-

action of such a .graph leads to the vertices 1 and 4 or 2 and 3 being joinedl 

then the coefficients of p I or :, in Pu for all such lines vanish., since it 

is irrpossibla to cut the graph so that these points should lie in different parts , 

If the knot occured everywhere in the middle then in spinor lines to the right of the 

knot all the coefficients of p 
I 
vanish, and in spinor lines to the left of it the coeffici­

ents for fj' vanish, Indeed, all paths joining the vertices s,q with 1, 4 pass 

through this knot and hence cannot be separated• From the analytical point of 

view this means that after the barycentric transformation av ➔ Aa ii for 
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'l'h.us, when there are splnor lines the effect.1:ve lndex of the graph is equal 

to f - 2/l - r, where r is the number of the essentlol pairs of splnor ll-

fS, Now we go over to consideration of the second mechanism. It is possible 

I unique way to truce into account the fact that wt,.en S -+ 00 both scalar pro -

1cts (p p ) and (p 
1 

p 
3

) are large enough. For this we introduce new variables 
I 1 2 . 

I (; - P2 +Pa 
2 

and 
" C 

P 2 -Pa 
-2-· 

lis seen 
I . 

that .the only large product will be 

known the coefficient of ~ 1 in Pu• 

Using eqs. ( 6) and ( 8) it can • be 

(p 1 ''I ) • S/2 From eqs. ( a)we nave 

already Let us determine the coeffici-

:1t of ;; easily found : 

1 
-- [A(s2; q4) -A(q2 ;a4) -A(s3;q4) + A(q3;s.4)]. 
au 1:1 

:xpanding the 2- trees of the denominator with account of the vertex 3 in the two 

rst terms and the vertex 4. in the two last ones, we find after combining and cal-

elllng out that the coefficient of /j is simply 

A(s2;q3) -A(s3;q2) 

aul:l 

.• e, with account of only asymptotically large momenta, p can be written u 
n the forrrt -!.. l[A(sl;q4)-A(s4;q1)]6' +[A(s2;q3)-A(s3;q2)l,fl. 

auu 
Nhat now· happens if any t - subgraph is contracted into the . point ? 'Ihe graph 

G became "tied" in the middle graph ·G' • If several subgraphs are contract-

ed then the number of knotes will be lar~r ( see Fig. 2) 

tD 
~ Fig, 2 

! 

Q 
First of all we consider spinor lines not entering the tied subgraph • If the contr-

action of such a graph leads to the vertices 1 and 4 or 2 and 3 being joinedl 

then the coefficients of p 
I 

or ;j in Po- for all such lines vanish., since it 

is inpossible to cut the graph so that these points should lie in different parts • 

, If the knot occured everywhere in the middle then in spinor lines to the right of the 
1 knot all the coefficients of p 

1 
vanish, and in spinor lines to the left of it the coeffici-

ents for fj' vanish. Indeed, all paths J oinlng the vertices s, q with 1, 4 pass 

through this knot and hence cannot be separated• From the analytical point of 

view this means that after the barycentric transformation av-+>-av for 
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I 
l I 
,1 

, I 
I l 

-v~ V the indicated coefficients will be proportional to the positive power of A 

As an example, let us take the coefficient of 

Any section separating the points Is, 1 I 
rlly cut V at least into two parts and as tar as 

p I ln a line to the right of ·v 
from lq,41 e,g., rrusfobJ.gato-

., ' '+t• I 

for >. .. o 1 A(s 1; q4) .. f A(s1; q4) 
Atsl• q4) I• 1 •A '1_s1· q4) 

and i =!_2 then --;;T .. J.. a '1:1 > , • Besides it is clear that if µie ll-
6 6 

ne ·u belongs to ·v and there is at least one section separating the ver -
', . 

tices Is, 11 •· • from· I q, 41 or I s,4I from I q,11 which divides V into two parts, 

then after the contraction of this subgraph into a point the coefficient of ~ 
1 

does 

not vanish • The similar · conclusion may be drawn about the coefficient of lj 

Now we consider a collective effect of the spinor lines forming a chain. Such 

spinor chains in the graph may be of two kinds: these are spinor cycle;S and so -

· called splnor polygons ( i • e • unclosed spinor chains beginning and ending by ex -

ternal splnor lines ) • Consider a spinor cycle. We have just obtained the following 

result: in terms Po- for spinor lines entering ·v L ( the most left of the contract­

ed graphs) or lying to the left of it only momenta ~ 
1 

" survives" and for lines 

entering V R ( the most right of the contracted subgraphs) or lying to the right 

of it. only momenta fi that "swvives" • For all the intermediate lines the no -

menta ~ and fi fall out at all. Further t owing to ra = 8 
2 the contri-

bution of each piece of the spinor cycle belonging to one of the above groups re -

duces to single 1 or fi ( It may be always assumed that each of these gro­

ups contains an odd number of lines, otherwise, we may "remove" one of them 

taking instead of ~ 1 or {j in Pu the term with { or mu • Thus an additi~nal 

power from the cycle will determined by Sp ( f fi p fi . . . p ';i ) i, e • by the num .. 
1 I 1 j 

ber of· subsequent pairs of intercepts of the spinor cycle one of which is placed 

to the left of VL or enters it and another is placed to the right of ·v R or 

enters it, Of course, if each of such intercepts contains at le<;>.st one Pu 

i. e, at least one I line not entering the number of essential pairs of lines. Such a 

pair of intercepts will be called by us an increasing one • 

In contrast to the splnor cycle, an intercept contiguous to the external 

spinor line shoul<i not be included in the number of increasing intercepts of the 

spinor polygon, Indeed , le~e. g-,,the polygon beginsin "the vertex I. Then for 

the intercept of this polygon lying to the left of ·v L and entering it, after cont­

raction only a term with i 1 survives • But if now we remind that the amplitude 
- + + :=) ,~ -must be between v - , v - and that e.g •. V\P v = mv(p) 

then everything becomes clear • 

11 



N>w we are able to formulate a recipe for deterrnlnlng the ASymptotics of 

any pl~ co~rgent graph with spinor Unes. Let we have a sequence of lnde~ 

pendent( in the sense of definition of this section) t - subgraphs 

·v· ·v· 1 •• • ri with the index kt ( in the new sense) 

v:i ·v :i 
1 ••• •2 with the index k2 
i, ll ·v1 .•. v,a with the index k ll 

then the power of the main asymptotic term is determined by the ninlmal of. the 

numbers kK - hK,. where hK is the number of increasing pairs· of spinor lnter.­

cept:s for a given sequence of subgraphs and the logarithm power is speclfled 

:simply by the number of independent subgraphs entering the given set : 

T • -
1
- (tnsr' 

S k-h 

4 • R - Operation for Spinor Graphs 

In considering divergent graphs we shall use the regularl.zation method in 

the alpha representation developed in ref/ 3( As is knowr/ 
6

/ to regularize a 

divergent graph the following· operation is employed 

R • 1 + }: "• • •• p ~.in-I I a,. 

.. 
+ P,. , (13) 

where the summation is made over all possible divisions of the graph 

into blocks, and the action of the operator P .. • on a generalized block ( contain­

ing n' vertices and l' exten,al with respect to them lines) is given by the 

rules: 

al'ld 

.. 
p • - 1 if n • = 1 ... 
1' • - 0 if k'-t•. -· 2,.• - r' •> 0 D 

or if ,r , 
• 

P n' a - 'l (1- }: 1>.,•. ••• il.._, ) 
,~ ... ~i. .. ,_ l 

is not strongly connected 

if k'.~ 0 

where M is the operator which subtracts from the function of momenta the first 

-2k of its expansion in the Maclaurin series• 

12 



We fir5l con5ider graph5 of the fir5l class including all graphs two any 

divergent subgraph5 of which either are· contained into one another or have no 

common llne5 at all•· For this ca5e the formula ( 13) r'ead5 

( 14) 

It ls necessary to note one pecularity of the 5pinor case• The fact is that 

the contribution from the given graph, as we know , is the sum of terms to 

which there corresponds a definite breaking of all the spinor lines into pairs and 

single line5 ( to these lines there correspond the functions C 00, or P
O 

) fut 

the number of essential 5pinor pairs defining the index may be different for diffe -

" rent terms• For thi5 reason operator M affects different terms in a different 

manner. However if we discuss the graph divergency in general then we bear in 

mind a minimal possible index which will be denoted by - ru • But this singularity 

of the spinor case is automatically taken into account by the following procedure • 

Let us consider first a graph containing no internal divergent parts at all but di-

vergent as a whole.- ·If the degree of divergence of this graph is ru then the 

subtraction of the corresponding number of the first derivative 1 ·i.e. the residual 

sum of the !Vlaclauren series is given by the formUla / IO/ 

1 IM(ll) I d·p(l-·p >"' d<,;1-1 p2µ+r 1 
TR a -;::--,· J'Ilda., e 

0
[ ______ Il (--, ::J p + m

0 
)x 

~ dp eu+i ~2(pa) 0 2ia
0

p 01 I 

In fact this formula means the following • In a formal expression of ( 3 ) we replace 

each a., ( except in the mass tE:rm M(a) =Im; a., ) by pa., then nul­

tiply the whole expression by ·p :y.<+r and subtract from it ru first derivatives at 

·p a 0 and then put ·p= 1 • It is not difficult to see that this procedure is equ-

ivalent to the R-operator in the above sense. The same r_ul.e ls also valid for 

graphs containing internal divergent blocks since they can be constructed from the 

above type graphs, additional integrations over the intermediate momenta not af -

feeling the parameters ·pa 

divergent subgraphs ·f 1 

, So, for any graphs of the first class containing 

-r a we can immediately write the cor -

responding regularized contribution 

1 IM(ll) 
TR a---- J'Ilda.,e 

"'1! ... "'• I 

fi p 2/J-b+rb 

_,_1----'b'----.-,(-"'_) __ Il (_1_, iJ pk+ m
0 

)exp[idlk (/J)p
1 

Pk] , 
u ,-, o 2i /J

0 
Ok 

X 

( 15) 
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where f3v = ·p 
O 

... p
0
,. a., if the line v enters simultaneously divergent subgraphs 

•r
0 

••• r 
0

, and f3v m av if it enters neither of the divergent subgraphs, the form 

li(/3) and d1k (/3) being constructed from parameters f3 according to usual 
. " 

rules• Show that the operator ( 1 - M ) acts· in just a manner as needed i • e. it 

subtracts from each· term as many derivatives, as its degree of divergence is-.- In­

deed,· consider a term whose divergence is less than «> (maximal divergence), 

say «>' • This means that to the given term ti-ere corresponds not r but 

r' · .< r essential pairs of spinor lines, i • e • the operator ( 1 -M ) acts on a func-

~' tion which behaves as p if P -+ 0 • As a result· the first r ..;.,• derivatives 
1 I C<I C<lt I , 1 I 'cfll'+I 

vanish and -
1 

I dp(l-p) d «>+I :F(-p)p,-., ~arms into -,
1 

fap(~p)"' +tfp) 
«>o dp "'o di" 

where "'' = "' + r - r' = 2µ - f + r' • 

5 .,11,symptotics of Divergent Graphs 

N:lw we go over to consideration of the asymptotics of the scattering anplltu­

de for which eq O. ( 15) is rewritten in the form 

X 

T = 
R 

1 I a 

"'11. ... «> ! JTlaav ['~ [dpb(l-pb,"'b d«>b+1 ] X 

IlplJ.<J,+rb a dp"'b+I 

!',. 2 ({3) 
f(fJ, p', m )exp [i !:YJl...s + iB(tJ,t,m

2
a)]. 

u !',. ({3) 

As before, the two mechanisms operate here which increase the ampllt ude 

asymptotics. One qf them is due to the presence of momenta in the preexponen­

tial factor and another to ''minimal" t- subgraphs letting the coefficient ~ 
vanish • However now, in contrast to convergent graphs, this coefficient can be 

cancelled not only by vanishing some set of the pat-a.meters a but also by 

vanishing the parameters p corresponding to divergent graphs. The account 

of this effect on the asymptotics will be made by analogy with ref. / 3 / removing 

the inaccuracies made there. A function ~(~ analogous to ( 12) is now written 

in the form 

f 
~w- I a 

"'1'•••"'al-r(f+l)Jilda.,J Il [dp (1- )"'b d«>b+I 0 I b Pb ---'----] 
dp"'b+ I X 

a ~b+rb 
Il·pb 

X 7({3) 
AU!) f 2 

(/3,~,mu)[_'P_] exp[iB(/3,t,m a)]. 
6(/3) 

14 

( 16) 

/-<1, 

Further on, for each term of eq.- ( 16) it is possible to finA a t- subgraph ·v 
with the index k which defines its power asymptotics. However now, in cont-

rast to convergent graphs, if this ·v contains g allowed divergent subgraphs 

•r 
1 

• • • r • ( forbidden and allowed subgraphs are described below) it is pas-,. 

sible to introdu<:e g + 1 · · set of parameters which lead to the appearance of the 

most right (for· the given term ) pole of the order g + 1 • These may be, e.g., 

the following sets 

g 

lavc.v J , ( av C. V - ,r I , ·p I J ••• la V C. V -f r1 ,p I ••• ·p 8 } 

each corresponds to onefold " covering" of any line of the subgraph ·v either 

by variables a but not simultaneously. The barycentric transformation corres -
k+f- I JL' 

ponding to each set leads to an integral JdAA ( since li-+ A /',.' ; 

a 1 a A A' -- -+ - -- and (-) -+ A ( - ) when ·p-+ 0 ) and to a new delta !unc-
ap A ap 6 6' 

tion of the type 8 ( 1 -p - ~ac. V - .r 1 ) • Such a set, as can be shown, is 
I . 

a maximal independent set related to the subgraph ·v • Thus, the integration 

over all the parameters A corresponding to these sets leads to a singularity 
-s-1 · 

(f + k) being appeared. 

However, in addition to the subgraph V , the graph may contain other 

independent subgraphs with the index k which include divergent blocks.- Let 

V 
1 

••• V, be a certain sequence of such independent 

barycentric transformatior, of just th.e same type as for 

tegration over all A we get at the point f_;-k a pole 

15 

t- subgraphs• After the 

the graph V and the in­

of the order r+ r' where 



r'· is the total number of allowed divergent subgraphs entering any of "~
1
_:V, 

Passing to the variable S by eq. ( 11) we obtain the following asymptotic be"' 

hayiour corresponding to this singularity 

TR ,. S-l<+h 

.. +,'· 
(lnS) 

m'-1
1 

(lnS) 

for k .~ 0 

fur k> D. 

The exponent h is due to the influence on the asymptotics of the second rrecha­

nism , i.e. it is due to the appearance of the additional powers of S because of 

the momenta entering the preexponentlal factor. It must be calculated just as for 

convergent graphs. The .number h is simply the number of increasing pairs of 

the spinor intercepts corresponding to the given· sequence of t- subgraph, 

For each sequence the number of -k +h, will be different. So, to determine the 

main asymptotic term it is necessary to find a sequence with maximal number 

- k + h • Consider in more detail the concept of allowed divergent subgraphs , 

and the reason of their ,importance for the asymptotics. Let e.g. we have only o~ 

essential t- subgraph with the index k containing one divergent block• After the 

barycentric transformation and the integration over >. we find that the residue ·of 

the pole at ~ =- k ls determined in the scalar case by 

since for 

J dp ( 1 -p )<,J 
d<,J+I . 'Pitµ A(/3) ( 
-----(-) 
dp<,J+I L'i!(/3) 1'1((3) 

(3) 
>. ➔ O (see or 

(11) 

µ'+1 

L'ia ➔ L'ivAa•>. 

µ'+1 
A a ➔ Av A a">. ( 17) 

where the graph G' i.s obtained from the graph G by contraction of the subgraph 

·v , A v is formed from V by means of S - section increasing· by one the 

number of its components and the graph G" is obtained from ·the graph G by 

contraction of the formed components of the subgraph V after btea.king it by S -
:e.:!:_ A (/3) 

section of the graph G • However, if A "') and _x_:.::_:_ are 
V\1-' L'iy(/3) 

independent of p then this coefficient vanishes and the pole does not work. 'Ihe 

latter is possible when and only when: 

1·. Any section of the graph f increases the number of components of V (in 
this case any of the trees of V can include only the trees of f and therefore 

L'i v</3) =p"L'iv(a)~ 
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2. No one of the s - section of V 

affects r ( in this case Av· may 

consequently A vl.JJ) = p IL Av (a)) 

increasing by one the number of its components 

contain ol)].y trees of the subgraph and 

• 'Ih.e l'll;U?le "allowed" ls attributed· to 

those subgraphs for which on one of these conditions ls fulfilled • 

1n spinor graphs terms such as Pu 1 • • • Pu C u I+ 1 ul+ lt ... Cu u which 
.. .. • ~ J m-l m 

are determined "by ( 6) , ( 8) and ( 9) with replacement of. a by f3 enter under 

the ~ign of differentiation, as well. But we notice that any A(sp ;qi) ls a sum 
., • /3,, 

over the product of chords' of some selected trees of G • Indeed, A(sp;qi). 

are 2-trees. with vertices, ·s and q belonging to different components • If 

in any of these we reconstruct the line u• joining these vertices, what ls equ-

ivalent in this case to the division by /3 u , then we obtain a tree • If after the re-

placement a v ➔ Mi, 

we get 

•A(sp; qi 

f3 u 

for vG,.V and>.➔ 0 

t' A vA,: (sp ;qi 

Pu 
M 
f' A'v(s,q)A •" 

f3u 

for· the line ut V 

for the line utV 

where the symbol A' v denotes some 2-trees or V with vertices s and q be..: 

longing to different components. 'Taking into account the first of the relations ( 17) 

we become sure that the parameters p associated with the divergent subgraph 

-f will affect only those Pu and Cou• which have, at least, one line belong­

ing to the subgraph • It is not difficult to see now that in fulfilling conditions ( 1) 

and ( 2) these additional terms in the spinor case are all the more independent of 

p •· It ls sufficient to note that A'v(s,q) corresponds to some trees of the 

f3u ( ) . subgraph V and since I according to 1 , any tree of V may contain only 
A'y( s,q) . 

trees of r then 
Jr;i'Sy 

is independent of ·p • So, the concept of allowed 

divergent subgraphs remains in the spinor case the sano • 

Now we consider the graphs of the second class • The fo,rm of the R- ope -

ration for it can be obtained from the expression ( 14) by concelllng all the terms 

contalnlng the product i'i, MO which corresponds to partially intersecting ( in 

the sense of common lines) divergent subgraph -fh and -f 
O 

• This leads to o. 

decrease of singularity. of the integrant when the parameters p b and p 
O 

tend 

simultaneously to zero. As we already see this possibility corresponds to a 

"twofold covering", of some lines and therefore does n~t affect the main asymptotic 

term. For this reason all mentioned in this Section is extended to graphs 
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of the second class with the only correction that in calculating the exponent r' 

only one of the intersecting divergent subgraphs are to be taken into account • 

Finally we note one more hnportant fact • If any essential t- subgraph con -

tains e allowed divergent blocks I\ ••• r • satisfying however the condition ( 1) 

then the differentiations with respect to the corresponding p lead to the factor 

ea- 1) ••• (e-N) being appeared in the nominator (where N = 1(«l 1+1) and "' I . I 

is the divergence of r 1, ) • If furthermore -NS.k-~O then the effective power of the 

pole becomes smaller by one, the power of In S 

well. Summarizing we formulate a final 

6. Recipe 

will be smaller by one as 

for finding the as:=ptotics of any planar graph with external momenta P 
1 

,P
3 

,p3 ,p 4 

entering the vertices 1, 2, 3, 4 ; respectively• 

2 2 2 "'- 2 · S=(p+p), U=(p+p) t=(p-ip
3
),s+u+t="1' 1 I 2 I 2 2 

Definitions : 
1 • S- ( or O ) sec t ion is the cutting of the graph G 1nto two connected conpo -

nents with separation of the vertices ( 1, 2 I from the vertices I 3, 4 I ( or ( 1, 3 I 

from ( 2,41) • 

2 • The graph is called planar if it contains no U - section 

3 • The chain is the assembly of lines the end of any preceding line being the 

beginning of the subsequent one, 

4. The subgraph is an arbitrary assembly of lines with the appropriate vertices , 

5. The subgraph V' is called a t-subgraph with respect to ·v if any S -section 

increasing by one the number ot components V and, at least, one of them incre­

ases the number of components by one • 

6. The set of the subgraphs V 1 ••• V, is called a sequence if each of them 

ls the t - subgraph with respect to any of the fore going and V I with respect to 

G. 

7. The pair of spinet' lines of the subgraph V ~- G is called essential with 

respect to it if at least one of section of G into two components which separate 

the opposite ends of these lines increases the number of ·v's 

one. 

8 • The_ index of the subgraph V ls the number k = f - 2µ - r 

conponent by 

where µ 

is the -number of inde_pendent cycles of the subgraph, f is. the number of its lines 

and r is the number of essential pairs of spinor lines • 

· 9. The subgraph r is divergent if its index k -~ 0 • 

18 

10. The divergent subgraph r c ·v <;_ ·G is called allowed with respect to 

V if one of the follow~ conditions is fulfilled : a) at least one of the sections 

of r does not increase the number of connected components of the subgrapl-). 

V , b) at least one of the S - section increasing by one the number of conpo"!" 

' nents of V cut r 

11. The. ~~bgraph . V 1 • • • V • are independent if any of them cannot be completely 

constructed from the lines of the foregoing ones • 

12 • The pair of subsequent intercepts of the spinor chain is c:wled increasing 

with respect to the given independent sequence of the t- subgraphs V 
1 

••• V • 

if a) each of the intercepts includes all the lines of the spinor chain lying on the 

one side of the set V 1 • • • V • and entering the extreme of .US subgraphs , 

b) each contains at lea.st one of the lines not entering the numher of essential 

pairs and c) no one of them !s contiguous to the external- ~pinor-line • 

Rule 

-k+h r+r'-rH 
When s ➔ "" the contribution of the graph behaves like S (In S) 

where is the number of subgraphs with the index 

_ence of the indepehdent set of t- subgraphs v, · ... V . 
asing pairs of spinor intercepts foi; which the number of 

k in the maximal sequ -

with · h incre -

k - h is minhml; 

r' is the number of non.intersecting partially ( in the sense of common lines } 

divergent. subgraphs allowed with respect to the subgraphs of this sequence and 

begin not t- subgraphs, r" when k . ..._ 0 is the number of subgraphs of sequ.,. 

ence V 1 ••• · V • which contain e allowed divergent• blocks not satisfying · 

the condition a) in the definition 9 with indices satisfying unequallty 

l: ( q 
1 

- 1 ) .$_ k and r" = 1 when k · > 0. 
I 

7. Exam p 1 e s 

Let us start from the simplest one 

. Example 1 ·□' ,· 
z .~ 

3 

:J. . z 
Fig. 3. 
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'Ille essential subgraphs: V 1 = (the graph as a whole ) f - 2µ = 2, r = 1 , k = 1 

and two subgraphs which consist of one line: V 2 =(4) and V 3 =(2) with f -2µ= 1 and 

r = 0 consequently 
T = 1 S (In S)2 

Exam~ Let us show how the essential pair of spinor intercepts works 

8
3 

3 .z 
~ z 

Fig.4. 

'Ille essential subgraphs: V 1 • ( the graph 

the lines 2, 7 ) 1 k = 2; V 
2 

=( 1,6); V 3 = ( 3, 4) 

3 form an increasing pair of intercepts, i.e. 

as a whole) f-2p.=3, •=1 (e.g. 

both with k = 2 • 'lhe lines 6 and 

h =1 as a result T = _l_1n 2 s 
Two examples with divergent graphs. 
Exam.ele 3 

Exam.ele 4 

4'[1]1 2 3 

& I 3 

:I s- ~ 2 

IJ 

1 IZ 

s 7 :3 

I 

9 

II 

VI = ( 1,2, 3, 13 ) contains r 1 

·v = < 1, 2, 3, 4). f - 2µ 

T = In S 

f - 2µ = 2, r = 1 , k = 1. 

V2 = (9,10,11,8) contains r 3 ; f-2µ=·2, r= 1, k = 1. 

s 

r is forbidden and there is no essential pairs in inten::epts t so that 2 

T=..!..(Ins)
2 8.Conclus_ion 

s 

2, r= 2 

So we ·have succeeded in formulating in a more of less compact form a ru­

le fqr finding the asymptotics of one more wide class of graphs with a spinor li­
, 

nes. It may be said that these are quite "physical" graphs, as far as this class 
includ~s also electrodynamics though there can occur some pecularity related to the 

. photon zero mass. 
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'l'ill now howevE>r the wid_e class of non - planar graphs remains non- co -
. ,~, 

vered • An interesting attE:mpt to study them has been made by Tictopulos ~ 

however the problem of the connection between the asymptotics of a non- planar 

graph and its topology in the general sense remains still unsolved• However, 
• it may be said that we'have bypassed" this problem• In fact, almost in each or-

der of theory. in '.w1:f c:h there is divergent "fourleg" ( in electrodynamics., e.g. 

this is th~ proton: photon scattering ) we may indicate the class of graphs -which 

are the most important f~~m the point of view of asymptotics and; the non - planarity 

of which plays no role • 'These are graphs which contain divergent t- subgraphs. 

· Indeed the pecularity of non-planar subgraphs is that the coefficient of it is not 

positive definite and therefore it can vanish somewhere in the middle of the inte • 

gration region, not only at its boundary • However this vanishing has a character 

of the mutual cancelling out like ( a 
1 

- a ~ ) • • • ( a k - a ~ ) and apparently can-

not lead to a singularity in the e -plane to the right of the ·point e = - 1 

( very likely it has a singularity at e = - 1 · namely ) but the divergent 

subgraphs lead to the singularity at e = 0 i. e • it is they which define the 

asymptotics. For example, in the sixth order for the Compton effect the graph 

·considered in the fig. 5 is the largest in the asymptotics • 

Basing on this property, for various processes we may speak about the 

classes of lhe most important graphs for asymptotics. For rre son- meson scatte -

ring, e.g. it may be states that the most important are graphs of the type 

® 
Fig. 7 

what agrees with conclusions obtained on the basis of analiticity and crossing 

symmetry. · 'The application of these methods for finding the class of asymptotical _:: 
1 

ly main graphs in many particle pr9cesses can give some interesting results as '. 

well~ 

One more domain of application of the developed methods is the graphs 

with two and three external lines. 'The point is that, in our sense, :such graph:s 

are always planar, i. e • _the coefficient of p 
2 

is always positive. For the ver -

tex part in the electrodynamics, e.g., it may be asserted that approximate 

ation of the type 
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equ-. 



I 

~ -< +-c{] 
Fig. 8 

will be incorrect since graphs such as 

Fig. 9 

give a singularity equal to that from the mentioned graphs• 

Finally, one more application of these methods is a simple summation of 

graphs which are the main in each order. For this however, besides the asymp­

totics itself its coefficient is needed. 1n the present paper we are not dealing 

with the calculation of it but this can be certainly done • Simply we have to take 

into account that the leading asymptotic term of each graph can yield several sets 

of independent subgraphs and therefore it is necessary to sum up over all these 

possibilities. 

In conclusion I would like to thank first of all O .I. Zavialov who gave me 

an apportunity to read his manuscript before. publication . and for interesting dis­

cussions. The author thanks also D.I. Blokhintsev, I.F. Ginsburg, A.T. Filip­

pov for stimulating discussions. 
APPEJ\DIX 

If any S ~ s ection cut the subgraph V vy-ith the index k at least into 

i' components 

and ,\-+ 0 (~) 
l1 

of the subgraph 

then after barycentric transformation 
1'-1 , .. ,\ ( 1, ) ( is the number 

V ) what leads to a pole at the point 

a., -+ .\a 
II 

for vt V 

of connected components 

' = -
k if, 

i' - i 
of couse, V contains no forbidden divergent subgraphs. Let us show, however, 

that in this case we can single out from 

be the t - subgraph_ with respect to G 

V such a subgraph V' that it will 

its index being k' <;;_ k 

Indeed, let V consist of i connected components 

of which contain the t - path ( i. e • a chain cut by any 

., . 
1 - 1 

v, ... v, the first r 

S - section, at least one 

of them cutting it into two parts ) and each V q be cut by any s - section at le -

ast into iq - 1 components• We prove that if iq;?; 3 then vq consist of 
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·j 

i
4 

- 1 weakly connectQ.d t- subgaph.!h We slngle out from ·v~ such con-

nected subgraphs that !or any S - section they should remain to one side ( let us 

call them invariant ). l.et I , Q and J be three subsequent subgaphs :-uch that 

any path from I to J belonging totally to ·v 4 passes only through Q , Q 
• and I, J lying to opposite sides of any S - section. It is clear that any path 

from I to Q as well as from Q to J must be a t- path, otherwise they wo.- · 

uld not 'oo mvax'.iant. For definiteness we sha.11 assume that Q can be joined by 

paths not cut by S:.. sections with vertices 3 and 4, and I _and J with vertices 
/ 

1 and 2 • Now we show that any path from I to J passes through the same ve11o 

tex belonging to Q i.e. V 
4 

consists of two weakly connected in Q t- subgraphs 

In fact, let· m 1 and m- 2 be the ends of the t- paths joining Q With · I and J 

respectively and let m 8 and m4 be the ends of the paths joining Q with the ver'" 

Uces 3. and 4 then there exists no section separating· the vertices I ~ 1 , m 2 1 from 

Im 
8 

, m 
4 

I and dividing Q into two parts. Otherwise it would make a part of the 

s- section;. And if this. ls so then taking into account that Q must be planar, i.e. 

there is no nonintersecting paths m 
1 

-+ m 8 and· m 2 -+ m 4 , all the paths from 

m1 to m
1 

intersect in the same vertex. Let another path ·from I to Q ends in 

the vertex m'i , then all the paths from m; to m
2 

must go through the vertev::: m' 

but in virtue of the fact. that Q is connected, the vertex m'- concides with m 

otherwise there would exist a path from m 1 to m 2 not passing through m • Ap-

plying . these conside~ati~ns to any three subsequent .Invariant subgraphs it may 

be concluded that ·v 
4 

consists of i
4
-1 weakly connected subgraphs ·v:; .•• ·v~q -t 

Note that among the' subgraphs ·v r+ l ••• ·v I these. may not exist a divergent one 

-otherwise it will be forbidden, therefore k !2i: k · which is the incl.ex of the union , 

·v 1 ••• ·v, • However I each of these ·v 4 consists itself of weakly conneq-

ted subgraphs, therefore. -k ~ 

I' I -l 

I 
4
I 

q•l p=t 

kP 
q 

p 

hence it follows that if ·v' entering the set I V 4 I has the minimal index then 

since 

I (i -1} - i' - i • k ·~ k ·~ (i' - i )k' 
q-1 

23 
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