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l.lntroduction

In the previous work. 1, which in the f'ollow'mg will be referred to as I,k we
" have studied the-approximate Edwards equation for the vertex function in the =
’ nonrenonna.llzable field theory of the interaction between sca.lar particles and

_vector ones, This equation is represented graphically in Figure, Like in'I we .

4

. consider the case k i = 0 in which the calculations are considerably simpler, -
The ‘invariant function

’ i
F(p2) = _1 . (1.1)
M= doe, T, 0.0 e (e
satisfies the ‘followingequétion o . ‘ T -
F= A+K<011"+K‘7F;V o oo ! )\
wﬁere ’
, Loax® at 20)” 2 ‘
A=2Z 4 ! F(q ") (13)
n¥p? T 2mt (q?+ MPH? (1 )
4 . / . : . [ y
) K% = i.:_a r 34 ‘[E_ql(pq) -2(pq) ]-(—q)— oo (1) -
2" (p~q) (Pf'Q) (q + M’)’ PR
K°F = 4a)’ ¢ 4 p?¢3pq)- (Pq)a Fla? (1.5)' |

p’ (2n)* (p q) [(p-q)’+ (@ +M)2

. kI_-'i"ere Z .is the Vi'enonnalization constant of - the -vertex, A is the coupling
constant, a = 1 for the theory involving SU(2) symmetry, ‘a = 3[2 for the - 5; §
f.heory wlth SU(S) symmetry, . P and q .are the Euchdean four‘-momenta. ’Ihe

constant A, generally speakmg, is ﬂxed by the- norma.lizahon condlhon on! the
mass shell.
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: ' : : oy e K% yy= B lu_—u-)e(x y)+("-2“0(v 1)1-1
I—bre we have divided the kernel ln Eq. (1.2) into two pa.rts 1) the most T AR ! o 12 (y + MS o Tl CE (2.1)
slngula.r part (for large p and q ) l,e, the lnteg,ral in the right-hand 51de of o o ) Lo ;', o . . R I
(1.3) a.nd the kernel K(o’ ' 2) the less singular part K’ . The most singular . " where ‘ ' ' . N
part is of positive dimenslon in the vanables ? and g (for P sq =+ o= ) and’ , , / . 3003 . _p’ y =q§ .. o e V- ‘ - .’(2.1&) o
gives_ therefore power divergences by iterations’ of eq, (1. 2) The kernel K’is. ‘ g Bmangd T ’ . | .

dlmenslonless in the large variables . p and q -and corresponds, in this sense, At

to kernels, which one. faces in renom:a.llzable theories, Nl s S Owing to‘ the occurence of 0 - funcuons, we may reduce the integral equatlon &
- | P (1.6) to the dxfferenual one 1-

‘ “The main idea of the work I consists in choosing the solution of the fol-i
Jowing equation with the most singular kernel as a zero approximation . S e e RS ‘ ‘ o )
’ R ' . T L ‘ - : R R 42, 2..(0 : ~g.2F(~) o a2 ’ (2'2) :
®_ o4 RO 5@ . . , : (1.6) Cee T e e R & dda [—L‘ﬁ (x°F N+ T3 x dx’[ x dx (x A)] :
‘ 3 ' 1.6 N T 2. 4" xdx oox(x Mt T X ' S

F
R ' . o ) o B o : ith ' boundary conditions
To calculate the exact function - F we then transform formally Eq,(1,2) by multiply~ .07 . = " . ‘with -the boundary. .

ing both sides of Eq. (1.2) by the resolvent R=(1-K)™ *) using B4, 0o L R %m e 0 S (23a)
(1.6) we obtain’ followmg equat.lon. : A T A ) x oo : 7 : B
) F = :r(°’+ (‘1’.-1(“”)" KF « FO4 rroF; © . (L7) S e « ’ ‘ F‘°’(x) is bounded for x - o S (2 3b)
/ Thls eouat.ion be'mg solved by iterat.ions gives ‘th‘e" correction functions F " ) L : Note, that if we replace the constant A in Eq. (1.6) by an arbltrary f“"°"
- which were consldered Ln I. We have proved there, lha.t Eq, (1.6) for A0 - ' .’i = Ction f(x) 7, then the correspondmg function )(x) saﬂsﬁes Eq. (2 2)
has the uruque solution F (p 2) decreasing for p2_.\eo and ha{,_ing the logaritti- : : ~' '7  which A is replaced by f(x) ., We use thls fact for fx.ndmg the resolvent R 3
‘mic branch point in the coupling constant of the kmd A%loga’ ) . In 1 we have‘ I ’ S Indeed., the resolvent is defx.ned by the relation F @ 'Rf." ., Hence, to den.ne R‘ ,‘
_1ay.l.so“ shown the existence of any«itero.t.ionﬂﬂn_, -of Eq. (1.7)‘, but the convergence% o wig " we have. to find t.he solut.lon of Eq. (2 2) for t.he arbltrary function f. ‘ ‘\‘A :
of the series of iterations ‘ . ‘ ‘,’I‘he\ equat,ion for F © may be written _mv l.he folllc'wxng‘ ’f_orm s o SR
‘ ‘F=3 F%; ; o ” : o o o . ; ST
e - ‘ ('1.8) ) W ; _L a’ L ¢’ (z? (il‘:w)—,f)”+ g (F(O)—f) >.="‘ éaf 73 ° .(2.4) s ,'.":
- . ‘ C o ‘ Cap S e ~ x o dx? oz ode® x(x+ M ) . x(x+m o g
‘has not been. considered, m'thermore, the expansion of F for small A was ST R - : S R
found ‘in the case M=0 only. Now we study the properhes of Eq. (1.7)a.nd of S N j ‘ Y '1‘hen we express the solu’uon FO - in terms of  f with the’ aid of the Green
the lteration solution (1.8) in more detail. This consxderahon _enables us, in’ pa.:\- . ,h"" % = S rfuncuon G(x,y) of the bound.a.ry value problem (2.2) - (2.3) (fO!‘ A- 0)
ticular, -to calculate the expansion of the exact functxon F for small A Lo S ' N ; o .- f B T . /; L s
P b ST R FO%)= £(x) -g’,’?d,} SGy) /'vf,(y). . (25)
\ ) :2. Resolvent of the kernel K( 0) ’ - 7 : s e Y(Y + Ma)2 8 - “

’

Trie Green funchon may be . easxly constructed if one knows the lmeax' indepen—’

We have shown in I that, after inte at.m over an ulax' va.rlables ln the RETE [

b = e e wd FLUL e dent solutxons F, of the homogeneous equatlon obtained from Eq. (2.2) by set ‘

four-dxmensxonal spherxcal coordma.te ‘system,  the -kernel - K© of Eq, (1.6) takes con el . R
L R s | ting A= 0 ( “see, for. 1nstance, the book )

the following form ' ST et e D i

- .
tet B RN IR L E 1(}') . !
x) Previously Eq, (1.6) was shown to have' no solution for A-O. The O A S N G(xy) =6(x-y) Z F (x) W (y) 0(¥ xziF (vx) (2.6)
exlstence of 'the resolvent follows from thls facty - - - . T B B : ’ . ) ~ sh . .t
et : - . i
. . 5.
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Here W(y) ls the Wronsklan of the solut.lons F,@¢) and W (y) are slgnéd ' NS ‘
R ’Ib Imd the behawour of the Green functxon for small x andA y s we "ﬂke

.

~minors. °f the Wronsklan, which correspond to -—d F, (y) . The I.Lnea.r 1ndepen- T
dent sol.utions F, " have the following asy‘mptot.ldcy behaviour at by el ST lse of the - transformauoh (2.8) and choose the lmear mdependent solut.lons
at infinity - T R .
. . - e T F? (x) ‘and’ F, (x) to ‘have the followmg behaviour for. small x N ,' .
e T, a3 -3fs I, K 4 Do ; , ’ S
: Fra (3 = (e70) Tewplde g 1) 1; i . L ERme L, P . i S o
. . , o R R . w0 @30 =0 gy . L (242
N RN B L SR (2.7) Tl T v - : (222)
Tadn) p e n) emlde (gin)7) . : S s L F@e g’ F0) - (707
X - . . . . : N v IR F(x)= g x » Fo(x) ™ g£°x -
, r N : SURRRE s\ i

The solutions a} (x) satisty as well the condition (2.3b) ‘I‘he possib o[ S Onuttmg sxmple oa.lcu.lahons we wrxte down the expressxon for the Green t:unchon B
EIE B ‘."mthedomamofsmall'x and y B . : s

.

suc.h a choice of the linear independent solutions follows from the results of L. L Rt -
. ST S ; ) 5 . .
It can be easily verifled, that the right-hand side of Eq, (2, 6) is invariant : : . Gluy) = ‘11 lo(x—y)(u-‘-l,) +6(y—x)(2xy?—x’y)l.' ©(2a3)
y . . . -+ 0 i X « . . PN
under any linear nonsingular transformation of the following kind - ‘ E ) ,;*0 y . ) : I
G . o . : ~ ) Y ; By the same calculations one can find the behaviour ‘of G(x,y) for x-oO .
F? = . : . . : - .
1(x) /,E l;" ‘Fy (1), i=1,2; o v : R Ly e or for -+ = 7, ya 0 + The resolvent being expressed m terms of
Ry (2-3) o 3 ,‘ o the Green t’unctlo the obtamed as, totxc formu.lae defme the as totic pro-
FL(x) =lz d,pFg(x) , k=34. ‘ ‘ e o o N, ymp ymp p =
=34 : : o - AT perues of the resolvent R, ' ‘ '

N

We shall use the last comment in_the followi.ng while conslderug the behavlour X )
3. Proof of the conver&nce of the 1terauon procedure

- of the Green funchon in different regions of the varlables x and 'y ; Sl
: U It is proved in this secnon that the kernel K = RK’ of Eq. (1. 7) is

’I‘he equatxon (2.5) glves the following representation of ‘the resolvent ‘ o - i ~ o
’ A A R FO we

square mtegrable. Using the known properties of the zero approxxmahon
ground then the applxcabxhty of _the. Fredholm method fo this equation and furt.her
~of the iterative series (1. 8) for sufficiently small vaJues e

G(-!.}')

TOFTILE (28) ..o

N R(xy) = 8(x-y) - g2
show the convergence

L : . :
In the fol.lowmg we shall use a.lso the ‘other representatlon of R, whlc.h is obta.l- -
- ned by immediate solution of Eq. (2 2)

\ “of,\A‘,ﬂ, o

- We study first the kernel” K’(x;y) . Performing the mtegrahon over angu.lar

o v oo {42 F a‘ : - S
- Rf— fdyG(x,y)___ﬁ 1 d (y o0l . . " varlables in Eq, (1 5) ‘we' obtain the following expression
ok o et e Y&y &3 A ( 2.10)' G i s S -
R e : e PR . o .. L . 2 ,2 , Y
L R ' ¢ K (ny) == [b(f)- b(f )] . . 3.1 :
oIn both cases we have to study t.he functlon ‘G(x,y). i R 1 . ) : 12 ( +M§' : ( )
With the aid of Egs, (2.6), (2.7) we ‘can easily find the a.symptoﬂc beha~ Aoseratal ‘v;rhere .
.viour of the Green £ . S T Ca . R . : . b
unction for large values of . x and y : _ B N Cn(E) - 3-128% 488 ‘osec - Y7, :
L -a/eynx/s o e L . : 4 ) 7
oo G(X.}') s {ﬂ(x—y)exp [4e ‘ % o R S o’ ' o S ' - -
deel et Do »,,;::_ﬁ/a— (g y) (g x) )+1_]+_ L A g t sy 4n® s Tty 7 N
. . . . ey T Iy . ' e

| o L ()
+ 0 1T a4 2 (% o
L 00mem et (2T~ ) e i)y e )

In the case "1 + y. > n® we get the coﬁverﬁent asymptotic representation of

_i*K;(X,}').V . . h )
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2 2

4y n 3 lZH‘

K(x.y) ~ B2 __Y__( _0(x- y)+—e(y—x>1 L !

x+y’>>m23 Y+ HS’ y ) ) (3’2) ¢

' In‘thé case x+y << m?  another representation is valid ’ {
K" (xy)_ = [(2L-_.)e(x-y)+ (2ry-x oy~ (33) - o

It follows from Eq., (2,10) that the kernel K  may be written in the fol- -

K lowmg form

l-(.(x,y)=fdz'G(x.z)_:_.Ed;;.[J;fz_Z(znK’(z,y))].' . (3.4).

0

The asymptotic representations (2.a1) and (3.2) give the following asymptotxc

'V‘behaviourof K for x-ooe' y + o

- " —-3fs ) ’ v w ' . ’
Kiz,y) = -E%E—’,‘ 3/ay"/a[{é)(x—y)exp [,‘kakl_l(g’y)’f‘-(g2 x)“)+i§’z’_]+ . L
: ) - . (3,5) I
/ T 2 . K Z !
+0(y~ x)exp[4e ‘(g 1) —-(g'y) )+ i 4 ]+ c.c. !. ‘
For x +0 , y» 0 . we find simiarly from (2.13) and (3.3) that
4 K gt e )6 ] |
(x’yl:; J12H4 {(z—x' "{'5)0(‘7”+ (ny-fx Yy -x)}. : ,(3.6)
.»o A . kN R L . . '

i
!

We do not write down here. the asym-)tot.c e:qaressxons of K(x. y ) in the regions o
xa 0 , ¥ +m _or x+® _, y+0  which can be easily obtained, One :
can verify that an account of these regions dces not chang:e the following re-
sults, ) ’

! Beering in mind the asymptotic properties of the kernel K just found we
. can show that its norm is finite, Le, that ~

NEN = FaxfayRen®e s o (s

Inasmuch as F (x) is squere Lntecrable function, - Eq, ( 3,7) allows us to apply : :‘
the E\-edho]m method to Eq. (1.7) We shall discuss in the following the pos- . . R i
f"sx‘bnmes which arise from this resu.lt. For l.nvesﬂgq\‘.ing the convergence of the g
series (1,8) It is important, however, to know tl'xe>behaviour of the norm 'Ili]]
'fbr small Vé.lues of A Sunple computahons performed in t.he Appendlx, lead
to the following rough ostimate,

FEEE LA,
el

.-“E.“’(vv‘Ck:‘il}l\ogAi] ; e oo (~3,¢3) €

where C Is a d.lmensibnless constant Independent of A . Hence, for }:.foficient;

1y small values of A the Inequality. HE'[I <1 is valid, and this ls suficient )

for the itéraﬁvé‘ serles (1,8) to converge, The convergence is uniform in x =in
memtarvaio<x<m. <

v

co As wasz shown in 4 the iteration F (x) decreases for x -+~ faster than
“.F(nf )(x) » In vn'tue of the uniform convergence of the 1teratlve series . ( for . -
aufficiently small A~ ) its asympiotic bel’xamour s det‘med by -the asymptotxc

behaviowr of the zero approximation F (x)

-7/ ‘he last result is of great lmportance for proving the. transition to the
Euclidean metric in Eq, (1.2), This transltlon was’ performed by rotating the 'in~. "
tegration contour in the complex planes of the varlnbles Py and g ‘by the’

angle .’5. ' In I we have proved the posaibmty of such a transfonnation for
Eq. (1.6) The fact that the asymptotic behaviour of the exact solution F(x)

does not dlffer from that of the zero approxlmation allows us to prove the pos—-

sibility of th.ts robatlon 1n the full equation (1.2)

Note that the Fredholm methad, the appucabmty of which was justined above, ;
is very convenient for an investigation of the analytic properties of F(x)- "

5.
_Generally, . this problem is not different from that considered in and .we sha.u

rot elaborate it here, In conclusion of this section we would like to. note that i

“the Fredholm method may be used for any finite .value of A , This fact makes::
- "<p0551b1e a study of the properties of the vertex function in the 5trong coupung
‘Caseo

i

4, Expa.nsion of the Solution for Sma.l.l Values of. the Couplmg .
: Constant . : L

The present section is deyoted- to the combutatlon of the' badlatwe cor;'ec—-

- 'Vtion to the vertex tunctlon F(x) for small values of A e Inl the é:'cpansion

of F° (x) was found in the approxlmatlon Ma0Oz

© . 0 g’x
(,),1M= - F ) = ALy

log(m 2g’ )+

(41)

5 . e -
g x X B - 10 2 2 N
g oes + 4y )+ Nemm 0l
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( Y A' 0’577’“ Is the Euler constant, ¢”. is connected with“' A 'byA(Z.lla)). ﬂ”'v - B ' ‘Agdy(K'(X.y) + K(xy)). “(4s5) Tl
We have noted there without proof that nonanalytic term é g ?xlog(m 2g?) does g S ) - - . - VRO
) not change by takihg into account M # 0. or the corrective kernel - K* ,Here '~ - { Qne can be easily convinced that '. \ |
f; we prove this asseruon and at thé same time«compute a.u‘ terms of the g2 order : \ o Vv  ROAR, = . , (§)+ 7—[(23' 2»)0 (x-y)+(2‘i—x_2_ )a(y—x)]l.‘(4.6>
“in t.he exact soluhon‘F(x) ST ’ LR A S R T o“— 12 (y H%’ ] N y “y? : -

The met.hod bemg, used allows .one, generally, to write down the fu.Ll expan—

sion of’ the vertex function F(‘) 'in powers- of 2’ and loga”? + However, . . o ' Qnitqu some simple but rather tedious calculafions, we present the final form
Eq. (1.2) evxdently does not contain all' the diagramms- of “higher orders (start- ’ ”_ of the expanslon of F ‘ ln the case ,HE o (which is ta.l\cen for thé sake‘ of
g ing from - /\ )« Therefore we restrict ourselves to.the calculation of.the terms o v shnpllelty) X
bemg, proportional to b log/\ va‘nd A? onty., o : | ; o | N .
For this purpose we use the representahon of the'resolvent In the form JETEER ) 1F(r) = AF1+_6_lo‘g(g mf )= ,56’ (4y + lg“),+ _2531 + ” :
(2 9) and write down Eq. (1.7) as follows . " e - . y ) (4.,{) ;

' ‘ o e . SRR k _ X+4m (x'+2n )\/x(x+4m3+(x+2m)
F(x) = F ‘°’(x) ¥ fdyK (x,y)F(y) ¢ j’dyj’d M F(y) (42) ' e + 12 (x 2m” )\/ logl 1]+0(g )

‘

: ‘ 2
o ) ’ 1(z+M”)2 ' Leoe e ) i o R . m» "

'\‘One can sOlVe this equat.lon b}’ 1teratxons, assumlmg that the expanslon of the The results presented in this section show that for evaluating the terms

. zero approxxmatlon F®  is known, The second order, whxch wé now seek for, : /bel.ng norﬁrnlyt.lc in the coup].lng constant it is necessary to solve exactly some

s defined by the first two"terms of the right-hand side of Eq, (4.2) only, since. S : sufﬂclently slmple differential equat.lons( as was done in I), then the calculation
t.he C°n‘-"1buf-‘°n of the third term is proporuonal to r . Let us first calculate the o e of the fo]lowirg correcﬂons ls not more difficult than the usua.l perturbation theory
necessary terms of t.he expanslon of F? using the expansion (4. 1) for F o J and reduces to a computatlon of some convergent lntegra.ls.

‘It can be easily ven.ﬂed that F (x) satisfies the equation quite analogous . L o

to(4.2) : o ot S

5, Cv'o n cvlku s lon
S o S ) e T N L . R - g . N ’ y - 1
‘F(O, .F(o)( N F:i K7(x )'F(o)(y)—g’j’dy[dz G (5,2)KA2y) ZF(°)(y); (4.3) ) In conclu.slon we ,&sms the main resulls of the. present and the previous
- F (x) =F , (x +o Y Bl XY ) o o z 7 i R -papers, First we briefly describe the general scheme ‘for the solution of approx.i-'
T . - : : ' ' o ~mate linear equations in nonrenorma.lizable theories, In doing this we base on the

- where the following notations are introduced o - L e e * detailed mvest!gatlon of the equaﬂon for : the vertex function,

s

~

- K N - K(o).(‘A .) K(o)( " ‘ o : g ’I‘he ﬁrst step consists in dividlng the kernel of an mtegra.l equatlon into
-~ K(ny) = K Ty, = : v 2
’ °(x.'.y s T M=0 Lol . the most. singular . part and the less -singular one, . The prlnclple of such.a divis-
R T - ' 'a ' ) : T e - jon Is formulated in the Imroducﬁon. Here .our approach differs. considerably
L _2"_2__ [(_,—2_.)0(x—y)+(———2—’—)0(y—x)] s (44) R i )
12 (y THD? x SR . from that of F‘elnberg and Pa.l.e . The essence of their approach -consists in,
. - U oo . » R . o choosing such a kemel of the equatian for zero approximation, which nges exact-
G o (x,¥) - .G(x‘y)\u e v ’ ) o cn » ly the most d.lvergent terms ln each order of perturbaﬂon theory. According to
: S B o . RN B " the recipe of Felnberg and Pais we should fake the following e:gpressxen instead

Thus, the correction to the terms of the expansion (4.1)- are glven by the

.a;\2 f d4q  (pq) F(qMY.
expression e N . : B%p? T (2mt - q)® - .
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- Eor the correspondmg zero approxi.matxon we then were to obtaln quite a* s:.mple E

' dxtferential equatlon of the second order. This equation: has a solution, . sat.lsﬂng

the bounda.ry cond.ltlon.s. However, the asymptotlc behavmur oi this solution” ior ST

. large values of " x

‘ solutlon does not ad:mt the rotation of the lntegratxon contour, which is neces— L

P sary for the transxtzon to t.he Euclidesn momerta, It is evident therefore that ln

: thxs case the serxes of iterations cannot converge, Roughly speaklng the main

defect of the method Jof F\emberg and Pais lies m the obvious fact that the tems '
L _neglected are as important in the asymptotic region as the ones faken into account.

\ Our rule conslsts simply in the recogmtxon ‘of equal rlghts of p and. q in

o t.he kernel, and this pua.rantees the correct asymptotlc behaviour at’infinlty A

; " The next steps, wtuc.h were descrlbed in detail above, allow one to study
’ \t.he solutlon for any value of the coupling consta.nt. In the case of the weak coup-
lmg the solution can be calculated with the’ arbttra.rny hlgh accuracy by using

-~ the modified perturbatxon theory, wh.lc.h enables us to take mto account the non -

ana.lytlc dependence on. the coupllng constant. By' these computatlons we obta.ln

o the expansion in powers of a? and of . lOgt\ ) ;

v

“The method ‘described above may be appﬂed to a large class of problems UM

in different nonrenorn‘alizable theorxes. ‘In part.tcula.r, one can use this method e

. . ior mvestxgatmg the. scattering a.rnphtude in nonrenonna.hzable theorles. In this

: ) case the problem of how to find the zero approxi.matxon a.lso reduces to a dit;
ferent:.al equation . with some boundary cond.ttxons. ( Simllar equatlons ln the theory'
of nonrelativistic scattermg on sir\gu.lar potent.tals were considered in ) All the
following steps are also qulte similar to the ones discussed above. Note, that k
the restriction k

the case k“ #0 we meet only the technicb.l dl.tfzcultles. S S e

We believe the use of the F‘redho.lm method ln'the equation.sN similar to

Eq. (1.7) to be very promlslng Ebr K0 . the F&'edholm denommator depends

_and ot.her parameters - of the problem. The zeros of the denomlnator :
define the energxes of bound states of t.he system. So the- posslbmty arlses to” o

treat the problem "of the bound states. in ‘nonrenormalizable theories without- using
auxiliary parameters ( cut-off, subtractlons, etc), ° S

The aut.hors expres._. thexr smcere gratltude to NN.Bogolubov for the iru.lt-

iul chscussxons. , ) -

) ’I‘.D.Lee was the first who drew attention to the possxbmty of ﬂndtr\g
euc.h terms - in nonrenormalizable theories,

12-

bears no resemblance to. the correct one, In partxcule.r,this A

we have taken hex‘e. is not essentta.l and in consldertng, =S

) Note, that in t.he second region the Green function G(x,y)

APPENDIX

. For the est.tmate (3 8) to obtam, we conslder the behaviour’ of the kernel
K- for X +y >>mn?
50 t.hat m?

in more deta.l.l Choose the constant
JM2c? < m 3757

L of the mass dlmenslon

.« We always may do so for sufﬁcxently smau )t

» Dlvtde now the domam of integration in (3.7) into two regions:
2

1,x<L” .y<L ;2.x~>L or y> L

_‘For sma.u )t the Green function is represented by eq, (2.13) ln the region

X, ¥y g L » Therefore the integral ‘over the first region may be estimated as fol-
lows - co Ll
- b ’ L? 3 o k \

L e 3 4

; f dx _fdyl!_((k,y)l <ACu. o
S s o o ‘ } ( A.1)

L ‘
- I.ndeed, (t\ enters in this mtegral as a factor, while the mtegrand and the lmuts :

\of integration do not depend on A .
X

In the second reglon the representatxon (3.2) for K’ is valid. Making use ;

: “of eq. (3.4) and periormmo some simple ca.lculatzons, we get that in this region

X A 1 3t i
K(z,y) = %., it im G(;.Y)t--‘}%'ﬁ(x,y)}.

y (az)

depends 'on g? m ..

. : the iol.lowing way

\ o Glzy) = L G(u,v); R
- . S

’ . y

G‘(u.f') = G(g’x,g’y) :

and the dimensxonless variables u = g’x Ty VW =g°y are: introduced, ihen we N
. . ¥

) ~come to. the expresalon . A :

Idxfily

I . 2 g .
181 = 2207 1 duav [g(u, v (A3
x>13 o y'>L2 n 2 ‘ ) .
r ud> g21L2 4 . .
) > g3 B )
" where l . ‘
! S 3 ‘ - -
s = - G i..‘i_ G . N
\ ¢ (u v') v,\l >3 G(“-Y)+vv » G(u, v}, (Aa)




" Now (A.2) and-(A,5) give the ‘estimate (3.8).

!

Bearing in mind that the integral in (A3) converges we obta.m the following .

¢ estimate of (A.3) (with the aid of eq, (2 13) which is still valid for %,y L)

Jdx Jay |Ken | <.A,(c ,uogL g +C 4. (As)

B
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Ca soalar partxcle with ‘mass - M,

f‘lg

. The Edwards equation for the vertex function F (nk) , The dotted
line represents a free vector particle with mass m a.nd the so].ld one shows





